Introduction to QDNAseq

Contents

llari Scheinin

June 4, 2025

Running QDNAseq. 1
1.1 Binannotations.o oL 1
1.2 Processing BAMfiles.o
1.3 Downstreamanalyses

2 Parallel computation 10
2.1 Non-parallel processing. 10
2.2 Parallel processing on the current machine 10
2.3 Parallel processing on an ad-hoc cluster. 10
3 Sexchromosomes, 11
4 Generating bin annotations 12
5 Downloading 1000 Genomes samples. 14
6 Sessioninformation oL 15
1 Running QDNAseq
This is a short tutorial on how to use the QDNAseq package. It covers an example run using
the included data set of chromosomes 7-10 of a low grade glioma (LGG) sample. First step
is naturally to load the package.
> library(QDNAseq)
1.1 Bin annotations

Then we need to obtain bin annotations. These are available pre-calculated for genome build
hgl9 and bin sizes 1, 5, 10, 15, 30, 50, 100, 500, and 1000 kbp. They are available in the
QDNAseq.hg19 package, which has to be installed from Bioconductor separately. With that
package installed, the bin annotations can be acquired as:

http://bioconductor.org/packages/QDNAseq
http://bioconductor.org/packages/QDNAseq.hg19

Introduction to QDNAseq

1.2

> bins <- getBinAnnotations(binSize=15)

Loaded bin annotations for genome 'hgl9', bin size 15 kbp, and
experiment type 'SR50' from annotation package QDNAseq.hgl9 v1.14.0
> bins

QDNAseq bin annotations for Hsapiens, build hgl9.

Created by Ilari Scheinin with QDNAseq 0.7.5, 2014-02-06 12:48:04.
An object of class 'AnnotatedDataFrame'

rowNames: 1:1-15000 1:15001-30000 ... Y:59370001-59373566 (206391
total)
varLabels: chromosome start ... use (9 total)

varMetadata: labelDescription

If you are working with another genome build (or another species), see the section on gener-
ating the bin annotations.

Processing BAM files

Next step is to load the sequencing data from BAM files. This can be done for example with
one of the commands below.

> readCounts <- binReadCounts(bins)

> # all files ending in .bam from the current working directory
>

> # or

>

> readCounts <- binReadCounts(bins, bamfiles="tumor.bam")

> # file 'tumor.bam' from the current working directory

>

> # or

>

> readCounts <- binReadCounts(bins, path="tumors")

> # all files ending in .bam from the subdirectory 'tumors'

This will return an object of class QDNAseqReadCounts. If the same BAM files will be used
as input in future R sessions, option cache=TRUE can be used to cache intermediate files,
which will speed up future analyses. Caching is done with package R.cache.

For large BAM files it is advisable to use the chunkSize parameter to control memory usage.
A non-NULL, non-numeric value will use the length of the longest chromosome, effectively
chunking by chromosome. A numeric value will use that many reads at a time. Note that
total peak memory usage is controlled both by the chunk size and the number of paralle
workers. See section 2.

For the purpose of this tutorial, we load an example data set of chromosomes 7-10 of low
grade glioma sample LGG150.

> data(LGG150)
> readCounts <- LGG150
> readCounts

QDNAsegReadCounts (storageMode: lockedEnvironment)
assayData: 38819 features, 1 samples
element names: counts

https://CRAN.R-project.org/package=R.cache

Introduction to QDNAseq

protocolData: none
phenoData
sampleNames: LGG150
varLabels: name reads used.reads
expected.variance
varMetadata: labelDescription
featureData
featureNames: 7:1-15000
7:15001-30000 ...
10:135525001-135534747 (38819
total)
fvarLabels: chromosome start ...
use (9 total)
fvarMetadata: labelDescription
experimentData: use 'experimentData(object)'
Annotation:

Plot a raw copy number profile (read counts across the genome), and highlight bins that will
be removed with default filtering (Figure 1).

> plot(readCounts, logTransform=FALSE, ylim=c(-50, 200))

Plotting sample LGG150 (1 of 1)

> highlightFilters(readCounts, logTransform=FALSE,
+ residual=TRUE, blacklist=TRUE)

Highlighted 3,375 bins.
Apply filters and plot median read counts as a function of GC content and mappability (Fig-

ure 2). As the example data set only contains a subset of the chromosomes, the distribution
looks slightly less smooth than expected for the entire genome.

> readCountsFiltered <- applyFilters(readCounts, residual=TRUE, blacklist=TRUE)

38,819 total bins
38,819 of which in selected chromosomes
36,722 of which with reference sequence
33,347 final bins

> isobarPlot(readCountsFiltered)

Plotting sample LGG150 median read counts

Estimate the correction for GC content and mappability, and make a plot for the relationship
between the observed standard deviation in the data and its read depth (Figure 3). The
theoretical expectation is a linear relationship, which is shown in the plot with a black line.
Samples with low-quality DNA will be noisier than expected and appear further above the
line than good-quality samples.

> readCountsFiltered <- estimateCorrection(readCountsFiltered)

Calculating correction for GC content and mappability
Calculating fit for sample LGG150 (1 of 1)
Done.

Introduction to QDNAseq

Figure 1: Read counts per bins. Highlighted with red are bins that will be filtered out.

LGG150
Tkx 45 kbp . Eg=0.166, 3, =0.206

200

150

=
=

read count.

n
=

10

chromaosome

> noisePlot(readCountsFiltered)

Next, we apply the correction for GC content and mappability. This will return a QDNAseq-
CopyNumbers object, which we then normalize, smooth outliers, and plot the copy number
profile (Figure 4).

> copyNumbers <- correctBins(readCountsFiltered)
> copyNumbers

QDNAseqCopyNumbers (storageMode: lockedEnvironment)
assayData: 38819 features, 1 samples
element names: copynumber
protocolData: none
phenoData
sampleNames: LGG150
varLabels: name reads ...
loess.family (6 total)
varMetadata: labelDescription
featureData
featureNames: 7:1-15000

Introduction to QDNAseq

Figure 2: Median read counts per bin shown as a function of GC content and mappability.

LGG150 median read counts

33kx 15 kbp 1,189,060 reads
]
W |
= |
(=]
=
A -]
=R
a
&
D]
‘:._
=t
‘:._
[an]

40

mappability

7:15001-30000 ...
10:135525001-135534747 (38819
total)
fvarLabels: chromosome start ...
use (9 total)
fvarMetadata: labelDescription
experimentData: use 'experimentData(object)'
Annotation:

> copyNumbersNormalized <- normalizeBins(copyNumbers)
Applying median normalization ...
> copyNumbersSmooth <- smoothOutlierBins(copyNumbersNormalized)

Smoothing outliers ...

> plot(copyNumbersSmooth)

Plotting sample LGG150 (1 of 1)

Introduction to QDNAseq

1.3

Figure 3: The relationship between sequence depth and noise.

Moise Plot

0.015 0.020 0.025
1 1

0.o10
1

0.005
1

200 100 GE.667 50 40 33333
average reads per bin

0.000

Data is now ready to be analyzed with a downstream package of choice. For analysis with
an external program or for visualizations in /GV, the data can be exported to a file.

> exportBins(copyNumbersSmooth, file="LGG150.txt")
> exportBins(copyNumbersSmooth, file="LGG150.igv", format="igv")
> exportBins(copyNumbersSmooth, file="LGG150.bed", format="bed")

Downstream analyses

Segmentation with the CBS algorithm from DNAcopy, and calling copy number aberrations
with CGHcall or cutoffs have been implemented for convenience.

By default, segmentation uses a log,-transformation, but a sqrt(x + 3/8) can also be used
as it stabilizes the variance of a Poisson distribution (Anscombe transform):

> copyNumbersSegmented <- segmentBins(copyNumbersSmooth, transformFun="sqrt")

Performing segmentation:
Segmenting: LGG150 (1 of 1)

> copyNumbersSegmented <- normalizeSegmentedBins (copyNumbersSegmented)

http://bioconductor.org/packages/DNAcopy
http://bioconductor.org/packages/CGHcall

Introduction to QDNAseq

Figure 4: Copy number profile after correcting for GC content and mappability.

LGG150
33k x 15 kbp Eg=0167, 3, =0.168

e

log, ratio

chromaosome

> plot(copyNumbersSegmented)

Plotting sample LGG150 (1 of 1)

Tune segmentation parameters and iterate until satisfied. Next, call aberrations, and plot the
final results.

> copyNumbersCalled <- callBins(copyNumbersSegmented)

[1] "Total number of segments present in the data: 14"

[1] "Number of segments used for fitting the model: 11"

> plot(copyNumbersCalled)

Plotting sample LGG150 (1 of 1)

Called data can be exported as VCF file or SEG for further downstream analysis.

> exportBins(copyNumbersCalled, format="vcf")
> exportBins(copyNumbersCalled, format="seg")

Introduction to QDNAseq

Figure 5: Copy number profile after segmenting.

LGG150
A
33kx 15 kbp,_ 14 segments Eﬁ='lll.15?.ﬁ_1'=ﬂ.158

T

S

log, ratio
-4
|

chromaosome

It should be noted that CGHcall (which uses by default) was developed for the
analysis of sets of cancer samples. It is based on a mixture model, and when there are not
enough aberrations present in the data, model fitting can fail. This can happen especially
with non-cancer samples, and/or when analyzing individual cases instead of larger data sets.

If CGHcall fails, can also perform simple cutoff-based calling by setting parameter
method="cutoff". The default cutoff values are based on the assumption of uniform cell
populations, and in case of cancer samples will most likely need calibration by adjusting
parameter cutoffs.

Finally, for other downstream analyses, such as running CGHregions, it might be useful to
convert to a cghCall object.

> cgh <- makeCgh(copyNumbersCalled)
> cgh

cghCall (storageMode: lockedEnvironment)
assayData: 33347 features, 1 samples
element names: calls, copynumber, probamp, probdloss, probgain, probloss, probnorm, segmented
protocolData: none
phenoData

http://bioconductor.org/packages/CGHcall
http://bioconductor.org/packages/CGHcall
http://bioconductor.org/packages/CGHregions

Introduction to QDNAseq

Figure 6: Copy number profile after calling gains and losses.

LGG150
33k x 15 kbp, 14 segments

Eo=0167, 4, =0.168 ;

5 1
1
1
4 :
1
1
1
3 ! 0.a
1
1
2 i
1
1
1 | 0.6
2 =
R =
o m
2 E
- B, j=1
-1 4 04
1
1
2 !
1
1
-3 | 0.2
l
1
-4 — 1
1
1
1
-5 T . T 0
7 a g 10
chromaosome

sampleNames: LGG150
varLabels: name reads ...
loess.family (6 total)
varMetadata: labelDescription
featureData
featureNames: 7:45001-60000
7:60001-75000 ...
10:135420001-135435000 (33347
total)
fvarLabels: Chromosome Start ...
use (9 total)
fvarMetadata: labelDescription
experimentData: use 'experimentData(object)'
Annotation:

This command can also be used to generate cghRaw or cghSeg objects by running it before
segmentation or calling.

Introduction to QDNAseq

2

Parallel computation

2.1

2.2

2.3

QDNAseq supports parallel computing via the future package. All that is required is to select
an appropriate plan.

The instructions below apply to all of QDNAseq's own functions that support parallel process-
ing. At the moment these include estimateCorrection(), segmentBins(), createBins(),
and calculateBlacklist(). binReadCounts() parallelizes by chromosome when chunkSize
is used.

However, when argument method="CGHcall" (which is the default), function callBins()
calls function CGHcall() from package CGHcall, which uses another mechanism for parallel
computation. For that, the number of processes to use should be specified with argument
ncpus, with something along the lines of:

> copyNumbers <- callBins(..., ncpus=4)

Non-parallel processing

The default is to use single-core processing via “sequential” futures. This can be set explicitly
with:

> future::plan("sequential")

Parallel processing on the current machine

To process data in parallel using multiple processes on the current machine, use the following:

> future::plan("multisession")

After that, all functions that support parallel processing will automatically use it. The future
framework attempts to play nice with the current compute environment. It will automatically
respect environment variables and R options that are used to limit the number of parallel
works. It will also respect environment variables such as number of cores assigned to job
scripts in high-performance compute (HPC) clusters. If no such restrictions are set, the
default is to use all cores available. To explicitly set, and override other settings, the number
of parallel workers, use argument workers, e.g.

> future::plan("multisession", workers=4)

For more details and alternative parallelization backends, see the future documentation.

Parallel processing on an ad-hoc cluster

To process data using multiple R sessions running on different machines, use something along
the lines of:

> cl <- future::makeClusterPSOCK(...)
> future::plan("cluster", cluster=cl)

See package future for more details.

10

http://bioconductor.org/packages/QDNAseq
https://CRAN.R-project.org/package=future
http://bioconductor.org/packages/QDNAseq
http://bioconductor.org/packages/CGHcall

Introduction to QDNAseq

Sex chromosomes

By default, QDNAseq ignores sex chromosomes. In order to include them in the analysis,
function applyFilters() should be run with argument chromosomes=NA to include both X
and Y, or chromosomes="Y" to include X only.

However, this will also affect which chromosomes are used when calculating the LOESS
correction with estimateCorrection(). Unless the data set consists of only females, this
could be undesirable. The solution is to first filter out the sex chromosomes, run estimate
Correction(), and then reverse the filtering of sex chromosomes:

readCounts <- binReadCounts(getBinAnnotations(15))
readCounts <- applyFilters(readCounts)

readCounts <- estimateCorrection(readCounts)
readCounts <- applyFilters(readCounts, chromosomes=NA)
copyNumbers <- correctBins(readCounts)

V V. V V V

Running estimateCorrection() and correctBins() with a different set of bins can have one
side effect. This is caused by the fact that there can be bins in the sex chromosomes with a
combination of GC content and mappability that is not found anywhere else in the genome.
This will cause those bins to miss a correction estimate altogether, and these bins will be
filtered out from subsequent steps by correctBins(). If this happens, it will print out a
message specifying the number of bins affected.

Another possible approach is to allow extrapolation while calculating the LOESS correction.
But please do note that the effect of extrapolation has not been properly evaluated.

> readCounts <- estimateCorrection(readCounts,
+ control=1loess.control(surface="direct"))

11

http://bioconductor.org/packages/QDNAseq

Introduction to QDNAseq

4 Generating bin annotations

This section describes how bin annotations have been created for the hgl9 build of the
human reference genome, and can be applied for other genome builds and species. The first
step is to create the bins based on chromosome sizes, and calculate their GC content and
proportion of characterized nucleotides (non-N bases in the reference sequence). For this,
the corresponding BSgenome package is needed.

> # load required packages for human reference genome build hgl9
library(QDNAseq)

library(Biobase)

library(BSgenome.Hsapiens.UCSC.hg19)

set the bin size

binSize <- 15

create bins from the reference genome

bins <- createBins(bsgenome=BSgenome.Hsapiens.UCSC.hgl9, binSize=binSize)

V V.V V V V V

The result is a data.frame with columns chromosome, start, end, gc, and bases. Next
step is to calculate the average mappabilities, which requires a mappability file in the big
Wig format and the bigWigAverageOverBed binary. The mappability file can be gener-
ated with GEnomic Multi-Tool (GEM) Mapper part of the GEM library from the refer-
ence genome sequence. Or it might be available directly, as was the case for hgl9, and file
‘wgEncodeCrgMapabilityAlign50mer.bigWig’ downloaded from ENCODE's download section
of the UCSC Genome Browser. The bigWigAverageOverBed binary can also be downloaded
from UCSC Genome Browser's Other utilities section.

> # calculate mappabilites per bin from ENCODE mapability tracks
> binsg$mappability <- calculateMappability(bins,

+ bigWigFile="/path/to/wgEncodeCrgMapabilityAlign50mer.bigWig",
+ bigWigAverageOverBed="/path/to/bigWigAverageOverBed")

If there are genomic regions that should excluded from analyses, such as ENCODE's Black-

listed Regions, the percentage overlap between the generated bins and these regions can be

calculated as follows. The regions to be excluded need to be in the BED format, like files
‘wgEncodeDacMapabilityConsensusExcludable.bed’ and ‘wgEncodeDukeMapabilityRegionsExcludable.
bed’ that were downloaded from ENCODE's download section of the UCSC Genome Browser

for hgl9.

> # calculate overlap with ENCODE blacklisted regions

> binsg$blacklist <- calculateBlacklist(bins,

+ bedFiles=c("/path/to/wgEncodeDacMapabilityConsensusExcludable.bed",
+ "/path/to/wgEncodeDukeMapabilityRegionsExcludable.bed"))

For any list of regions, the percentage of bin overlap can be calculated by using the following
command.

> # generic calculation of overlap with blacklisted regions
> bins$blacklist <- calculateBlacklistByRegions(bins,
+ cbind(chromosome, bpStart, bpEnd))

To calculate median residuals of the LOESS fit from a control dataset, the following command
can be used. For the pre-generated annotations, the control set used is 38 samples from the
1000 Genomes Project. See the next section on how those were downloaded.

http://bioconductor.org/packages/BSgenome
https://sourceforge.net/projects/gemlibrary/
https://genome.ucsc.edu/cgi-bin/hgFileUi?db=hg19&g=wgEncodeMapability
https://genome.ucsc.edu/cgi-bin/hgFileUi?db=hg19&g=wgEncodeMapability
https://hgdownload.soe.ucsc.edu/admin/exe/
https://genome.ucsc.edu/cgi-bin/hgFileUi?db=hg19&g=wgEncodeMapability
https://www.internationalgenome.org/

Introduction to QDNAseq

load data for the 1000 Genomes (or similar) data set, and generate residuals
ctrl <- binReadCounts(bins, path="/path/to/control-set/bam/files")
ctrl <- applyFilters(ctrl, residual=FALSE, blacklist=FALSE,
mappability=FALSE, bases=FALSE)
binsg$residual <- iterateResiduals(ctrl)

vV + VvV VvV V

The column use specifies whether each bin should be used for subsequent analyses by default.
The command will change its value accordingly. By default, bins in the sex
chromosomes, or with only uncharacterized nucleotides (N's) in their reference sequence, are
flagged for exclusion.

> # by default, use all autosomal bins that have a reference sequence
> # (i.e. not only N's)
> bins$use <- bins$chromosome %in% as.character(1:22) & bins$bases > 0

Optionally, the resulting data.frame can be converted to an AnnotateDataFrame and meta-
data added for the columns.

> # convert to AnnotatedDataFrame and add metadata

> bins <- AnnotatedDataFrame(bins,

+ varMetadata=data. frame(labelDescription=c(

"Chromosome name",

"Base pair start position",

"Base pair end position",

"Percentage of non-N nucleotides (of full bin size)",
"Percentage of C and G nucleotides (of non-N nucleotides)",
"Average mappability of 50mers with a maximum of 2 mismatches",
"Percent overlap with ENCODE blacklisted regions",

"Median loess residual from 1000 Genomes (50mers)",

"Whether the bin should be used in subsequent analysis steps"),
row.names=colnames(bins)))

+ + + + + + + + + +

For the pre-generated annotations, some additional descriptive metadata has also been added.

> attr(bins, "QDNAseq") <- list(

+ author="Ilari Scheinin",

+ date=Sys.time(),

+ organism="Hsapiens",

+ build="hgl9",

+ version=packageVersion("QDNAseq"),
+ md5=digest::digest(bins@data),

+ sessionInfo=sessionInfo())

13

Introduction to QDNAseq

5 Downloading 1000 Genomes samples

This section defines the criteria that were used to download samples from the 1000 Genomes
Project for the pre-generated bin annotations.

download table of samples
urlroot <- "ftp://ftp.1000genomes.ebi.ac.uk/voll/ftp"
glk <- read.table(file.path(urlroot, "sequence.index"),
header=TRUE, sep="\t", as.is=TRUE, fill=TRUE)
keep cases that are Illumina, low coverage, single-read, and not withdrawn
glk <- glk[glk$INSTRUMENT_PLATFORM == "ILLUMINA",]
glk <- glk[glk$ANALYSIS GROUP == "low coverage",]
glk <- glk[glk$LIBRARY_LAYOUT == "SINGLE",]
glk <- glk[glk$WITHDRAWN == 0,]
keep cases with read lengths of at least 50 bp
glk <- glk[!glk$BASE_COUNT %in% c("not available", ""),]
glk$BASE_COUNT <- as.numeric(glk$BASE_COUNT)
g1k$READ_COUNT <- as.integer(glk$READ_COUNT)
glk$readlLength <- glk$BASE_COUNT / glk$READ_COUNT
glk <- glk[glk$readLength > 50,]
keep samples with a minimum of one million reads
readCountPerSample <- aggregate(glk$READ_COUNT,
by=1list(sample=gl1k$SAMPLE_NAME), FUN=sum)
glk <- glk[gl1k$SAMPLE_NAME %1in%
readCountPerSample$sample[readCountPerSample$x >= 1le6],]
glk$fileName <- basename(glk$FASTQ_FILE)
download FASTQ files
for (i in rownames(glk)) {
sourceFile <- file.path(urlroot, glk[i, "FASTQ_FILE"])
destFile <- glk[i, "fileName"]
if (!file.exists(destFile))
download. file(sourceFile, destFile, mode="wb")

+ + + + + V V V + V + V V V V V VYV V V VYV VYV + V VYV

Next, reads were trimmed to 50 bp, and the multiple files for each sample (as defined
by column SAMPLE_NAME) were combined by concatenating the FASTQ files together.
Finally, they were aligned with BWA allowing two mismatches and end-trimming of bases
with qualities below 40 (options -n 2 -q 40).

14

Introduction to QDNAseq

6 Session information

The version number of R and packages loaded for generating the vignette were:

R version 4.5.0 (2025-04-11 ucrt), x86_64-w64-mingw32

Locale: LC_COLLATE=C, LC_CTYPE=English_United States.utfs,
LC_MONETARY=English_United States.utf8, LC_NUMERIC=C,
LC_TIME=English_United States.utf8

Time zone: America/New_York

TZcode source: internal

Running under: Windows Server 2022 x64 (build 20348)

Random number generation:

RNG: L'Ecuyer-CMRG

Normal: Inversion

Sample: Rejection

Matrix products: default

Base packages: base, datasets, grDevices, graphics, methods, stats, utils
Other packages: QDNAseq 1.45.0, future 1.49.0

Loaded via a namespace (and not attached): Biobase 2.69.0, BiocGenerics 0.55.0,
BiocManager 1.30.25, BiocParallel 1.43.3, BiocStyle 2.37.0, Biostrings 2.77.1,
CGHbase 1.69.0, CGHcall 2.71.0, DNAcopy 1.83.0, GenomelnfoDb 1.45.4,
GenomicRanges 1.61.0, IRanges 2.43.0, R.methodsS3 1.8.2, R.oo 1.27.1,

R.utils 2.13.0, R6 2.6.1, Rsamtools 2.25.0, S4Vectors 0.47.0, UCSC.utils 1.5.0,
XVector 0.49.0, bitops 1.0-9, cli 3.6.5, codetools 0.2-20, compiler 4.5.0, crayon 1.5.3,
digest 0.6.37, evaluate 1.0.3, fastmap 1.2.0, future.apply 1.11.3, generics 0.1.4,
globals 0.18.0, htmltools 0.5.8.1, httr 1.4.7, impute 1.83.0, jsonlite 2.0.0, knitr 1.50,
limma 3.65.1, listenv 0.9.1, marray 1.87.0, matrixStats 1.5.0, parallel 4.5.0,
parallelly 1.45.0, rlang 1.1.6, rmarkdown 2.29, statmod 1.5.0, stats4 4.5.0,

tools 4.5.0, xfun 0.52, yaml 2.3.10

15

	1 Running QDNAseq
	1.1 Bin annotations
	1.2 Processing BAM files
	1.3 Downstream analyses

	2 Parallel computation
	2.1 Non-parallel processing
	2.2 Parallel processing on the current machine
	2.3 Parallel processing on an ad-hoc cluster

	3 Sex chromosomes
	4 Generating bin annotations
	5 Downloading 1000 Genomes samples
	6 Session information

