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1 Overview

Microarray measurements are affected by a variety of systematic experimental errors limiting
the accuracy of data produced. Two well-known systematic errors for two-colour arrays are
the so-called intensity-dependent and spatial (location-dependent) dye bias. Normalisation
aims to correct for systematic errors in microarray data.

The common linear (or global) normalisation method often fails to correct for dye bias as
this bias is usually not linear. Although non-linear normalisation procedures have been able
to reduce the systematic errors, these methods are based on default parameters and leave it to
the user to choose “good” parameters. The optimal adjustment of the normalisation models
to the data, however, can be crucial for the efficiency of the normalisation process [1].

The OLIN (Optimised Local Intensity-dependent Normalisation) R-package includes two
normalisation schemes based on iterative local regression and model selection. Both schemes
alm to correct for intensity- and location-dependent dye bias in microarray data. For model
selection (parameter optimisation), generalized cross-validation (GCV) is used.

Additionally, several procedures to assess the efficiencies of normalisation are implemented
in the package.

A graphical user interface for OLIN has been implemented in the package OLINgui, that
is included in the OLINgui package available at the Bioconductor repository.



2 Installation requirements

Following software is required to run the OLIN-package:
e R (> 2.0.0). For installation of R, refer to hitp://www.r-project.ory.

e R-packages: methods, stats, locfit. For installation of these add-on packages, refer to
http://cran.r-project.org.

e Bioconductor packages: Biobase, marray. Refer to http://www.bioconductor.org for in-
stallation.

If all requirements are fulfilled, the OLIN add-on R-package can be installed. To see how
to install add-on R-packages on your computer system, start R and type in help(INSTALL).
Optionally, you may use the R-function install.packages(). Once the OLIN package is installed,
you can load the package by

>  library(OLIN)

3 Inspection for intensity-dependent and spatial artifacts

Microarray data often contains many systematic errors. Such errors have to be identified and
removed before further data analysis is conducted. The most basic approach for identification
is the visual inspection of MA- and MXY-plots. MA-plots display the logged fold change (M =
loga(Ch2) —logaChl) with respect to the average logged spot intensity (A = 0.5(log2(Chl) +
logaCh2)). MXY-plots display M with respect to the corresponding spot location. More
stringent, but also computationally more expensive, are statistical tests presented in section
6.

For illustration, we examine a cDNA microarray experiment comparing gene expression in
two colon cancer cell lines (SW480/SW620). The SW480 cell line was derived from a primary
tumor, whereas the SW620 cell line was cultured from a lymph node metastasis of the same
patient. Sharing the same genetic background, these cell lines serve as a model of cancer
progression [3]. The comparison was direct i.e. without using a reference sample. ¢cDNA
derived from SW480 cells was labeled by Cy3; cDNA derived from SW620 was labeled by
Cy5. The SW480/620 experiment consisted of four technical replicates. The data is stored as
object of the class marrayRaw (see the documentation for the package marray). The average
logged spot intensity A and logged fold changes M can be accessed by using the slot accessor
methods maA and maM, respectively.

First we want to load the data and inspect the spatial distribution of foreground and
background intensities in both channels. This can be done using the function fgbg that plots
the spatial distribution of fore- and background spot intensities for both channels (figure 1):

> data(sw)
>  fgbg.visu(sw[,3])

The quantity that we are interested in are the (logged) fold-change M. To inspect any
existing intensity- or location-dependent bias of M, MA- and MXY-lots can be employed.
For MA-lots, the basic plot function can be used (figure 2). MXY-lots can be generated by
mxy.plot(figure 3). Note that the function mxy.plot assumes the standard array layout as
defined for marrayRaw/marrayNorm objects.
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Figure 1: Foreground and background fluorescence intensities for Cy5-channel (top row) and
Cy3-channel (bottom) row.
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Figure 2: MA-plot of SW480,/620 array 3

> plot (mad(sw[,3]),maM(sw[,3]),xlab="A",ylab="M")

> mxy.plot (maM(sw) [,3],Ngc=malNgc (sw),Ngr=maligr (sw),
+ Nsc=maNsc (sw) ,Nsr=maNsr (sw))

Additionally the distribution of absolute values of M can be displayed. This visualisation
may give an indication whether the span of M is equal across the spatial dimensions of the
array (figure 4). To plot abs(M), the function mxy.abs.plot can be employed :

> data(sw.xy)
> mxy.abs.plot (maM(sw)[,3],Ngc=maNgc(sw),Ngr=malNgr(sw),Nsc=malsc(sw),Nsr=malNsr(sw))

For the two MXY-plots above, the column and row indices were used as proxies for location
of the spot. We can use, however, the physical spot location as determined by the scanner
for the MXY plots (if the spots’ X-and Y-coordinates are available.) Especially, if the gaps
between the blocks printed by distinct pins are large, this option may give a better physi-
cal representation of the array. Using the function mxy2.plot, such plots can be generated
(figure 5):
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Figure 3: MXY-plot of SW480/620 array 3 with columns and rows as proxies for spatial
location

> data(sw.xy)

> mxy2.plot(maM(sw)[,3],X=sw.xy$X[,3],Y=sw.xy$Y[,3],

+ Ngc=maNgc (sw) ,Ngr=maNgr (sw) ,Nsc=malNsc (sw) ,Nsr=malNsr (sw))
>

4 Optimised local intensity-dependent normalisation

Inspection of the MA- and MXY-plots in the previous section indicated a intensity- and
location-dependent dye bias. Additionally, the plots show clearly the non-linearity of the
biases. To correct for these systematic errors, we apply first a local regression of M with
respect to A and spot location X, Y. The residuals of the regression are normalised M.This
procedure is motivated by the hybridisation model introduced in reference [1].

The assumption here are: i) Most genes arrayed are not differentially expressed or up-and
down-regulation is balanced over the range of A, ii) the spotting procedure did not generate
an spatial accumulation of up- or down-regulated genes in localized areas on the array. The
validity of both assumptions should be carefully checked for the data to be normalised.

The local regression is performed using LOCFIT algorithm which is based on the same
computational ideas as popular lowess method [4, 5] . Required parameters for LOCFIT are



1.0

80

©

o

3 ©

o
%]
=
(@)

@ (@) <

< o

Q N

(V] o

o

o

10 20 30 40
Columns

Figure 4: MXY-plot of absolute logged fold changes

the smoothing parameter o and the scale parameter(s) s for multi-dimensional regression. The
parameter « specifies the fraction of points that are included in the neighborhood for local
fitting and can have a value between 0 and 1. Larger values lead to smoother fits. The setting
of scale parameters s is necessary for a local regression with multiple predictor variables. The
scale parameters s determine the amount of smoothing in one direction compared to the other
directions.

Choosing accurate regression parameters is crucial for the quality of the normalisation.
Too large smoothing parameters, for example, lead to a poor fit where local data features
are missed and underfitting occurs. If the smoothing parameter is too small, overfitting is
produced and the residuals subsequently underestimated. To optimise the parameter setting,
two procedures were developed: OLIN and OSLIN. Both methods are based on iterative
local regression and parameter selection by GCV. They aim to correct for systematic errors
linked with spot intensity and location. A detailed mathematical description can be found in
reference [1].

4.1 OLIN
The OLIN (and OSLIN) are implemented in R by the function olin:

olin(object,X,Y,alpha,iter,0SLIN,scale,weights,genepix,bg.corr,...)
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Figure 5: MXY plot of SW480/620 array 1

The input arguments are as follows:

object Object of class marrayRaw or marrayNorm containing data of the microarray exper-
iment such as spot intensities and array layout for a batch of microarrays. To generate
such an object, see the marryClasses documentation.

X matrix with x-coordinates of spots. Each column corresponds to one array in the batch.
The location is spots detected by scanner is usually found in the output file program of
the scanning program. If X=NA, the spotted columns on the array are used as proxies
for the location in x-direction (default)

Y matrix with y-coordinates of spots. If Y=NA, spotted rows on array are used as proxies
for the location in y-direction (default).

alpha Vector of a parameters that are tested in the GCV procedure. The o parameter defines
the smoothness of fit. The default vector is seq(0.05,1,0.1).

iter Number of iterations in the OLIN or OSLIN procedure. The default value is 3.

OSLIN If OSLIN =TRUE, a subsequent optimised scaling of the range of M across the array
is performed. The default value is FALSE, i.e. OLIN is performed.



scale Vector of scale parameters s that are tested in a GCV procedure. This allows a different
amount of smoothing in Y-direction compared to smoothing in X-direction. The default
values of s are ¢(0.05,0.1,0.5,1,2,10,20)).

weights Matrix of prior weights of spots for the regression procedures. Spots can be excluded
to be used for the local regression by assigning them to zero. If the weight matrix include
negative values, these will be set to zero.
For the weights, the weight matrix stored in the maW slot of marrayRaw objects can be
used (weights=maW(object)). Defaults is NA resulting in uniform weigths of all spots.

genepix If genepix is set to TRUE, spot weights equal zero or larger are set to one for the local
regression whereas negative spot with negative weights are not used for the regression.
The argument genepix should be set to TRUE, if weights=maW(object) is set and spot
quality weights derived by GenePix are stored in maW(object).

bg.corr backcorrection method (for marrayRaw objects) : none - no background correction,
sub - simple background subtraction (default), movingmin - background intensities are
first averaged over 3x3 grids of neighbouring spots and subsequently substracte, mini-
mum - zero or negative intensities after background correction are set equal to half the
minimum of positive corrected intensities, edwards- background correction based on log-
linear interpolation, or normezp- background correction based on fitting procedure. For
further details and references, please refer to to the help page of backgroundCorrect?2
of the OLIN package or backgroundCorrect of the limma package.

... Further arguments passed to the locfit function.

For illustration, we apply the OLIN scheme to normalise the third array of the SW480/620
data set. (Note that the function is not restricted to single slide normalisation but normalises
all arrays in the given marray object.)

> norm.olin <- olin(sw/[,3],X=sw.xy$X[,3],Y=sw.xy$Y[,3])

Inspection of the MA- and MXY-plot indicated that OLIN was able to correct for the
intensity- as well as the location-dependent dye bias. The residuals are well balanced around
zero in the MA-plot (figure 6). Similarly, spatial bias is no longer apparent (figure 7). Spots
with positive and negative log ratio M were evenly distributed across the slide. The statistical
tests applied in the next section will confirm these findings.

> plot(maA(norm.olin),maM(norm.olin),main="0LIN",pch=".")

> mxy.plot(maM(norm.olin),Ngc=malgc(norm.olin),Ngr=malgr(norm.olin),

+ Nsc=maNsc (norm.olin) ,Nsr=malNsr(norm.olin),main="0OLIN")
>

OLIN is based on an iterative procedure. In most cases, we found that two or three
iterations are already sufficient for normalisation (figure 8).

> norm.olin.1 <- olin(sw[,3],X=sw.xy$X[,3],V=sw.xy$Y[,3],iter=1)

> norm.olin.2 <- olin(norm.olin.1,X=sw.xy$X[,3],Y=sw.xy$Y[,3],iter=1)

> norm.o0lin.3 <- olin(norm.olin.2,X=sw.xy$X[,3],Y=sw.xy$Y[,3],iter=1)

> M <- cbind(maM(sw)[,3],maM(norm.olin.1) ,maM(norm.olin.2) ,maM(norm.o0lin.3))
> pairs(M,labels= c("raw","1.Iter.","2.Iter.","3.Iter."))
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Figure 6: MA-plot of array normalized by OLIN

4.2 OSLIN

If we can assume that the variability of log ratios M should be equal across the array, local
scaling of M can be performed. As in the previous section, the validity of these assumptions
has to be carefully checked for each experiment analyzed. The underlying requirement is again
random spotting of arrayed genes. To apply OSLIN:

> norm.oslin <- olin(sw(,3],X=sw.xy$X[,3],Y=sw.xy$Y[,3],alpha=c(0.1,1,0.1),0SLIN=TRUE)

The local scaling factors are derived by optimized local regression of the absolute log ratio
M. The range of regression parameters tested by GCV is [0.1,1] for smoothing parameter. The
resulting MA- and MXY-plots for slide 3 are presented in figures 9 and 10.. The variability
of log ratios M appears to be even across the array.

> plot(maA(norm.oslin),maM(norm.oslin),main="0SLIN",pch=".")

> mxy.plot(norm.oslin,Ngc=malNgc(norm.oslin),Ngr=maNgr(norm.oslin),

+ Nsc=maNsc (norm.oslin) ,Nsr=malNsr (norm.oslin),main="0SLIN")
>
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Figure 7: MXY-plot of array normalized by OLIN

10

0.0 0.5 1.0

-0.5

-1.0



o~
(]
raw
s o
o o
& s Ea L =
™A r
o
= 1.1ter.
n"_ o"-‘% & -
('I‘,I_ o o o
o E E
-
L
- o
2.lter. -
& & -
(=] =] o — l.'\'?
Eal & |
o
_ &
o
- 3.lter.
il oo & &
[y o L= L=
o & E

Figure 8: Convergence of iterative normalisation

The weights argument can be used for two purposes. First, it can be to exclude a set of
spots (such as control spots) to be used for local regression. Second, it can be used to base
the regression on a selected set of genes assumed to be not differentially expressed (house-
keeping genes). If the normalisation should be based on such a set, weights can be used for local
regression. In this case, all weights should be set to zero except for the house-keeping genes for
which weights are set to one. In order to achieve a reliable regression, it is important, however,
that there is a sufficient number of house-keeping genes that cover the whole expression range
and are spotted accross the whole array.

Note that OLIN and OSLIN are sensitive to violations of the assumptions that most
genes are not differentially expressed (or up- and down-regulation is balanced) and that genes
are randomly spotted across the array. If these assumptions are not valid, local regression
can lead to an underestimation of differential expression. In this context, OSLIN is especially
sensitive in its performance. However, the sensitivity can be decreased if the minimal smooting
parameter alpha (default value: 0.05) is set to larger values.

It is also important to note that OLIN/OSLIN is fairly efficient in removing intensity-
and spatial-dependent dye bias, so that normalised data will look quite "good" after normal-
isation independently of the true underlying data quality. Normalisation by local regression

11
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Figure 9: MA-plot of array normalized by OSLIN

assumes smoothness of bias. Therefore, localised artifacts such as scratches, edge effects or
bubbles should be avoided. Spots of these areas should be flagged (before normalization is
applied) to ensure data integrity. To stringently detect artifacts, the OLIN functions £dr.int,
fdr.int2, fdr.spatial,fdr.spatial2, p.int, p.int2, p.spatial and p.spatial2 can
be used. Flagging of the data spots in regions of intensity- or location-dependent bias can be
performed by sig.mask. For an example of such an flagging or masking procedure, see the
help page of sig.mask.

5 Scaling between arrays of a batch

OLIN and OSLIN adjust log ratio M of an array independently of other arrays. A further
reduction of variation within experiments may be achieved by additional scaling of M between
arrays [7]. This procedure is frequently also termed ’between-array normalisation’ in contrast
to 'within-array normalisation’ as for example performed by O(S)LIN. The log ratios of M
will be adjusted in different arrays to achieve a similar overall distribution of M.

However, it assumes that the overall scale of M is the same (or at least similar) in the
different arrays to be scaled. This should be carefully checked. Differences in the overall

12
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Figure 10: MXY-plot of array normalized by OSLIN

scale of M may indicated e.g. changes in hybridisation conditions or mRNA quality. Caution
should also be taken in the interpretation of results for arrays hybridised with biologically
divergent samples, if between-array scaling is applied.

Between-array scaling is implemented in the OLIN package through function bas. Three
different scaling procedures are supported:

1. arrays are scaled to have the same variance as calculated by var,
2. arrays are scaled to have the same median absolute deviation calculated by mad
3. arrays are scaled to have equal values of quantiles.

For illustration, we apply the first scaling procedure to OLIN-adjusted SW480/620 data
consisting of four replicate array (figures 11,refdisbas):

data(sw.olin)

# DISTRIBUTION OF LOGGED RATIOS BEFORE BETWEEN-ARRAY-SCALING
col <- c("red","blue","green","orange")

M <- maM(sw.olin)
plot(density(M[,4]),col=col[4],x1im=c(-2,2))

for (i in 1:3){

vV VvV V Vv Vv Vv

13
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Figure 11: Distribution of M for SW480/620 arrays after OLIN

lines(density(M[,i]),col=col[i])
}
# BETWEEN-ARRAY SCALING
sw.olin.s <- bas(sw.olin,mode="var")
# VISUALISATION
M <- maM(sw.olin.s)
plot(density(M[,4]),col=col[4],xlim=c(-2,2))
for (i in 1:3){
lines(density(M[,i]),col=col[i])
}

VV + + VvV V. V.V VYV + +

6 Statistical assessment of efficiency of normalisation

An important criterion for the quality of normalisation is its efficiency in removing systematic
errors. Although visual inspection might readily reveal prominent artifacts in the microarray
data (as shown in section 3), it does not allow for their stringent detection. To overcome this
limitation, several methods for statistical detection of systematic errors were implemented in
the OLIN package. They might be especially valuable for the comparison of the efficiency

14
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Figure 12: Distribution of M for SW480/620 arrays after OLIN and between-array scaling

of different normalisation methods. They also might be helpful for newcomers in the field
of microarray data analysis, since they can assist the detection of artifacts and may help to
improve the experimental procedures.

A simple method to detect intensity- or location-dependent bias is to calculate the cor-
relation between the log ratio M of a spot and the average M in the spot’s neighbourhood
[6]. A neighourhood on the intensity scale can be defined by a symmetrical window of size
(2*delta + 1) around the spot. A correlation of zero can be expected assuming the log ratios
are uncorrelated. In contrast, a large positive correlation indicates intensity-dependent bias.

A <- maA(sw[,3])

M <- maM(sw[,3])

# Averaging

Mav <- ma.vector(A,M,av="median",delta=50)
# Correlation
cor(Mav,M,use="pairwise.complete.obs")

vV V.V Vv Vv Vv

[,1]
[1,] 0.6416701

Similarly, the location-dependent bias can be assessed:

> # From Vector to Matrix
> MM <- v2m(maM(sw)[,3],Ngc=maNgc (sw),Ngr=maNgr (sw),Nsc=maNsc(sw),Nsr=maNsr (sw),visu=FALS

15



# Averaging of matrix M

MMav <- ma.matrix(MM,av="median",delta= 2,edgeNA=FALSE)
# Backconversion to vector

Mav <- m2v(MMav,Ngc=maligc (sw),Ngr=maNgr (sw),Nsc=maNsc(sw),Nsr=malNsr (sw),visu=FALSE)
# Correlation

cor(Mav,M,use="pairwise.complete.obs")

vV V.V Vv Vv Vv

[,1]
[1,] 0.4377952

Although correlation analysis can be readily applied, it cannot deliver localization of exper-
imental bias in the data. To detect areas of bias in the microarray data, alternative methods
can be applied.

The OLIN package contains two four models. The first model (anovaint) can be used
to assess intensity-dependent bias. For this task, the A-scale is divided into N intervals
containing equal number of spots. The null hypothesis tested is the equality of the means
of M for the different intervals. The input argument index indicates which array stored in
object sw should be examined. The function anovaint is a wrapper around the core function
1m. The output of anovaint equals summery(1m).

> print(anovaint (sw,index=3,N=10))

Call:
lm(formula = Mo ~ intensityint - 1)

Residuals:
Min 1Q Median 3Q Max
-4.0615 -0.1897 0.0190 0.2388 1.7778

Coefficients:
Estimate Std. Error t value Pr(>|tl)

intensityintl -0.86456 0.01856 -46.578 < 2e-16 **x
intensityint2 -0.11228 0.01856 -6.049 1.58e-09 =*x*x
intensityint3  0.01868 0.01856 1.006 0.314355
intensityint4  0.06458 0.01856  3.479 0.000508 =*:x*x
intensityint5 0.16762 0.01856  9.030 < 2e-16 **x
intensityint6  0.19606 0.01856 10.563 < 2e-16 *x**
intensityint7  0.25546 0.01856 13.763 < 2e-16 **x
intensityint8 0.21835 0.01856 11.763 < 2e-16 *x*x
intensityint9  0.24910 0.01856 13.420 < 2e-16 **x*
intensityint10 0.21253 0.01869 11.369 < 2e-16 *x*x
Signif. codes: O '#xx' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.3818 on 4214 degrees of freedom
Multiple R-squared: 0.4198, Adjusted R-squared: 0.4185
F-statistic: 304.9 on 10 and 4214 DF, p-value: < 2.2e-16

16



> data(sw.olin)
> print(anovaint(sw.olin,index=3,N=10))

Call:
Im(formula = Mo ~ intensityint - 1)

Residuals:
Min 1Q Median 3Q Max
-3.5997 -0.1259 0.0250 0.1640 1.8671

Coefficients:
Estimate Std. Error t value Pr(>|t|)
intensityintl -0.00495681 0.01563753 -0.322 0.747

intensityint2  0.0085228 0.0153753 0.554 0.579
intensityint3  0.0100288 0.0153753 0.652 0.514
intensityint4  0.0092998 0.01537563 0.605 0.545
intensityintb -0.0006992 0.0153753 -0.045 0.964
intensityint6 -0.0047550 0.0153753 -0.309 0.757
intensityint7 -0.0156696 0.0153753 -1.019 0.308
intensityint8 -0.0051047 0.0153753 -0.332 0.740
intensityint9  0.0030058 0.0153753 0.195 0.845
intensityintl10 0.0005948 0.0154856 0.038 0.969

Residual standard error: 0.3162 on 4214 degrees of freedom
Multiple R-squared: 0.0005903, Adjusted R-squared: -0.001781
F-statistic: 0.2489 on 10 and 4214 DF, p-value: 0.991

Similarly, the location-dependent bias can be examined by an ANOVA model implemented
as anovaspatial. The array is divided into (xN x yN) rectangular blocks. The null hypothesis
tested is the equality of the means of M for the different blocks. The function anovaspatial
is a wrapper around functipn 1lm. The output is the summary of 1m (which is suppressed
in following examples). Additionally, anovaspatial allows for visualisation of the results
(see figure 13 and 14.) The figures display the logl0-transformed p-values as derived in the
block-wise ¢-tests. Note that the differences in scales.

>  anovaspatial (sw,index=3,xN=8,yN=8,visu=TRUE)
>  anovaspatial(sw.olin,index=3,xN=8,yN=8,visu=TRUE)

Additionally, simple one-factorial ANOVA models were implemented to test microarray
data for pin- and plate-dependent bias. Testing for pin bias by anovapin is similar to testing
for spatial bias by anovaspatial. The factors in anovapin are the pin indices. The null
hypothesis is the equality of the means of M for the different pins. In the same manner, it
can be tested if there is a significant variation of M due to the use of distinct microtiter plate
for spotting. An ANOVA model for this task is implemented in function anovaplate.ln this
case, the null hypothesis is the equality of the means of M for the different plates.

> print(anovapin(sw.olin,index=3))

17



Significance based on t-test
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Figure 13: ANOVA for raw data

Call:
Im(formula = M ~ pin - 1)

Residuals:
Min 1Q Median 3Q Max
-3.6096 -0.1244 0.0253 0.1640 1.8608

Coefficients:
Estimate Std. Error t value Pr(>|t|)
pinl 0.0057223 0.0194744 0.294 0.769

pin2 0.0009404 0.0194744 0.048 0.961
pin3 -0.0011836 0.0194744 -0.061 0.952
pindé -0.0002191 0.0194744 -0.011 0.991
pinb -0.0077155 0.0194744 -0.396 0.692
pin6é -0.0051030 0.0194744 -0.262 0.793
pin7 -0.0077761 0.0194744 -0.399 0.690
pin8 0.0144356 0.0194744 0.741 0.459
pin9 0.0005014 0.0194744 0.026 0.979
pinl0 0.0015559 0.0194744 0.080 0.936
pinll 0.0184692 0.0194744 0.948 0.343
pinl2 -0.0047442 0.0194744 -0.244 0.808
pinl3 0.0051594 0.0194744 0.265 0.791
pinl4 -0.0087071 0.0194744 -0.447 0.655
pinlb 0.0068432 0.0194744 0.351 0.725
pinl6 -0.0177670 0.0194744 -0.912 0.362
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Figure 14: ANOVA for normalised data

Residual standard error: 0.3164 on 4208 degrees of freedom
Multiple R-squared: 0.0007643, Adjusted R-squared: -0.003035
F-statistic: 0.2012 on 16 and 4208 DF, p-value: 0.9997

> print(anovaplate(sw.olin,index=3))

Call:
Im(formula = M ~ plate - 1)

Residuals:
Min 1Q Median 3Q Max
-3.5987 -0.1278 0.0261 0.1658 1.8466

Coefficients:
Estimate Std. Error t value Pr(>|t|)
platel -0.0226044 0.0161246 -1.402 0.161

plate2 0.0287166 0.0161246 1.781 0.075 .
plate3 -0.0057500 0.0161246 -0.357 0.721
plate4 0.0018882 0.0161246 0.117 0.907
plateb -0.0125836 0.0161246 -0.780 0.435
plate6 -0.0015375 0.0161246 -0.095 0.924
plate7 0.0003773 0.0161246 0.023 0.981
plate8 -0.0128983 0.0161246 -0.800 0.424
plate9 0.0157338 0.0161246 0.976 0.329
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platel0 -0.0134014 0.0161246 -0.831 0.406
platell 0.0223422 0.0161246 1.386 0.166

Signif. codes: O 'xxx' 0.001 '#x' 0.01 'x' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.316 on 4213 degrees of freedom
Multiple R-squared: 0.002391, Adjusted R-squared: -0.0002133
F-statistic: 0.9181 on 11 and 4213 DF, p-value: 0.5216

ANOVA methods assume normality of the analysed data. This, however, may not be the
general case for microarray data. To relax this restriction, permutation tests can be applied.
Permutation (or randomization) tests have the advantage that a particular data distribution is
not assumed. They rely solely on the observed data examples and can be applied with a variety
of test statistics. A major restriction, however, is that permutation tests are computationally
very intensive. Generally, such tests are not used in interactive mode but are performed in
batch-mode.

Four permutation tests procedures were implemented in the OLIN package. The func-
tions fdr.int and p.int assess intensity-dependent bias. The functions fdr.spatial and
p-spatial assess location-dependent bias. The basic procedure is similar for all four functions.
First, a (intensity or location) neighbourhood of spots is defined similarly to the procedure we
used for the correlation analysis . Next, a test statistic is constructed by calculating the me-
dian or mean of M the spot’s neighbourhood of chosen size. An empirical distribution of the
test statistic M is then produced based on random permutations of the data. Comparing M
of the original data with the empirical distribution, the significance of observing M is derived.
(Note that a rather low number of random permutations was chosen to avoid time-consuming
calculations here. Generally, however, a larger number should be chosen.)

The functions fdr.int, p.int, fdr.spatial and p.spatial perform two one-sided ran-
dom permutation tests. The result can be visualised by the plotting functions sigint.plot
and sigxy.plot. The significance of a spot neighbourhood with large positive deviations of
M is displayed in red along the A-scale or across the spatial dimensions of the array. Cor-
respondingly, the significance of spot neighbourhood with large negative deviations of M are
displayed in green.

v

FDR <- fdr.int(mad(sw)[,3],maM(sw)[,3],delta=50,N=10,av="median")
sigint.plot(mad(sw)[,3],maM(sw)[,3],FDR$FDRp,FDR$FDRn,c(-5,-5))

v

A\

data(sw.olin)
FDR <- fdr.int(mad(sw.olin)[,3],maM(sw.o0lin)[,3],delta=50,N=10,av="median")
sigint.plot(mad(sw.olin)[,3],maM(sw.o0lin)[,3],FDR$FDRp, FDR$FDRn,c(-5,-5))

v Vv

For slide 3, an significant intensity-dependent bias towards channel 2 (Cy3) was detected
for low spot intensities, whereas high-intensity spots are biased towards channel 2 (figure 15).
After OLIN normalisation, no significant intensity-dependent bias is apparent (figure 16). A
similar result can be found for the removal of location-dependent bias by OLIN (figure 17 and
18).
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Figure 15: MA-plot and FDRs of intensity-dependent bias for raw data

M <- v2m(maM(sw)[,3],Ngc=maNgc (sw) ,Ngr=malNgr (sw),

Nsc=malNsc(sw) ,Nsr=malNsr(sw) ,main="MXY plot of SW-array 1")
FDR <- fdr.spatial(M,delta=2,N=10,av="median",edgeNA=TRUE)
sigxy.plot (FDR$FDRp,FDR$FDRn,color.lim=c(-5,5),main="FDR")

vV Vv + Vv

M<- v2m(maM(sw.olin)[,3],Ngc=maligc(sw.olin),Ngr=malgr (sw.olin),

Nsc=maNsc(sw.olin) ,Nsr=maNsr(sw.olin),main="MXY plot of SW-array 1")
FDR <- fdr.spatial(M,delta=2,N=10,av="median",edgeNA=TRUE)
sigxy.plot (FDR$FDRp,FDR$FDRn, color.lim=c(-5,5) ,main="FDR")

v VvV + Vv

Fold changes should be treated with care if the corresponding spots have significantly
biased neighborhoods even after normalisation.

The functions fdr.int and fdr.spatial assess the significance of dye bias using the
false discovery rate whereas the related functions p.int and p.spatial produce (adjusted)
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MA-plot and FDRs of intensity-dependent bias for data normalised by OLIN
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Figure 17: FDR of location-dependent bias for raw data

p-values. Another difference between the functions is the procedure to generate random permu-

tation. The function fdr.int and fdr.spatial are based on re-sampling without replacement,

whereas p.int and p.spatial are based on re-sampling with replacement. A more detailed

description of the permutation tests can be found in the help-pages of these functions.

Finally, a second set of functions (fdr.int2, p.int2, fdr.spatial2, p.spatial2, sigint.plot2,sig:

has been introduced for the present version of the OLIN package. Their functionality is the

same as for the first set (i.e. fdr.int, p.int,...). However, the input arguments and out-

put objects of the functions may differ (see the relevant help). Both sets will be merged based

on S4-style functions in future versions.
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Figure 18: FDR of location-dependent bias for data normalised by OLIN
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