Counting reads with summarizeOverlaps

Valerie Obenchain

Edited: February 2024; Compiled: June 4, 2025

Contents
1 Introduction 1
2 AFirstExample. 1
3 CountingModes 2
4 Counting Features 3
5 pasillaData 6
5.1 sourcefiles.o 6
5.2 counting L e e 7
6 References 8
1 Introduction

This vignette illustrates how reads mapped to a genome can be counted with summarizeOver
laps. Different "modes" of counting are provided to resolve reads that overlap multiple

features. The built-in count modes are fashioned after the "Union", "IntersectionStrict",
and "IntersectionNotEmpty" methods found in the HTSeq package by Simon Anders (see
references).

2 A First Example

In this example reads are counted from a list of BAM files and returned in a matrix for use
in further analysis such as those offered in DESeq2 and edgeR.

library(GenomicAlignments)

library(DESeq2)

library(edgeR)

fls <- list.files(system.file("extdata", package="GenomicAlignments"),
recursive=TRUE, pattern="xbam$", full=TRUE)

features <- GRanges(
seqnames = c(rep("chr2L", 4), rep("chr2R", 5), rep("chr3L", 2)),
ranges = IRanges(c(1000, 3000, 4000, 7000, 2000, 3000, 3600, 4000,

+ + V + V V V V

http://bioconductor.org/packages/DESeq2
http://bioconductor.org/packages/edgeR

Counting reads with summarizeovertiaps

7500, 5000, 5400), width=c(rep(500, 3), 600, 900, 500, 300, 900,
300, 500, 500)), "-",
group_id=c(rep("A", 4), rep("B", 5), rep("C", 2)))
olap <- summarizeOverlaps(features, fls)
deseq <- DESeqDataSet(olap, design= ~ 1)
edger <- DGEList(assay(olap), group=rownames(colData(olap)))

vV V.V + + +

By default, the summarizeOverlaps function iterates through files in ‘chunks’ and with files
processed in parallel. For finer-grain control over memory consumption, use the BamFilelist
function and specify the yieldSize argument (e.g., yieldSize=1000000) to determine the
size of each ‘chunk’ (smaller chunks consume less memory, but are a little less efficient to
process). For controlling the number of processors in use, use BiocParallel::register to
use an appropriate back-end, e.g., in linux or Mac to process on 6 cores of a single machine
use register(MulticoreParam(workers=6)); see the BiocParallel vignette for further details.

3 Counting Modes

The modes of "Union", "IntersectionStrict" and "IntersectionNotEmpty" provide different
approaches to resolving reads that overlap multiple features. Figure 1 illustrates how both
simple and gapped reads are handled by the modes. Note that a read is counted a maximum
of once; there is no double counting. For additional detail on the counting modes see the
summarizeOverlaps man page.

http://bioconductor.org/packages/BiocParallel

Counting reads with summarizeoveriaps

Union IntersectionStrict IntersectionNotEmpty
[read]
Feature I Feature | Feature |
[read]
Feature I No hit Feature I
[read]
Fearei | [Featuret | Feature I No hit Feature |
[Cread }—[Cread |
[[Feawred | [Feawret | Feature I Feature I Feature |
[Cread |
Feature I Feature I Feature I
[TFeaturez]
[read]
No hit Feature 1 Feature I
[Feature2]
[read]
No hit No hit No hit
[Featre2]

* Picture reproduced from HTSeq web site :
http://www-huber.embl.de/users/anders/HTSeq/doc/count.html

Figure 1: Counting Modes

4 Counting Features

Features can be exons, transcripts, genes or any region of interest. The number of ranges
that define a single feature is specified in the features argument.

When annotation regions of interest are defined by a single range a GRanges should be used
as the features argument. With a GRanges it is assumed that each row (i.e., each range)
represents a distinct feature. If features was a GRanges of exons, the result would be counts
per exon.

Counting reads with

When the region of interest is defined by one or more ranges the features argument should
be a GRangesList. In practice this could be a list of exons by gene or transcripts by gene or
other similar relationships. The count result will be the same length as the GRangesList. For
a list of exons by genes, the result would be counts per gene.

The combination of defining the features as eitherGRanges or GRangesList and choosing
a counting mode controls how assigns hits. Regardless of the mode
chosen, each read is assigned to at most a single feature. These options are intended to
provide flexibility in defining different biological problems.

This next example demonstrates how the same read can be counted differently depending on
how the features argument is specified. We use a single read that overlaps two ranges, grl
and gr2.

> rd <- GAlignments(names="a", seqnames="chrl", pos=100, cigar="300M", strand="+")
> grl <- GRanges("chrl", IRanges(start=50, width=150), strand="+"
> gr2 <- GRanges("chrl", IRanges(start=350, width=150), strand="+")

When provided as a GRanges both grl and gr2 are considered distinct features. In this case
none of the modes count the read as a hit. Mode Union discards the read becasue more than
1 feature is overlapped. IntersectionStrict requires the read to fall completely within a
feature which is not the case for either grl or gr2. IntersetctionNotEmpty requires the read
to overlap a single unique disjoint region of the features. In this case grl and gr2 do not
overlap so each range is considered a unique disjoint region. However, the read overlaps both
grl and gr2 so a decision cannot be made and the read is discarded.

> gr <- c(grl, gr2)
> data.frame(union = assay(summarizeOverlaps(gr, rd)),

+ intStrict = assay(summarizeOverlaps(gr, rd,
+ mode="IntersectionStrict")),
+ intNotEmpty = assay(summarizeOverlaps(gr, rd,
+ mode="IntersectionNotEmpty")))

reads reads.l reads.2
1 0 0 0
2 0 0 0

Next we count with features as a GRangesList; this is list of length 1 with 2 elements.
Modes Union and IntersectionNotEmpty both count the read for the single feature.

> grl <- GRangesList(c(grl, gr2))
> data.frame(union = assay(summarizeOverlaps(grl, rd)),

+ intStrict = assay(summarizeOverlaps(grl, rd,
+ mode="IntersectionStrict")),
+ intNotEmpty = assay(summarizeOverlaps(grl, rd,
+ mode="IntersectionNotEmpty")))

reads reads.l reads.2
1 1 0 1

In this more complicated example we have 7 reads, 5 are simple and 2 have gaps in the
CIGAR. There are 12 ranges that will serve as the features.

> group_ld <- C("A”, IIBIl, IICII' IICII, IIDII’ IIDII' IIEII, IIFII, IIGIl, IIGII’ IIHII, IIHII)

> features <- GRanges(

Counting reads with

+ seqgnames = c("chrl", "chr2", “"chrl", "“chrl", “"chr2", "chr2",

+ "chri", "“chrl", "chr2", "chr2", "“chrl", "chrl"),

+ strand = Rle(strand("+"), length(group_id)),

+ ranges = IRanges|(

+ start=c(1000, 2000, 3000, 3600, 7000, 7500, 4000, 4000, 3000, 3350, 5000, 5400),
+ width=c(500, 900, 500, 300, 600, 300, 500, 900, 150, 200, 500, 500)),

+ DataFrame(group_id)

+)

> reads <- GAlignments(

+ names = c("a","b","c","d","e","f","g"),

+ seqnames = Rle(c(rep(c("chrl", "chr2"), 3), "chrl")),

+ pos = c(1400, 2700, 3400, 7100, 4000, 3100, 5200),

+ cigar = c("506M", "100M", "300M", "500M", "300M", "50M200N56M", "50M150N50M"),
+ strand = Rle(strand("+"), 7))

>

Using a GRanges as the features all 12 ranges are considered to be different features and
counts are produced for each row,

> data.frame(union = assay(summarizeOverlaps(features, reads)),

intStrict = assay(summarizeOverlaps(features, reads,
mode="IntersectionStrict")),

intNotEmpty = assay(summarizeOverlaps(features, reads,
mode="IntersectionNotEmpty")))

+ + + +

reads reads.l reads.2
1 0

© 0o NO U & WN -

=
(<)

=
=

©O H OO0 0000 O OO

[l Dol ol oo ol o R o RN I

[clcololololololol ool

=
N

When the data are split by group to create a GRangesList the highest list-levels are treated
as different features and the multiple list elements are considered part of the same features.
Counts are returned for each group.

> Ist <- split(features, mcols(features)[["group_id"]])
> length(lst)

[1] 8

> data.frame(union = assay(summarizeOverlaps(lst, reads)),
+ intStrict = assay(summarizeOverlaps(lst, reads,

+ mode="IntersectionStrict")),

+ intNotEmpty = assay(summarizeOverlaps(lst, reads,
+ mode="IntersectionNotEmpty")))

Counting reads with summarizeovertiaps

reads reads.l reads.2
1 0

I o Mmoo m >
[o B o B R
S I < I < I = R
[I < I < N SR S R S

If desired, users can supply their own counting function as the mode argument and take
advantage of the infrastructure for counting over multiple BAM files and parsing the results
into a RangedSummarizedExperiment object. See ?’BamViews-class’ or ?’BamFile-class’
in the Rsamtools package.

5 pasilla Data

In this excercise we count the pasilla data by gene and by transcript then create a DESeq-
DataSet. This object can be used in differential expression methods offered in the DESeq2
package.

5.1 source files

Files are available through NCBI Gene Expression Omnibus (GEO), accession number GSE18508.
http://www.ncbi.nlm.nih.gov/projects/geo/query/acc.cgi?acc=GSE18508. SAM files can be
converted to BAM with the asBam function in the Rsamtools package. Of the seven files
available, 3 are single-reads and 4 are paired-end. Smaller versions of untreatedl (single-end)
and untreated2 (paired-end) have been made available in the pasillaBamSubset package.
This subset includes chromosome 4 only.

summarizeOverlaps is capable of counting paired-end reads in both a BamFile-method (set
argument singleEnd=TRUE) or a GAlignmentPairs-method. For this example, we use the 3
single-end read files,

= treatedl.bam
= untreatedl.bam
= untreated2.bam

Annotations are retrieved as a GTF file from the ENSEMBL web site. We download the file
our local disk, then use Rtracklayer's import function to parse the file to a GRanges instance.

library(rtracklayer)

fl <- pasteO("ftp://ftp.ensembl.org/pub/release-62/",
"gtf/drosophila_melanogaster/",
"Drosophila_melanogaster.BDGP5.25.62.gtf.gz")

gffFile <- file.path(tempdir(), basename(fl))

download. file(fl, gffFile)

gffO <- import(gffFile)

vV V.V + + V V

Subset on the protein-coding, exon regions of chromosome 4 and split by gene id.

http://bioconductor.org/packages/Rsamtools
http://bioconductor.org/packages/pasilla
http://bioconductor.org/packages/DESeq2
http://www.ncbi.nlm.nih.gov/projects/geo/query/acc.cgi?acc=GSE18508
http://bioconductor.org/packages/Rsamtools
http://bioconductor.org/packages/pasillaBamSubset
http://bioconductor.org/packages/Rtracklayer

Counting reads with

5.2

> idx <- mcols(gff@)$source == "protein_coding" &

+ mcols(gffO)$type == "exon" &

+ seqnames (gff@) == "4"

> gff <- gffO[idx]

> ## adjust seqnames to match Bam files

> seqlevels(gff) <- paste("chr", seqlevels(gff), sep="")
> chr4genes <- split(gff, mcols(gff)$gene_id)

counting

The param argument can be used to subset the reads in the bam file on characteristics such
as position, unmapped or paired-end reads. Quality scores or the "NH" tag, which identifies
reads with multiple mappings, can be included as metadata columns for further subsetting.
See ?ScanBamParam for details about specifying the param argument.

> param <- ScanBamParam(

+ what="qual",

+ which=GRanges("chr4", IRanges(1, 1le6)),

+ flag=scanBamFlag(isUnmappedQuery=FALSE, isPaired=NA),

+ tag="NH")

We use to count with the default mode of "Union". If a param argument

is not included all reads from the BAM file are counted.

> fls <- c("treatedl.bam", "untreatedl.bam", "untreated2.bam")

> path <- "pathToBAMFiles"

> bamlst <- BamFilelList(fls)

> genehits <- summarizeOverlaps(chr4genes, bamlst, mode="Union")

A CountDataSet is constructed from the counts and experiment data in pasilla.

> expdata <- MIAME(

+ name="pasilla knockdown",

+ lab="Genetics and Developmental Biology, University of

+ Connecticut Health Center",

+ contact="Dr. Brenton Graveley",

+ title="modENCODE Drosophila pasilla RNA Binding Protein RNAi

+ knockdown RNA-Seq Studies",

+ pubMedIds="20921232",

+ url="http://www.ncbi.nlm.nih.gov/projects/geo/query/acc.cgi?acc=GSE18508",
+ abstract="RNA-seq of 3 biological replicates of from the Drosophila

+ melanogaster S2-DRSC cells that have been RNAi depleted of mRNAs

+ encoding pasilla, a mRNA binding protein and 4 biological replicates
+ of the the untreated cell line.")

> design <- data.frame(

+ condition=c("treated", "untreated", "untreated"),

+ replicate=c(1,1,2),

+ type=rep("single-read", 3),

+ countfiles=path(colData(genehits)[,1]), stringsAsFactors=TRUE)

> geneCDS <- DESeqDataSet(genehits, design=design, metadata=list(expdata=expdata))

Counting reads with summarizeoveriaps

If the primary interest is to count by transcript instead of by gene, the annotation file can be
split on transcript id.

> chrd4tx <- split(gff, mcols(gff)$transcript_id)
> txhits <- summarizeOverlaps(chrd4tx, bamlst)
> txCDS <- DESeqDataSet(txhits, design=design, metadata=list(expdata=expdata))

6 References

http://www-huber.embl.de/users/anders/HTSeq/doc/overview.html http://www-huber.embl.
de/users/anders/HTSeq/doc/count.html

http://www-huber.embl.de/users/anders/HTSeq/doc/overview.html
http://www-huber.embl.de/users/anders/HTSeq/doc/count.html
http://www-huber.embl.de/users/anders/HTSeq/doc/count.html

	1 Introduction
	2 A First Example
	3 Counting Modes
	4 Counting Features
	5 pasilla Data
	5.1 source files
	5.2 counting

	6 References

