
GARS: a Genetic Algorithm for the identi-
fication of Robust Subsets of variables in
high-dimensional and challenging datasets

Mattia Chiesa 1, Giada Maioli 2, and Luca Piacentini 1

1Immunology and Functional Genomics Unit, Centro Cardiologico Monzino, IRCCS, Milan,
Italy;
2Universitá degli Studi di Pavia, Pavia, Italy

June 4, 2025

Abstract

Feature selection aims to identify and, remove redundant, irrelevant and noisy variables from
high-dimensional datasets. Selecting informative features affects the subsequent classification
and regression analyses by improving their overall performances. Several methods have been
proposed to perform feature selection: most of them relies on univariate statistics, correlation,
entropy measurements or the usage of backward/forward regressions.
Herein, we propose an efficient, robust and fast method that adopts stochastic optimization
approaches for high-dimensional. Genetic algorithms, a type of evolutionary algorithms, are
often used to find solutions for optimization and search problems and promise to be effective
on complex data. They operate on a population of potential solutions and apply the “principle
of survival of the fittest” to produce the better approximation of the optimal solution.
GARS is an innovative implementation of a genetic algorithm that selects robust features in
high-dimensional and challenging datasets.

Package

GARS 1.29.0

GARS: a Genetic Algorithm for the identification of Robust Subsets of variables in high-dimensional and
challenging datasets

Contents

1 Introduction . 3

1.1 Citation and code . 4

2 Using GARS: a classification analysis 5

2.1 The testing RNA-Seq dataset 5

2.2 Launch GARS . 5

2.3 Test the robustness of the feature set 10

2.4 Find the best features set . 13

3 Build your custom GA . 15

4 Session Info . 15

2

GARS: a Genetic Algorithm for the identification of Robust Subsets of variables in high-dimensional and
challenging datasets

1 Introduction
A crucial step in a Data Mining analysis is Feature Selection, which is the process of identifying
the most informative predictors to build accurate classification models. Indeed, many features
could inadvertently introduce bias in a prediction model, lead to overfitting and increase the
complexity in further downstream analysis. In last decades, several methods have been
proposed to perform feature selection; they are usually grouped in three main classes [1, 2]:

• Filter Methods - A measure based on statistics or entropy is used to rank an then
select variables. The most popular filter methods are the Information Gain, the ReliefF,
the Gini Index and the χ2 test;

• Wrapper Methods - The set of important features is identified using a classifier to eval-
uate the accuracy of several combinations of variables. Backward/Forward/Stepwise-
elimination stategies belong to this category;

• Embedded Methods - As for wrapper methods, a classifier is used to identify the best
set of variables; however, in this case the procedure to identify the features is totally
joined with the construction of the classifier. The “tree-based” classifiers (e.g. Decision
trees and the Random Forest) are the widely used embedded methods.

Genetic Algorithms (GAs) are heuristic adaptive search algorithms that simulate the Dar-
winian law of “the survival of the fittest” among individuals, over consecutive generations,
for solving hard problems, such as pattern recognition and feature selection. A GA is tradi-
tionally composed of three main consecutive stages: first, a random set of candidate solutions,
i.e. chromosomes, is generated. Then, each chromosome is evaluated by a custom score, i.e.
fitness function that reflects how good a solution is. Finally, the evolutionary operators are
sequentially applied to the entire population: Selection, Crossover and Mutation. To find
the optimal solution, this process has to be repeated several times: the starting chromosome
population of a certain generation corresponds to the resulting chromosome population of
the previous generation.
The idea to use a GA to perform Feature Selection is not novel; however, all the developed
GA-based methods needs a classifier to evaluate the goodness of a set of features (namely,
they belong to the “Wrapper” or the “Embedded” category). The classifiers mainly used to
assess the selected features are the Support Vector Machines (GA-SVN) [3], the k-Nearest
Neighbours (GA-KNN) [4], the Random Forest (rfGA, see the caret package for details), the
LDA (caretGA, see the caret package for details) [5] and maximum-likelihood based methods
(GA-MLHD) [6].
One of the most relevant contexts where the feature selection is becoming more and more
essential, is the -OMICs field: in fact, datasets coming from genomics, transcriptomics, pro-
teomics and metabolomics experiments are typically composed of a large number of features
compared to the sample size; this poses a big challenge for a data mining analysis.
In this context, we developed an innovative implementation of a Genetic Algorithm that
selects Robust Subsets of features (GARS) in high-dimensional and challenging datasets.
GARS has several benefits:

1. it does not need any classifier to evaluate the goodness of the selected feature. The
fitness is calculated by the averaged Silhouette Index [7], after computing a Multi-
Dimensional Scaling of the data. This allows being less prone to overfitting and local
optima;

2. it is relatively fast, when the number of features is relatively high (tens of thousands);
3. it can be used in multi-class classifcation problems;

3

https://CRAN.R-project.org/package=caret
https://CRAN.R-project.org/package=caret

GARS: a Genetic Algorithm for the identification of Robust Subsets of variables in high-dimensional and
challenging datasets

4. even though it has been thought for solving -OMICs tasks, it can be easily used in
several other contexts (e.g. low-dimensional data);

5. it can be easily integrated with other R and Bioconductor packages for Data Mining
(e.g. caret and DaMiRseq).

1.1 Citation and code
Users can find useful details about the GARS algorithm, downloading the publication 1. This
paper should be used to cite GARS, as well.
In addition, we provided in GitHub the code of all the analyses performed for the publication:
https://github.com/BioinfoMonzino/GARS_paper_Code. Users are invited to download and
customize the proposed workflows in which GARS is used to perform feature selection in three
different machine learning analyses.

1See: Chiesa et al. GARS: Genetic Algorithm for the identification of a Robust Subset of features in high-
dimensional datasets [8].

4

https://CRAN.R-project.org/package=caret
http://bioconductor.org/packages/DaMiRseq
https://doi.org/10.1186/s12859-020-3400-6
https://github.com/BioinfoMonzino/GARS_paper_Code

GARS: a Genetic Algorithm for the identification of Robust Subsets of variables in high-dimensional and
challenging datasets

2 Using GARS: a classification analysis

2.1 The testing RNA-Seq dataset
The dataset used in this vignette comes from a miRNA-Seq experiment performed on cer-
vical tissues [9]; the dataset is composed of 714 miRNAs and 58 samples: 29 Tumor (T)
and 29 Non-Tumor (N) cervical samples, respectively. In order to obtain a normalized gene
expression matrix, we used the DaMiR.normalization function of the DaMiRseq package with
default parameters.

library(MLSeq)

library(DaMiRseq)

library(GARS)

load dataset

filepath <- system.file("extdata/cervical.txt", package = "MLSeq")

cervical <- read.table(filepath, header=TRUE)

replace "wild-card" characters with other characters

rownames(cervical) <- gsub("*", "x", rownames(cervical), fixed = TRUE)

rownames(cervical) <- gsub("-", "_", rownames(cervical), fixed = TRUE)

create the "class" vector

class_vector <- data.frame(gsub('[0-9]+', '', colnames(cervical)))

colnames(class_vector) <- "class"

rownames(class_vector) <- colnames(cervical)

create a Summarized Experiment object

SE_obj <- DaMiR.makeSE(cervical, class_vector)

Your dataset has:

714 Features;

58 Samples, divided in:

1 variables: class ;

'class' included.

filter and normalize the dataset

datanorm <- DaMiR.normalization(SE_obj)

545 Features have been filtered out by espression. 169 Features remained.

0 'Hypervariant' Features have been filtered out. 169 Features remained.

Performing Normalization by 'vst' with dispersion parameter: parametric

2.2 Launch GARS
After filtering and normalizing data we got a dataset with 161 expressed miRNAs and 58
samples. The best way to use GARS for selecting a robust set of features from an high-
dimentional dataset is to exploit the wrapper function GARS_GA. A dataset must be provided,
as well as a vector containing the class information. GARS gives the opportunity to provide
input data in the form of SummarizedExperiment, matrix or data.frame objects. On one

5

http://bioconductor.org/packages/DaMiRseq

GARS: a Genetic Algorithm for the identification of Robust Subsets of variables in high-dimensional and
challenging datasets

hand, SummarizedExperiment is preferred in the case of a RNA-Seq experiment; on the other
hand, a data.frame allows the user to integrate expression data with other numerical and/or
categorical features.
In addition, several other parameters have to be set:

• chr.num - The number of chromosomes in each population. If the number of chro-
mosomes is too small, the GA will explore a small part of the “solution space” (each
chromosome is a candidate solution); conversely, if the number is too high, the GA will
produce results very slowly. Default: 1000

• chr.len - The length of each chromosome. This argument is the most important
in GARS: it corresponds to the length of the desired feature set. Usually, in data
mining analysis the number of features, needed to build a classification model, has to
be much smaller than the number of observations (i.e. samples).

• generat - The maximum number of generations. This number is usually high (hundreds
to thousands): the higher the number of generations, the higher the probability to reach
the best solution. Default: 500

• co.rate - The probability to perform the crossover for each random couple of chromo-
somes. This parameter allows the evolution rate to be controlled and tuned. Default:
0.8

• mut.rate - The probability to mutate each chromosome base. This parameter allows
the evolution rate to be controlled and tuned. Default: 0.01

• n.elit - The number of best chromosomes that must be “preserved from the evolution”.
This number is usually small compared to the number of chromosomes, in order to
enhance the evolution. Default: 10

• type.sel - The algorithm that performs the Selection step. “Roulette Wheel” and
“Tournament” selections are implemented. Default: Roulette Wheel.

• type.co - The algorithm that performs the Crossover step. “One point” and “Two
points” crossover are implemented. Default: One point.

• type.one.p.co - In the case of “One point” crossover, this argument allows setting the
quartile where the crossover has to be applied. The user can choose among the first,
the second and the third quartile. Default: First quartile.

• n.gen.conv - The maximum number of consecutive generations with the same maxi-
mum fitness score. When the maximum fitness scores are the same for several genera-
tion, this means that the GA found the optimal solution (i.e. reached the convergence).
This argument is useful to stop GARS when the convergence is reached. Default: 80.

• plots - Whether generating plots or not. Default: yes.
• verbose - Whether printing information in the console or not. Default: yes.
• n.Feat_plot - If plots = yes, the number of features to be plotted by GARS_PlotFeaturesUsage

To speed up the execution time of the function, here we set generat = 20, chr.num = 100

and chr.len = 8; however, for a typical -omic experiment (thousands of features), this is
probably not sufficent to find the best feature set. We strongly recomend to set accurately
each parameter, trying different combinations of them (especially chr.len, See Section 2.4).

6

GARS: a Genetic Algorithm for the identification of Robust Subsets of variables in high-dimensional and
challenging datasets

set.seed(123)

res_GA <- GARS_GA(data=datanorm,

classes = colData(datanorm),

chr.num = 100,

chr.len = 8,

generat = 20,

co.rate = 0.8,

mut.rate = 0.1,

n.elit = 10,

type.sel = "RW",

type.co = "one.p",

type.one.p.co = "II.quart",

n.gen.conv = 150,

plots="no",

verbose="yes")

GARS has been set with these parameters:

Number of starting features: 169

Number of samples: 58

Number of classes: 2

Number of chromosomes: 100

Length of chromosomes (i.e. number of desired features): 8

Number of maximum generations: 20

Crossing-Over rate: 0.8

Mutation rate: 0.1

Number of chromosomes kept by elitism: 10

Type of Selection method: RW

Type of CrossingOver method: one.p

Position of the one-Point Crossover: II.quart

Number of max generations allowed with the same Fitness: 150

Produce graphs: no

##

##############################

GARS is running

##############################

##

Reached 10 iterations...

Reached 20 iterations...

GARS found a solution after 20 iterations.

With these parameters, the best solution:

##

1. is reached after 20 iterations;

2. is reached looking at the 100 % of the 169 features;

3. got a maximum fitness score = 0.57

4. is composed of the following features:

miR_25 miR_181a miR_145x miR_7 miR_21x miR_203 miR_148a miR_143

The results of GARS_GA are stored in a GarsSelectedFeatures object, herein res_GA, where
the informations could be extracted by 4 Assessor methods:

• MatrixFeatures() - Extracts the matrix containing the expression values for the se-
lected features;

7

GARS: a Genetic Algorithm for the identification of Robust Subsets of variables in high-dimensional and
challenging datasets

• LastPop() - Extracts the matrix containing the chromosome population of the last
generation. The first column of this matrix represent the best solution, found by the
GA;

• AllPop() - Extracts the list containing all the populations produced over the gener-
ations;

• FitScore() - Extracts the vector containing the maximum fitness scores, computed
in each generation.

The information stored in the GarsSelectedFeatures object could be used for downstream
analysis (See Section 2.3) or for generating plots (before, we set plots = no). In GARS the
functions GARS_PlotFitnessEvolution() allows the user to plot the fitness evolution over the
generations, while the function GARS_PlotFeaturesUsage() allows representing the frequency
of each feature in a bubble chart:
Plot Fitness Evolution

fitness_scores <- FitScore(res_GA)

GARS_PlotFitnessEvolution(fitness_scores)

#Plot the frequency of each features over the generations

Allfeat_names <- rownames(datanorm)

Allpopulations <- AllPop(res_GA)

GARS_PlotFeaturesUsage(Allpopulations,

Allfeat_names,

nFeat = 10)

As mentioned before, in this example the number of chromosomes (100) and the number
of generations (20) were intentionally small. Nevertheless, the population evolved over the
generations: indeed, as shown in Figure 1, the maximum fitness score is equal to 0.41 in
the first generation and reaches the value of 0.55 in the last generation (an increasing of
30%). Moreover, the Figure 2 shows the most recurring (i.e. “conserved”) miRNAs over the
iterations.

8

GARS: a Genetic Algorithm for the identification of Robust Subsets of variables in high-dimensional and
challenging datasets

0.500

0.525

0.550

0.575

5 10 15 20
Generation

m
ax

(f
itn

es
s

sc
or

e)

Maximum Fitness Evolution

Figure 1: Fitness Evolution plot. The plot shows the evolution of the maximum fitness across the genera-
tions

miR_7

miR_25

miR_29c
miR_145x

miR_149

miR_203

miR_21

miR_143

miR_125a_5p
miR_142_3p

400

800

1200

1600

1 2 3 4 5 6 7 8 9 10
Feature

T
im

es

Times

400

800

1200

1600

Times

400

800

1200

1600

Top Features used across all generations

Figure 2: Recurring Features. Each circle in the plot represents a feature. The color and size of each circle
are, respectively, darker and bigger when a feature is more recurring.

9

GARS: a Genetic Algorithm for the identification of Robust Subsets of variables in high-dimensional and
challenging datasets

2.3 Test the robustness of the feature set
Besides the maximum fitness score of the last population, we can assess the quality of the
results, through a classification analysis. To perform this task, we used the functions imple-
mented in the DaMiRseq package, which offers several easy-to-use and efficient functions for
Data Mining; however, the user may perform the analysis, exploiting other packages for data
mining, such as the caret package.
First, we extracted data from the MatrixFeatures(res_GA) object where the expression values
for the selected features are stored. Then,we tranformed this matrix and the classes_GARS

in a data.frame object that we used as input for the DaMiR.EnsembleLearning function. We
set iter = 5 for practical reasons.
expression data of selected features

data_reduced_GARS <- MatrixFeatures(res_GA)

Classification

data_reduced_DaMiR <- as.data.frame(data_reduced_GARS)

classes_DaMiR <- as.data.frame(colData(datanorm))

colnames(classes_DaMiR) <- "class"

rownames(classes_DaMiR) <- rownames(data_reduced_DaMiR)

DaMiR.MDSplot(data_reduced_DaMiR,classes_DaMiR)

DaMiR.Clustplot(data_reduced_DaMiR,classes_DaMiR)

set.seed(12345)

Classification.res <- DaMiR.EnsembleLearning(data_reduced_DaMiR,

as.factor(classes_DaMiR$class),

iter=5)

You select: RF LR kNN LDA NB SVM weak classifiers for creating

the Ensemble meta-learner.

Ensemble classification is running. 5 iterations were chosen:

Accuracy [%]:

Ensemble RF SVM NB LDA LR kNN

Mean: 0.91 0.93 0.9 0.9 0.89 0.92 0.94

St.Dev. 0.05 0.05 0.07 0.07 0.07 0.03 0.04

MCC score:

Ensemble RF SVM NB LDA LR kNN

Mean: 0.83 0.88 0.81 0.8 0.79 0.85 0.89

St.Dev. 0.1 0.08 0.14 0.14 0.13 0.05 0.08

Specificity:

Ensemble RF SVM NB LDA LR kNN

Mean: 0.92 0.96 0.9 0.89 0.91 0.94 0.94

St.Dev. 0.05 0.05 0.08 0.02 0.05 0.05 0.06

Sensitivity:

Ensemble RF SVM NB LDA LR kNN

Mean: 0.92 0.93 0.92 0.92 0.89 0.93 0.96

St.Dev. 0.1 0.1 0.11 0.12 0.12 0.1 0.06

PPV:

Ensemble RF SVM NB LDA LR kNN

Mean: 0.91 0.96 0.89 0.89 0.91 0.93 0.93

St.Dev. 0.05 0.06 0.08 0 0.05 0.06 0.06

NPV:

10

http://bioconductor.org/packages/DaMiRseq
https://CRAN.R-project.org/package=caret

GARS: a Genetic Algorithm for the identification of Robust Subsets of variables in high-dimensional and
challenging datasets

Ensemble RF SVM NB LDA LR kNN

Mean: 0.91 0.91 0.91 0.91 0.87 0.91 0.96

St.Dev. 0.12 0.12 0.12 0.14 0.14 0.12 0.06

The features selected by GARS allowed us to clearly discriminate the N and T classes (See
Figures 3 and 4). Moreover, we obtained high classification accuracy for all the classifiers
built using the features set (See Figure 5).

N1

N2

N3

N4

N5

N6

N7

N8

N9

N10

N11

N12

N13

N14

N15

N16N17

N18

N19

N20

N21

N22

N23
N24

N25

N26

N27

N28

N29

T1

T2

T3

T4

T5
T6

T7

T8 T9

T10

T11

T12

T13

T14

T15

T16

T17

T18

T19

T20 T21

T22

T23

T24

T25

T26

T27

T28

T29

−0.50

−0.25

0.00

0.25

−0.5 0.0 0.5
X1

X
2

class

a

a

N

T

Figure 3: MultiDimensional Scaling plot. The MDS is drawn using the 8 features selected by GARS. The
averaged Silhouette Index (i.e. the maximum fitness function of the last population) is equal to 0.55.

11

GARS: a Genetic Algorithm for the identification of Robust Subsets of variables in high-dimensional and
challenging datasets

N
29

T
29

N
15

N
14

T
12

N
3

N
24

N
16

N
17

N
12

N
13

N
1

N
2

N
11

N
10

N
22

N
23

N
27

N
6

N
18

N
8

N
20

N
19

N
26

N
7

T
11

N
4

N
5

N
21

N
25

N
28

N
9

T
10

T
6

T
25

T
9

T
16

T
3

T
5

T
15

T
28

T
20

T
24

T
18

T
27

T
1

T
17

T
2

T
23

T
26

T
8

T
13

T
22

T
14

T
21

T
7

T
4

T
19

miR_145x

miR_143

miR_25

miR_7

miR_203

miR_148a

miR_181a

miR_21x

class class
N
T

−4

−2

0

2

4

Figure 4: Clustergram. The clustergram is drawn using the 8 features selected by GARS.

0.8

0.9

1.0

Ensemble RF SVM NB LDA LR kNN
Classifiers

A
cc

ur
ac

y

factor(Classifiers)

Ensemble

RF

SVM

NB

LDA

LR

kNN

Figure 5: Violin plot. The violin plot highlights the classification accuracy of each classifier. Using the fea-
tures set, selected by GARS, the averaged classification accuracy is always high, dispite the small number
of iterations.

12

GARS: a Genetic Algorithm for the identification of Robust Subsets of variables in high-dimensional and
challenging datasets

2.4 Find the best features set
In the previous Section, we run GARS setting chr.len = 8. In this way, we forced the
algorithm to find the best solution consisting of 8 features. However, this is probably not the
best solution ever, but rather the optimal solution with 8 features. In order to find the best
solution, we need to try several values of chr.len.
A practical solution is to insert the GARS_GA function inside a for loop. In the next example,
we run GARS with chr.len equal to 7, 8 and 9. Finally, we search for the best solution.
populs <- list()

k=1

for (ik in c(7,8,9)){

set.seed(1)

cat(ik, "features","\n")

populs[[k]] <- GARS_GA(data=datanorm,

classes = colData(datanorm),

chr.num = 100,

chr.len = ik,

generat = 20,

co.rate = 0.8,

mut.rate = 0.1,

n.elit = 10,

type.sel = "RW",

type.co = "one.p",

type.one.p.co = "II.quart",

n.gen.conv = 150,

plots = "no",

verbose="no")

k <- k +1

}

7 features

Reached 10 iterations...

Reached 20 iterations...

GARS found a solution after 20 iterations.

8 features

Reached 10 iterations...

Reached 20 iterations...

GARS found a solution after 20 iterations.

9 features

Reached 10 iterations...

Reached 20 iterations...

GARS found a solution after 20 iterations.

find the maximum fitness for each case

max_fit <- 0

for (i in seq_len(length(populs))){

max_fit[i] <- max(FitScore(populs[[i]]))

}

max_fit

13

GARS: a Genetic Algorithm for the identification of Robust Subsets of variables in high-dimensional and
challenging datasets

[1] 0.5471264 0.5596298 0.4976552

best_popul <- populs[[which(max_fit == max(max_fit))]]

number of features (best solution)

dim(MatrixFeatures(best_popul))[2]

[1] 8

Now, we can compare the results obtained from several chr.len values and select the best
solution, looking at the maximum fitness scores and, eventually, applying the “law of parsi-
mony” principle (Occam’s razor).

14

GARS: a Genetic Algorithm for the identification of Robust Subsets of variables in high-dimensional and
challenging datasets

3 Build your custom GA
As mentioned in Section 2, the best way to use GARS is to run the GARS_GA function.
However, the GARS package allows the user to build a custom GA (e.g. avoiding the
Crossover step), joining the functions embedded in GARS_GA:

• GARS_create_rnd_population() - allows creating a random chromosome population;
• GARS_FitFun() - allows computing the fitness function, given a chromosome population;
• GARS_Elitism() - allows splitting a chromosome population, ordered by fitness scores;
• GARS_Selection() - allows selecting the best chromosomes, given a chromosome pop-

ulation;
• GARS_Crossover() - allows performing the Crossover step;
• GARS_Mutation() - allows performing the Mutation step;
• GARS_PlotFitnessEvolution() - allows plotting the evolution of the maximum fitness

over the generations;
• GARS_PlotFeaturesUsage() - allows plotting how many times a feature is present over

the generations;

4 Session Info
• R version 4.5.0 (2025-04-11 ucrt), x86_64-w64-mingw32
• Locale: LC_COLLATE=C, LC_CTYPE=English_United States.utf8,

LC_MONETARY=English_United States.utf8, LC_NUMERIC=C,
LC_TIME=English_United States.utf8

• Time zone: America/New_York

• TZcode source: internal

• Running under: Windows Server 2022 x64 (build 20348)

• Matrix products: default
• Base packages: base, datasets, grDevices, graphics, methods, stats, stats4, utils
• Other packages: Biobase 2.69.0, BiocGenerics 0.55.0, DaMiRseq 2.21.0,

GARS 1.29.0, GenomeInfoDb 1.45.4, GenomicRanges 1.61.0, IRanges 2.43.0,
MLSeq 2.27.0, MatrixGenerics 1.21.0, S4Vectors 0.47.0,
SummarizedExperiment 1.39.0, caret 7.0-1, cluster 2.1.8.1, generics 0.1.4,
ggplot2 3.5.2, knitr 1.50, lattice 0.22-7, matrixStats 1.5.0

• Loaded via a namespace (and not attached): AnnotationDbi 1.71.0,
BiocFileCache 2.99.5, BiocIO 1.19.0, BiocManager 1.30.25, BiocParallel 1.43.3,
BiocStyle 2.37.0, Biostrings 2.77.1, DBI 1.2.3, DESeq2 1.49.1, DT 0.33,
DelayedArray 0.35.1, EDASeq 2.43.0, FSelector 0.34, FactoMineR 2.11,
Formula 1.2-5, GenomicAlignments 1.45.0, GenomicFeatures 1.61.3, Hmisc 5.2-3,
KEGGREST 1.49.0, MASS 7.3-65, Matrix 1.7-3, ModelMetrics 1.2.2.2,
R.methodsS3 1.8.2, R.oo 1.27.1, R.utils 2.13.0, R6 2.6.1, RColorBrewer 1.1-3,
RCurl 1.98-1.17, RSNNS 0.4-17, RSQLite 2.4.0, RWeka 0.4-46, RWekajars 3.9.3-2,
Rcpp 1.0.14, Rdpack 2.6.4, Rsamtools 2.25.0, S4Arrays 1.9.1, ShortRead 1.67.0,

15

GARS: a Genetic Algorithm for the identification of Robust Subsets of variables in high-dimensional and
challenging datasets

SparseArray 1.9.0, TH.data 1.1-3, UCSC.utils 1.5.0, XML 3.99-0.18, XVector 0.49.0,
abind 1.4-8, annotate 1.87.0, arm 1.14-4, aroma.light 3.39.0, backports 1.5.0,
base64enc 0.1-3, bdsmatrix 1.3-7, biomaRt 2.65.0, bit 4.6.0, bit64 4.6.0-1,
bitops 1.0-9, blob 1.2.4, boot 1.3-31, cachem 1.1.0, checkmate 2.3.2, class 7.3-23,
cli 3.6.5, coda 0.19-4.1, codetools 0.2-20, colorspace 2.1-1, compiler 4.5.0,
corrplot 0.95, crayon 1.5.3, curl 6.2.3, data.table 1.17.4, dbplyr 2.5.0, deldir 2.0-4,
dichromat 2.0-0.1, digest 0.6.37, dplyr 1.1.4, e1071 1.7-16, edgeR 4.7.2,
emmeans 1.11.1, entropy 1.3.2, estimability 1.5.1, evaluate 1.0.3, farver 2.1.2,
fastmap 1.2.0, filelock 1.0.3, flashClust 1.01-2, foreach 1.5.2, foreign 0.8-90,
future 1.49.0, future.apply 1.11.3, genalg 0.2.1, genefilter 1.91.0, ggrepel 0.9.6,
globals 0.18.0, glue 1.8.0, gower 1.0.2, grid 4.5.0, gridExtra 2.3, gtable 0.3.6,
hardhat 1.4.1, highr 0.11, hms 1.1.3, htmlTable 2.4.3, htmltools 0.5.8.1,
htmlwidgets 1.6.4, httr 1.4.7, httr2 1.1.2, hwriter 1.3.2.1, igraph 2.1.4, ineq 0.2-13,
interp 1.1-6, ipred 0.9-15, iterators 1.0.14, jpeg 0.1-11, jsonlite 2.0.0, kknn 1.4.1,
labeling 0.4.3, latticeExtra 0.6-30, lava 1.8.1, leaps 3.2, lifecycle 1.0.4, limma 3.65.1,
listenv 0.9.1, lme4 1.1-37, locfit 1.5-9.12, lubridate 1.9.4, magrittr 2.0.3,
memoise 2.0.1, mgcv 1.9-3, minqa 1.2.8, multcomp 1.4-28, multcompView 0.1-10,
mvtnorm 1.3-3, nlme 3.1-168, nloptr 2.2.1, nnet 7.3-20, pROC 1.18.5, parallel 4.5.0,
parallelly 1.45.0, pheatmap 1.0.12, pillar 1.10.2, pkgconfig 2.0.3, pls 2.8-5,
plsVarSel 0.9.13, plyr 1.8.9, png 0.1-8, praznik 11.0.0, prettyunits 1.2.0,
prodlim 2025.04.28, progress 1.2.3, proxy 0.4-27, purrr 1.0.4, pwalign 1.5.0,
rJava 1.0-11, randomForest 4.7-1.2, rappdirs 0.3.3, rbibutils 2.3, recipes 1.3.1,
reformulas 0.4.1, reshape2 1.4.4, restfulr 0.0.15, rjson 0.2.23, rlang 1.1.6,
rmarkdown 2.29, rpart 4.1.24, rstudioapi 0.17.1, rtracklayer 1.69.0, sSeq 1.47.0,
sandwich 3.1-1, scales 1.4.0, scatterplot3d 0.3-44, splines 4.5.0, statmod 1.5.0,
stringi 1.8.7, stringr 1.5.1, survival 3.8-3, sva 3.57.0, tibble 3.2.1, tidyselect 1.2.1,
timeDate 4041.110, timechange 0.3.0, tinytex 0.57, tools 4.5.0, vctrs 0.6.5,
withr 3.0.2, xfun 0.52, xml2 1.3.8, xtable 1.8-4, yaml 2.3.10, zoo 1.8-14

References
[1] Yvan Saeys, Inaki Inza, and Pedro Larranaga. A review of feature selection techniques

in bioinformatics. bioinformatics, 23(19):2507–2517, 2007.
[2] Zena M Hira and Duncan F Gillies. A review of feature selection and feature extraction

methods applied on microarray data. Advances in bioinformatics, 2015, 2015.
[3] Mohd Saberi Mohamad, Safaai Deris, and Rosli Md Illias. A hybrid of genetic algorithm

and support vector machine for features selection and classification of gene expression
microarray. International Journal of Computational Intelligence and Applications,
5(01):91–107, 2005.

[4] Leping Li, Clarice R Weinberg, Thomas A Darden, and Lee G Pedersen. Gene selection
for sample classification based on gene expression data: study of sensitivity to choice of
parameters of the ga/knn method. Bioinformatics, 17(12):1131–1142, 2001.

[5] Max Kuhn et al. The caret package. Journal of Statistical Software, 28(5):1–26, 2008.
[6] CH Ooi and Patrick Tan. Genetic algorithms applied to multi-class prediction for the

analysis of gene expression data. Bioinformatics, 19(1):37–44, 2003.
[7] Peter J Rousseeuw. Silhouettes: a graphical aid to the interpretation and validation of

cluster analysis. Journal of computational and applied mathematics, 20:53–65, 1987.

16

GARS: a Genetic Algorithm for the identification of Robust Subsets of variables in high-dimensional and
challenging datasets

[8] Mattia Chiesa, Giada Maioli, Gualtiero I Colombo, and Luca Piacentini. Gars: Genetic
algorithm for the identification of a robust subset of features in high-dimensional
datasets. BMC bioinformatics, 21(1):54, 2020.

[9] Daniela Witten, Robert Tibshirani, Sam G Gu, Andrew Fire, and Weng-Onn Lui.
Ultra-high throughput sequencing-based small rna discovery and discrete statistical
biomarker analysis in a collection of cervical tumours and matched controls. BMC
biology, 8(1):58, 2010.

17

	1 Introduction
	1.1 Citation and code

	2 Using GARS: a classification analysis
	2.1 The testing RNA-Seq dataset
	2.2 Launch GARS
	2.3 Test the robustness of the feature set
	2.4 Find the best features set

	3 Build your custom GA
	4 Session Info

