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1 Preliminaries
CONFESS is a customized cell detection and signal estimation model for images coming from
the Fluidigm C1 system. Applied to the HeLa CONFESSdata dataset, our method estimated
the cell cycle phase of hundreds of samples from their fluorescence signals and enabled us to
study the spatio-temporal dynamics of the HeLa cell cycle.

1.1 Loading the packages
To load the CONFESS package:
library(CONFESS)

1.2 Data pre-processing
The sample set of 14 raw C01 images are available in the CONFESSdata package on Biocon-
ductor. Alternatively, the complete set of 378 images can be downloaded here. They include
images for each of the following sets:

• Bright Field (BF) images RawSC_BF.zip
• Red and Green Channels (Ch) images RawSC_red_green.zip

CONFESS can take as input raw BMP or JPEG image files, or text-converted files. C01
files can be coverted with an external program like ImageJ Fiji. To do the conversion with
Fiji, go to ImageJ (Fiji): Process –> Batch –> Convert, with the following options: "Output
format"=Text Image. "Interpolation"=Bilinear and "scale factor"=1. Select the option "Read
Images using Bio-Formats" and "convert". You should get all txt files.

2 Fluorescence estimation

2.1 Reading in image/text files
The function readFiles reads the image/text filenames. If image data is used, all images
should be in a single directory referenced by iDirectory. BFdirectory and CHdirectory would
then reference the output directory for the Bright Field and Channel images. If the image
files have been converted to text, iDirectory can be left empty, and BFdirectory and CHdi

rectory will now point to the input text files folders. These data should be stored in two
different folders. This function will also report (and discard) any inconsistencies in the files
being read (eg. BF file present but missing Red/Green channel).
separator separates the image type (BF and channel characteristic types defined in im

age.type) from the rest of the sample name ID (consisting of the run ID and the well
ID). A typical example of a sample name that is separated by "_" from the image type is
the .C01 Bright Field image 1772-062-248_A01_BF.C01. String 1772-062-248_A01 is the
joined Run and Well ID (also separated by "_"). At this function though separator refers
to the one separating 1772-062-248_A01.C01 and BF.C01 strings.
In this example, we read text-converted files available in the CONFESSdata dataset.
data_path<-system.file("extdata",package="CONFESSdata")

files<-readFiles(iDirectory=NULL,
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BFdirectory=paste(data_path,"/BF",sep=""),

CHdirectory=paste(data_path,"/CH",sep=""),

separator = "_",image.type = c("BF","Green","Red"),

bits=2^16)
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2.2 Image spot estimation
To estimate the spots we need to specify a set of parameters. correctionAlgorithm should
be FALSE in this estimation stage. If the parameter subset is not defined, all files read in
with the readFiles function will be analysed. foregroundCut defines a series of cut-offs that
separate the spot (a potential cell) from the background. The cut-offs are empirically picked.
For this reason, it is often helpful to train the dataset by picking a subset of well-defined,
single-spot images and check the algorithm"s performance using different values (e.g. the
above vs seq(0.8,0.96,0.02)). In noisy data we have found that low cut-offs produce the best
results. If the spot"s fluorescence signal is too weak to be detected or simply the cell is not
present, CONFESS will perform capture site recognition (BF modeling) to estimate the pixel
coordinates of the spot that, here, it is assumed to have a rectangular shape. The size of the
side of this pseudo-spot is defined by BFarea. The signal is then quantified within this area.
Note that only in BF modeling the spot is assumed to have a rectangular shape. Otherwise
we do not make any assumptions on the shape and the size of the spot.
estimates <- spotEstimator(files=files,foregroundCut=seq(0.6,0.76,0.02),

BFarea=7,correctionAlgorithm=FALSE,savePlot="screen")

Figure 1: Example spot from spotEstimator
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2.3 Quality control (identification of outliers)
The next step uses visual and statistical inspection tools for the identification of possible
outliers. The spot estimates (of the samples stored in estimates) enter in the function
through defineLocClusters.
The way of processing these data is controlled by out.method whose possible values are:

1. interactive.clustering : estimates concentric circles that mark the outliers (e.g. all
dots outside the circle with with a particular radius are outliers)

2. interactive.manual : enables the user to select the outliers manually by point-and-
click on the plot.

The function mainly produces run- and well- specific plots that enable the user to pick outlier
locations. We have noticed that the Well IDs exhibit specific directionality (half of them
are facing right and the rest left) that affects the position of the capture site. The output
integrates the first-step estimates and the quality control. The code below shows the quality
control process under interactive.manual. interactive.clustering requires at least 15
samples in each run- / well- category (it will exit with an error here). When applied on all
data, it enables the user to select outliers by entering a pre-calculated radius in an auto-
generated message similar to the one below.
clu <- defineLocClusters(LocData=estimates,out.method="interactive.manual")

#"Hit Enter to move to the next image or A + Enter to Abort:"

Figure 2: Example cluster from defineLocClusters

Option interactive.manual enables the user to select suspicious data manually by point-
and-click on the plot. The algorithm will select the closest spot only once of the location that
has been selected by the point-and-click (thus in closely located spots one can click as many
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times as he wants around to make sure that everything is selected). In Windows the user
clicks on any number of spots that could be potential outliers and completes the procedure
by clicking on the "Stop" button appearing on the top/left of the console. In Linux/Mac the
"Stop" button is replaced by right clicking anywhere on the image. In Rstudio the process
stops with the "Esc" button.
Important Note: Please follow the pipeline"s instructions on how to stop this process at
any time you wish. Closing the plot window may cause a fatal error and abnormal exit. To
stop the process simply press A and Enter (Abort) when prompted!

2.4 Re-estimation step (for outliers)
The selected samples now undergo BF modelling using spotEstimator with correctionAlgo

rithm = TRUE. The potential outliers that had been originally estimated by BF modelling are
not re-estimated. They are only kept in a separate slot for manual inspection by our graphical
tools. QCdata contains the output of the quality control step. median.correction=TRUE

instructs the function to shift all locations with outlier BF modeling estimates (more than
cutoff=50 pixels away from the bulk of the estimates) to the median of the bulk estimates
(denoted as "confidence" in the output table).
estimates.2 <- spotEstimator(files=files,subset=clu$Outlier.indices,foregroundCut=seq(0.6,0.76,0.02),

correctionAlgorithm=TRUE,QCdata=clu,savePlot="screen")

Figure 3: Example spot from running spotEstimator for outliers

2.5 Final estimation
The final output is given by LocationMatrix. Apart from listing the locations and the signal
estimates, it quantifies the cell existence via a set of user defined filters. The possible filters
are:
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• Size: it keeps spots whose size is higher than a cut-off. E.g. filter.by = ma

trix(c("Size",50),ncol=2) with the cut-off being 50 pixels.
• Estimation.Type: it keeps spots that have been estimated only by Fluorescence-based

estimation (i.e. it excludes BF modeling based estimates). E.g. filter.by = ma

trix(c("Estimation.Type","Fluorescence-based"),ncol=2).
• Pvalue: it keeps spots whose Pvalue for the signal-to-noise ratio (being significant)

IN AT LEAST ONE CHANNEL is higher than a cut-off. E.g. filter.by = ma

trix(c("Pvalue",0.01),ncol=2) will keep all spots with sufficiently low P-values in at
least one channel.

• FDR: keep the spots whose FDR adjusted Pvalue for the signal-to-noise ratio (being
significant) IN AT LEAST ONE CHANNEL is higher than a cut-off. E.g. filter.by =

matrix(c("FDR",0.01),ncol=2).
• StN: keep the spots whose signal-to-noise ratio IN AT LEAST ONE CHANNEL is higher

than a cut-off, for example filter.by = matrix(c("StN",1),ncol=2).
• Pvalue/(image.type): keep the spots whose Pvalue for the signal-to-noise ratio (being

significant) OF A PARTICULAR CHANNEL is higher than a cut-off. The channel
ID replaces the "(image.type)" expression. The channel IDs are user defined in read

Files(). E.g. filter.by = matrix(c("Pvalue/Green",0.01),ncol=2) will keep all
spots with sufficiently low P-values at the Green channel.

• FDR/(image.type): keep the spots whose FDR adjusted Pvalue for the signal-to-noise
ratio (being significant) OF A PARTICULAR CHANNEL is higher than a cut-off (see
above). E.g.filter.by = matrix(c("FDR/Green",0.01),ncol=2).

• StN/(image.type): keep the spots whose signal-to-noise ratio OF A PARTICULAR
CHANNEL is higher than a cut-off (see above). E.g. filter.by = matrix(c("StN/Green",1),ncol=2).

• Out.Index: keep the spots that are estimated with confidence (remove outliers). E.g.fil
ter.by = matrix(c("Out.Index","confidence"),ncol=2).

• Other.Spots: keep the spots of high quality images, i.e. images where the algorithm
does not find any unmatched spots (across channels) or the number of matched spots is
lower than a cut-off. E.g.filter.by = matrix(c("Other.Spots",0),ncol=2) will keep
the images that contain only matched spots across channels.

A typical example of filtering with more than one filter is the following:
Results <- LocationMatrix(data=estimates.2,

filter.by = matrix(c("FDR","Out.Index",0.005,"confidence"),ncol=2))

Results$Output[1:3,]

## SampleID X Y Size Estimation.Type fore_Green back_Green

## 1 1772-062-248_A01 259 367 31 Fluorescence-based 48.39921 17.18394

## 2 1772-062-248_A02 261 335 49 Chip.Pattern-based 18.35271 16.83558

## 3 1772-062-248_A03 262 368 19 Fluorescence-based 26.18448 16.61236

## fore_Red back_Red Signal-to-Noise Pvalue

## 1 219.07155 17.54451 3.56890858499769 6.1613286606443e-07

## 2 19.77144 17.82936 0.141617112045591 0.999999998435555

## 3 86.50398 17.49461 2.24224362943183 7.12880016829537e-05

## FDR Out.Index

## 1 1.60194545176752e-06 confidence

## 2 1 contamination
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## 3 0.0001684989130688 confidence

## Other.Spots Cells

## 1 0 1

## 2 0 0

## 3 X = 30, Y = 204 (Green) | X = 262, Y = 368 (Red) 1

This will keep all "confident" spots with FDR adjusted P-value <0.005 (in any of the chan-
nels). The filters allow the "spot" to "cell" transition by quantifying certain properties that
only cells should have. The output of LocationMatrix should always be manually curated
via inspection of the spotEstimator plots.
The output table summarizes the estimates of the image analysis step. Most of the columns
are self-explained. "fore" corresponds to foreground (spot) and "back" to the background
signal. "Other.Spots" indicates whether CONFESS the location of all other spot signals
found in a particular image. In the example of sample "1772-062-248_A03" it notifies us
that it estimated the location "X = 30, Y = 204" in the Green channel and "X = 262, Y =
368" in the Red Channel (the latter has been correctly kept as reliable in the X, Y columns).
Finally "Cells" is the transition column that reports predicted cells (marked with 1s) via the
various filters that we set.

3 Adjustment and estimation of cell cycle phases /
pseudotime

3.1 Fluorescence adjustment on estimations from Part 1
To perform signal adjustment we use the relevant data of the previous step.
step1 <- createFluo(from.file=system.file("extdata", "Results_of_image_analysis.txt",

package = "CONFESS"),separator="_")

## [1] "Run 1772-062-248 was converted into 1"

## [1] "Run 1772-062-249 was converted into 2"

## [1] "Run 1772-064-103 was converted into 3"

## [1] "Run 1772-067-038 was converted into 4"

## [1] "Run 1772-067-039 was converted into 5"

separator separates the run from the well ID and it is kept here because createFluo can
be based on data from a file that is not necessarily obtained from the above process (but it
should have the above format!).

3.2 Data inspection by batch (chip)
In step1 we store the sample IDs, the raw fluorescence signals, the areas and the Run IDs
of all reliable samples into a list. We can quickly check the distribution of the signals by
run/batch using the following commands:
print(unique(step1$batch))

## [,1] [,2]

## [1,] "1772-062-248" "1"

## [2,] "1772-062-249" "2"
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## [3,] "1772-064-103" "3"

## [4,] "1772-067-038" "4"

## [5,] "1772-067-039" "5"

3.2.1 If data consists of more than 1 chip run/batch

This step would perform signal adjustment by BGmethod="normexp" for image background
within a mixtures of regression model with maximum maxMix=3 mixture components (the
optimal number is estimated) that is also correcting for the run (batch) effects. Plots will be
generated to show how each channel has been normalized and adjusted. The seed parameter
serves only for reproducibility of the results.
step2<-Fluo_adjustment(data=step1,transformation="log",maxMix=3,prior.pi=0.1,

flex.reps = 50, single.batch.analysis=5,

savePlot="screen",seed=999)

Figure 4: Fluo_adjustment
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Data will now be clustered and the group numbers will be labelled on the centroids.
step2.1<-getFluo(data=step2)

step3 <- Fluo_inspection(data=step2.1,altFUN="kmeans",B.kmeans=5,savePlot="screen")

Figure 5: Fluo_inspection GAP statistics

Figure 6: Fluo_inspection clusters
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The user should select the starting cluster, i.e. the start of the progression path. In circular
paths like this one (representing a cell cycle process) any cluster can serve as starting. In
this example, we select the bottom/left one (path.start=3) that is well-separated from the
previous and looks like a starting point. pathEstimator will estimate the progression path
assumed to progressing in a clockwise and circular manner.
step3.1<-pathEstimator(step3,path.start=3,path.type=c("circular","clockwise"))

step4<-Fluo_modeling(data=step3.1,init.path=step3.1$Path,VSmethod="DDHFmv",

CPmethod="ECP",CPgroups=5,CPpvalue=0.01,CPmingroup=10)

step5<-Fluo_ordering(data=step4,savePlot="screen")

Figure 7: Fluo_ordering

step4 and step5 contain the main analytical steps that perform both cell ordering and clus-
ter estimation by fluorescence signal. The plots show the distinct clusters (top) and the
channel differences by estimated pseudotime (bottom). The data have been transformed by
VSmethod="DDHFmv" and the change-point analysis was run by CPmethod="ECP" that identifies
distinct clusters at significance level CPpvalue=0.01. The main output of Fluo_ordering is
the following table with the estimates of interest:
head(step5$Summary_results,3)

## Index Samples Runs Size Corr.Size

## [1,] "1" "1772-062-248_A01" "1772-062-248" "31" "3.43398720448515"

## [2,] "2" "1772-062-248_A03" "1772-062-248" "19" "2.94443897916644"

## [3,] "3" "1772-062-248_A04" "1772-062-248" "152" "5.02388052084628"

## Pseudotime log(Red) log(Green) DDHFmv(Red)

## [1,] "211" "3.282535641777" "5.25713448533138" "90.1990747676997"

## [2,] "159" "2.25110342328328" "4.23750445781466" "86.2887166877148"
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## [3,] "84" "3.21246017722294" "1.84295725977724" "88.4155726915282"

## DDHFmv(Green) DDHFmv(Red)-DDHFmv(Green) Clusters

## [1,] "94.869771164397" "-4.67069639669729" "6"

## [2,] "92.4836895888364" "-6.1949729011216" "6"

## [3,] "84.1004733540749" "4.3150993374533" "3"

## Residuals Out.Index

## [1,] "0.272095188030653" "normal"

## [2,] "-1.39236627780751" "normal"

## [3,] "-1.85390433974894" "normal"
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3.2.2 If data consists of a single chip run/batch

If the data come from a single run, Fluo_adjustment is replaced by getFluo_byRun that
performs only image background correction. The rest of the steps are as before. Note that
in the example code below, we run the analysis on a subset of the original data, i.e. only
those coming from batch=1. The data have been selected by FluoSelection_byRun that can
be used to select either specific batch(es) or specific data across all batches. An example of
the latter is provided in the next section.
step1.1<-FluoSelection_byRun(data=step1,batch=1)

step2<-getFluo_byRun(data=step1.1,BGmethod="normexp",savePlot="screen")

step3<-Fluo_inspection(data=step2,fixClusters=0,altFUN="kmeans",k.max=15,

savePlot="screen")

step3.1 <- pathEstimator(step3,path.start=2,path.type=c("circular","clockwise"))

step4 <- Fluo_modeling(data=step3.1,init.path=step3.1$Path,VSmethod="DDHFmv",

CPmethod="ECP",CPpvalue=0.01)

step5<-Fluo_ordering(data=step4,savePlot="screen")

3.3 Cross-validation to assess the stability of the estimates
Fluo_CV_prep takes the initial data (step1) and automatically runs step2-step4 for one
or more reference runs (single.batch.analysis). The reference run defines which run
we use to adjust the data at Fluo_adjustment()). Finally, cross-validation is done with
Fluo_CV_modeling as follows:

1. remove samples at random and generate "new clusters".
2. put back the excluded samples and re-estimate them (based on the new clusters).
3. Repeat this B >2 times.
4. summarize and evaluate how different your original data estimates are from the cross-

validation estimates
step1 <- createFluo(from.file=system.file("extdata", "Results_of_image_analysis.txt",

package = "CONFESS"))

steps2_4<-Fluo_CV_prep(data=step1,init.path = rep("bottom/left",2),

path.type=c("circular","clockwise"),maxMix=3,

single.batch.analysis = 5,transformation = "log",prior.pi = 0.1,

flex.reps=5,areacut=49,fixClusters=0,altFUN="kmeans",

k.max=15,VSmethod="DDHFmv",CPmethod="ECP",CPgroups=5,

B.kmeans=5,CPpvalue=0.01,CPmingroup=15,savePlot="OFF",seed=999)

steps2_4cv.1<-Fluo_CV_modeling(data=steps2_4,B=10,batch=1:4,perc.cutoff=0.6,q=0.9,

f=0.99,seed.it=TRUE,pseudotime.cutoff=20,savePlot="screen")

You can do the same thing by removing and re-estimating a whole batch. In Fluo_CV_modeling

we must set B=1 because the whole batch is removed once and there is no random samples
to be excluded iteratively as above. The command below will remove and re-estimate batch
1.
steps2_4cv.2<-Fluo_CV_modeling(data=steps2_4,B=1,batch=1:4,perc.cutoff=0.6,q=0.9,

f=0.99,seed.it=TRUE,pseudotime.cutoff=20,savePlot="screen")
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Figure 8: Fluo_CV_modeling 1

Figure 9: Fluo_CV_modeling 2

The output of Fluo_CV_modeling is a list with the results of the original estimates (step5)
and the CV-based estimates. The latter are newly predicted pseudotimes and clusters by
two methods: median / original and median / null. They both integrate the information
of the CV and the originally estimated pseudotimes by building kmean clusters of the B CV
estimates for each sample i and defining pseudotime(i) = median(pseudotime(set1,i)) where
set1 is a subset of the B pseudotimes that exhibit some similarity. The similarity is assessed
by k-means clustering. This subset should contain a large percentage of the B data (higher
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than a user defined cut-off) and it"s median should be lower than the q-th (user defined)
quantile of the average differences between the original and the CV-estimated pseudotimes
across all samples.
Under the former method, if the CV estimated pseudotimes do not satisfy the above require-
ments then the algorithm returns pseudotime(i) = median(pseudotime(set2,i)) where set2 is
the cluster of B pseudotimes that minimizes modulus(median (pseudotimes(set2,i)) - origi-
nal.pseudotimes). Under the latter method, if the CV estimated pseudotimes do not satisfy
the above requirements then the algorithm returns pseudotime(i) = NULL. The NULL data
should be removed from the analysis. Any of the above slots can be used in Fluo_ordering

to obtain new / alternative results.
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