BadRegionFinder — an R/Bioconductor package for
identifying regions with bad coverage

Sarah Sandmann

June 4, 2025

Contents

1

1

Introduction
1.1 Loading the package e

Determining and classifying the coverage

2.1 Determine the coverage
2.2 Determine the coverage quality oo
2.3 Determine regions of interest o o L

Reporting the results

3.1 Summary variant (regions) L
3.2 Detailed variant Lo
3.3 Summary variant (genes) e e

Visualizing the results

4.1 Summary variant (regions) e
4.2 Detailed varianto e
4.3 Summary variant (genes)

Additional functions
5.1 Determine quantiles

Runtime

Introduction

10

11
11
12
13

14
14

14

In the use case of targeted sequencing, determining the coverage of the targeted regions is a crucial
step. A sufficient coverage of the target regions is essential. Otherwise, all subsequent experiments
might fail. Mutations might for example not be detected, because the corresponding regions are
hardly covered.
The reasons for observing bad coverage are diverse. Not enough material might have been
used for sequencing. Or a random error might have occurred during sequencing itself. Yet, these

problems do usually result in a continuously bad coverage of a single sample, resp. those samples
that were analyzed mutually. A different type of problem results from genes or regions in the
genome, which are generally difficult to sequence. These difficulties often result from a high GC-
content [4]. Another problem might be primers, which were not designed optimally. If the two
primers of an amplicon are located too far away from each other, a decrease in coverage is expected
to be observed for all samples concerning parts of this amplicon.

Plenty of programs exist for performing a coverage analysis. Programs like BEDtools [3] may
quickly calculate the coverage of any given bam file. Thereby, the coverage of any defined windows or
per base may be calculated. Similarly, the R package 'bamsignals’ [2] is able to extract information
on the coverage of every position of interest from a given bam file.

When designing a targeted sequencing experiment and it comes to identifying regions, which
show a generally bad coverage, it is necessary to combine the coverage of many samples. It appears
useful to have a tool, that automatically combines the coverage information of different samples
and provides different possibilities for analysis.

BadRegionFinder is a package that allows for a coverage analysis of various samples at a time.
The user is able to define individual thresholds that divide the coverage into three categories: bad,
acceptable and good coverage. The whole genome may be considered as well as a set of target
regions. Thereby, BadRegionFinder does not only provide a possibility for identifying regions with
a bad coverage, but also regions with a high coverage off target indicating that a pair of the designed
primers might not be mapping uniquely or that there might be problems in the alignment.

For the final analysis of the coverage quality different options are available:

e summary variant, focusing on regions
e detailed variant (basewise results)

e summary variant, focusing on genes

1.1 Loading the package
The package can be downloaded and installed with

> BiocManager: :install("BadRegionFinder")

After installation, the package can be loaded into R by typing
> library(BadRegionFinder)

into the R console.

BadRegionFinder requires the R-packages VariantAnnotation, Rsamitools, biomaRt, Genomi-
cRanges and S4 Vectors, as well as functions from the R-packages wutils, stats, grDevices and graph-
ics. All of them are loaded automatically when using BadRegionFinder. Furthermore the package
BSgenome.Hsapiens. UCSC.hg19 is suggested.

2 Determining and classifying the coverage

Prior to reporting and visualizing information on the coverage over all samples, the coverage of
every sample at every position of interest has to be determined, the information has to be combined
and classes concerning the coverage quality have to be assigned. To do so, different functions are
available.

2.1 Determine the coverage

If the user is interested in investigating the coverage on and off target considering the whole genome,
it is recommended to use the function determineCoverage with TRonly = FALSE. The function
scans the whole genome and wherever a base is covered by at least one read or an originally
targeted base is detected, detailed information concerning this position is written out.

If the user is interested in investigating the coverage on target only, it is recommended to use
the function determineCoverage with TRonly = TRUE. Again, the whole genome gets scanned, but
only wherever a targeted base is registered, detailed information concerning this position is written
out.

For the correct functioning of determineCoverage, various input objects are necessary:

e The names of the samples to be analyzed have to be provided by a data frame object. There
has to be one sample name per line without the ".bam" suffix.

Exemplary data frame object samples:

> sample_file <- system.file("extdata'", "SampleNames2.txt", package = "BadRegionFinder")
> samples <- read.table(sample_file)
> samples

Vi
1 Test2_454
2 Test2_ion

e The bam- and the corresponding bai files of the samples to be analyzed have to be provided
in a folder. The names of the files have to match the names provided by the sample names
file. Alternatively, a bamFileList may be defined.

o The target regions have to be provided by a data frame- or a GRanges object. If a data frame
object is provided, the name of the chromosome (without "chr") has to be defined in the first
column, the start position of the target region has to be defined in the second column and
the end position of the region has to be defined in the third column.

Exemplary data frame object targetRegions:

> target_regions <- system.file("extdata", "targetRegions2.bed", package = "BadRegionFinder")
> targetRegions <- read.table(target_regions, header = FALSE, stringsAsFactors = FALSE)
> targetRegions

V1 V2 V3
198266410 198267032
198267198 198267820
17 74732937 74733301

w N =
N N

e The folder where the output shall be saved may be defined as well. For every chromosome
that is defined in the genome, a file is written out: "Summary chr<chromosomename>.txt".
Apart from information on the coverage, this file also contains information on whether the
analyzed bases are part of the target region (targetBases = 1) or not (targetBases = 0). If only
an empty string is provided, no files are written out. The results are stored in a GRangesList
object.

Exemplary results for chromosome 2 (TRonly = FALSE):

> bam_input <- system.file("extdata", package = "BadRegionFinder")
> coverage_summary <- determineCoverage (samples, bam_input, targetRegions, "", TRonly = FALSE)
> coverage_summary[[2]]

GRanges object with 1611 ranges and 3 metadata columns:

seqnames ranges strand | Test2_454 Test2_ion targetBases

<Rle> <IRanges> <Rle> | <numeric> <numeric> <numeric>

[1] 2 1-198266311 * | 0 0 0
[2] 2 198266312 * | 48 128 0
[3] 2 198266313 * | 48 128 0
[4] 2 198266314 * | 48 128 0
(5] 2 198266315 * | 48 128 0
[1607] 2 198267917 * | 1 119 0
[1608] 2 198267918 * | 1 119 0
[1609] 2 198267919 * | 1 119 0
[1610] 2 198267920 * | 1 119 0
[1611] 2 198267921-243199373 * | 0 0 0

seqinfo: 25 sequences from an unspecified genome; no seqlengths

e Furthermore, it has to be defined, whether the coverage concerning the whole genome shall
be reported (TRonly = FALSE), or only the coverage concerning the target regions (TRonly
= TRUE).

2.2 Determine the coverage quality

Apart from determining the coverage of every sample at all the positions of interest, it is essential to
combine this information and to classify the coverage quality at every position. This is done by the
function determineCoverageQuality. The function analyzes every position in the return value of
determineCoverage (with TRonly = FALSE or TRonly = TRUE) and determines the corresponding
coverage quality.

There exist six different categories of coverage quality: bad coverage off target, bad coverage
on target, acceptable coverage off target, acceptable coverage on target, good coverage off target,

good coverage on target. These categories are numerically coded and user-defined. To define the
thresholds, four essential parameters that have to be set:

e thresholdl: the first coverage threshold

e percentagel: the first percentage threshold

e threshold2: the second coverage threshold

e percentage2: the second percentage threshold

To categorize the coverage quality, the coverage of each sample is first of all categorized according
to thresholdl and threshold?2 into three different categories:

e bad coverage: less than thresholdl reads
e acceptable coverage: at least thresholdl, but less than threshold2 reads
e good coverage: at least threshold2 reads

Subsequently this information gets combined with the defined precentages to obtain a numer-
ically coded quality value for each region saved in the previously created GRangesList object
coverage_summary:

o (: off target; not even percentagel percent of all samples have a good or acceptable coverage
(bad region)

1: on target; not even percentagel percent of all samples have a good or acceptable coverage
(bad region)

2: off target; at least percentagel percent of all samples have a good or acceptable coverage,
but less than percentage?2 percent of all samples have a good coverage (acceptable region)

3: on target; at least percentagel percent of all samples have a good or acceptable coverage,
but less than percentage2 percent of all samples have a good coverage (acceptable region)

e 4: off target; at least percentage2 percent of all samples have a good coverage (good region)
e 5: on target; at least percentage?2 percent of all samples have a good coverage (good region)

In addition to thresholdl, percentagel, threshold2 and percentage2 the GRangesList ob-
ject, that is the return value of determineCoverage, is necessary for the correct functioning of
determineCoverageQuality.

As the output is still in a very raw version, it is not directly saved by the function, but returned
as a list object.

Exemplary output object coverage indicators (chromosome 2):

thresholdl <- 20

threshold2 <- 100

percentagel <- 0.80

percentage2 <- 0.90

coverage_indicators <- determineCoverageQuality(thresholdl, threshold2, percentagel,
percentage2, coverage_summary)

V + VvV Vv Vv Vv Vv

coverage_indicators[[2]]

GRanges object with 1611 ranges and 4 metadata columns:

segnames ranges strand | Test2_454 Test2_ion targetBases indicator

<Rle> <IRanges> <Rle> | <numeric> <numeric> <numeric> <numeric>

[1] 2 1-198266311 * | 0 0 0 0
[2] 2 198266312 * | 48 128 0 2
(3] 2 198266313 * | 48 128 0 2
[4] 2 198266314 * | 48 128 0 2
(5] 2 198266315 * | 48 128 0 2
[1607] 2 198267917 * | 1 119 0 0
[1608] 2 198267918 * | 1 119 0 0
[1609] 2 198267919 * | 1 119 0 0
[1610] 2 198267920 * | 1 119 0 0
[1611] 2 198267921-243199373 * | 0 0 0 0

seqinfo: 25 sequences from an unspecified genome; no seqlengths

2.3 Determine regions of interest

If the user is not interested in an analysis of the whole genome or of the whole target region, but
just in a selction of regions (on and/or off target), these regions may be selected by the help of the
function determineRegionsOfInterest. For every base defined to be in a region of interest, the
previously determined coverage information is written out. This information always includes the
coverage of each sample and it may include the assigned class of coverage quality - depending on
the input object.

For the correct functioning of determineRegionsOfInterest two input objects are necessary:

e The regions of interest have to be provided by a data frame- or GRanges object. In case of a
data frame object, the name of the chromosome (without "chr") has to be defined in the first
column, the start position of the region of interest has to be defined in the second column
and the end position of the region of interest has to be defined in the third column.

Exemplary data frame object regionsOfInterest:

> regionsOfInterest<-data.frame(chr = c(2,2,17),

+ start = c(198266420,198267200,74732940),
+ end = c(198267032,198267800,74733301))
> regionsOfInterest

chr start end
1 2 198266420 198267032
2 2 198267200 198267800
3 17 74732940 74733301

e The input, which is the return value of determineCoverageQuality or determineCoverage
(with TRonly = FALSE or TRonly = TRUE) (or determineRegionsOfInterest), has to be
provided by a list object. Every component of the list considers one chromosome.

Exemplary output object coverage indicators 2 (chromosome 2):

> coverage_indicators_2 <- determineRegionsOfInterest(regionsOfInterest, coverage_indicators)
> coverage_indicators_2[[2]]

GRanges object with 1214 ranges and 4 metadata columns:

segnames ranges strand | Test2_454 Test2_ion targetBases indicator

<Rle> <IRanges> <Rle> | <numeric> <numeric> <numeric> <numeric>

[1] 2 198266420 * | 85 179 1 3
[2] 2 198266421 * | 85 179 1 3
[3] 2 198266422 * | 85 179 1 3
[4] 2 198266423 * | 85 179 1 3
(5] 2 198266424 * | 85 179 1 3
[1210] 2 198267796 * | 526 304 1 5
[1211] 2 198267797 * | 526 304 1 5
[1212] 2 198267798 * | 526 303 1 5
[1213] 2 198267799 * | 526 301 1 5
[1214] 2 198267800 * | 526 301 1 5

seqinfo: 1 sequence from an unspecified genome; no seqlengths

It is not recommended to use determineCoverage with TRonly=TRUE, but to select regions off
target using determineRegionsOfInterest. In this case, no coverage could be registered for all
bases off target, as this information was not saved during the step of determineCoverage.

If regionsOfInterest is identical compared to targetRegions and the function determineCoverage
with TRonly=TRUE was applied in the first case, the selection of regions that is returned is not
changed at all.

3 Reporting the results

The function determineCoverage already produces some output files. Yet, these files just contain
raw information on the coverage of every sample at every position in the whole genome, resp. the
target region. Information on the coverage quality is not yet included in these files. To report this
information, three different variants are available.

3.1 Summary variant (regions)

If the user likes to gain an overview of the coverage quality, it is recommended to use the function
reportBadRegionsSummary to create a summary report considering all regions of interest, their
coverage quality and the corresponding gene (including gene name and genelD).

The function scans every position in the input object. Wherever subsequent bases feature the
same coverage quality, the region gets summed up. Although it is not directly reported whether
a region contains on or off target bases, this information can be gained from the coverage quality:
all bases off target feature an even number characterizing the coverage quality; all bases on target
feature an uneven number characterizing the coverage quality.

For every summed up region the gene that is most likely to be targeted by the original experiment
gets reported using biomaRt. If no gene can be found, "NA" is saved for the corresponding region.
If not all bases in the summed up region cover a gene, the gene gets reported for the whole region
nonetheless.

For the correct functioning of reportBadRegionsSummary various input objects are necessary:

e Values defining the classes of coverage (threshold1, percentagel, threshold2, percentage?2;
for more details on the classes see section 2.2).

e The input, which is the return value of determineCoverageQuality or determineRegions0fInterest,

has to be provided by a list object. Every component of the list considers one chromosome.

e If the information concerning the genes is not supposed to result from the human genome
(hg19), a mart has to be provided (compare R/Bioconductor package biomaR#t [1]). Otherwise,
the human genome (hg19) is used by default if an empty string is provided.

Exemplary mart (default mart):

> library(biomaRt)

> mart = useMart (biomart="ENSEMBL_MART_ENSEMBL",host="https://grch37.ensembl.org",
+ path="/biomart/martservice",dataset="hsapiens_gene_ensembl")

> mart

Object of class 'Mart':
Using the ENSEMBL_MART_ENSEMBL BioMart database
Using the hsapiens_gene_ensembl dataset

e The folder where the output shall be saved may be defined. A single a file is written out:
"BadCoverageSummarythresholdl;percentagel;threshold2;percentage2.txt". If no out-
put shall be written out, an empty string may be passed.

Exemplary return value:

> badCoverageSummary <- reportBadRegionsSummary(thresholdl, threshold2, percentagel,
+ percentage?, coverage_indicators_2, mart,
> badCoverageSummary

GRanges object with 7 ranges and 3 metadata columns:

segnames ranges strand | QualityMarker Gene GeneID
<Rle> <IRanges> <Rle> | <numeric> <character> <character>

[1] 2 198266420-198266611 * | 3 SF3B1 ENSG00000115524
[2] 2 198266612-198266725 * | 5 SF3B1 ENSG00000115524
[3] 2 198266726-198266811 x| 3 SF3B1 ENSG00000115524
[4] 2 198266812-198267032 x| 1 SF3B1 ENSG00000115524
[5] 2 198267200-198267256 * | 3 SF3B1 ENSG00000115524
el 2 198267257-198267800 * | 5 SF3B1 ENSG00000115524
[71 17 74732940-74733301 * | 1 SRSF2 ENSG00000161547

seqinfo: 2 sequences from an unspecified genome; no seqlengths

The output file may be visualized using the function plotSummary (see section 4.1).

n ”)

3.2 Detailed variant

If the user likes to receive more detailed information on the coverage quality, it is recommended
to use the function reportBadRegionsDetailed to create a detailed report considering all regions
of interest (basewise), the coverage of each sample at the corresponding positions, the indicator
whether the bases were originally targeted, their coverage quality and the corresponding gene (name
and genelD).

Different from the summed-up variant reportBadRegionsSummary, information on every single
base of interest gets reported (except for completely uncovered and untargeted regions, which are
excluded). For every base its position, the coverage of each sample, information on whether this
base was originally targeted (value 1) or not (value 0), the coverage quality and the most likely
gene (name and genelD) that was targeted by the original experiment get reported. Information
on the gene names and the genelDs result from biomaRt [1]. If no gene can be found at a position,
"NA" is reported for the corresponding base.

For the correct functioning of reportBadRegionsSummary various input objects are necessary:

>
+
+
>

Values defining the classes of coverage (thresholdl, percentagel, threshold2, percentage?;
for more details on the classes see section 2.2).

The input, which is the return value of determineCoverageQuality or determineRegions0f Interest,
has to be provided by a list object. Every component of the list considers one chromosome.

If the information concerning the genes is not supposed to result from the human genome
(hg19), a mart has to be provided (compare R/Bioconductor package biomaR# [1]). Otherwise,
the human genome (hgl9) is used by default if an empty string is provided.

The names of the samples that were analyzed (just used for naming the columns in the output

file correctly) have to be provided by a data frame object. There has to be one sample name per

line. The folder where the output shall be saved may be defined. A single a file is written out:
"BadCoverageChromosome<chromosomename>;thresholdl;percentagel;threshold2;percentage2.txt".
If no output shall be written out, an empty string may be passed.

Exemplary return value for chromosome 2:

coverage_indicators_temp <- reportBadRegionsDetailed(thresholdl, threshold2, percentagel,

percentage2, coverage_indicators_2, "",
samples, "")

coverage_indicators_temp[[2]]

GRanges object with 1214 ranges and 6 metadata columns:

segnames ranges strand | Test2_454 Test2_ion targetBases QualityMarker Gene

<Rle> <IRanges> <Rle> | <numeric> <numeric> <numeric> <numeric> <character>

[1] 2 198266420 * | 85 179 1 3 SF3B1
[2] 2 198266421 x| 85 179 1 3 SF3B1
[3] 2 198266422 * | 85 179 1 3 SF3B1
[4] 2 198266423 * | 85 179 1 3 SF3B1
(5] 2 198266424 * | 85 179 1 3 SF3B1
[1210] 2 198267796 x| 526 304 1 5 SF3B1

[1211] 2 198267797 * | 526 304 1 5
[1212] 2 198267798 * | 526 303 1 5
[1213] 2 198267799 * | 526 301 1 5
[1214] 2 198267800 x| 526 301 1 5
GenelD
<character>

[1] ENSG00000115524
[2] ENSG00000115524
[3] ENSG00000115524
[4] ENSG00000115524
[5] ENSG00000115524

[1210] ENSG00000115524
[1211] ENSG00000115524
[1212] ENSG00000115524
[1213] ENSG00000115524
[1214] ENSG00000115524

seqinfo: 1 sequence from an unspecified genome; no seqlengths

The output file may be visualized using the function plotDetailed (see section 4.2).

3.3 Summary variant (genes)

If the user likes to gain an overview of the coverage quality of each targeted gene, use of the function
reportBadRegionsGenes is recommended. The function creates a summary report considering the
coverage quality on a genewise level considering all regions of interest.

reportBadRegionsGenes sums up all regions covering the same gene in the following way:
The number of bases falling into each quality category is summed up. Thereby, regions which
were orignially targeted may easily be separated from those which were not, as targeted regions
always feature an uneven number characterizing their coverage quality. If a region is broader than
the detected gene, but the quality category is the same for the whole region, the whole region is
assigned to the gene. If no gene is reported in the input file, the coverage quality is summed up for
a gene named "NA". In a final step, the absolute number of bases is converted to a relative figure
to allow for a better comparison between the different genes.

For the correct functioning of reportBadRegionsGenes various input objects are necessary:

e Values defining the classes of coverage (thresholdl, percentagel, threshold2, percentage?2;
for more details on the classes see section 2.2).

e The input, which is the return value of reportBadRegionsSummary has to be provided (data
frame object).

e The folder where the output shall be saved may be defined. A single file is written out:
"BadCoverageGenesthresholdl;percentagel;threshold2;percentage2.txt". If no output
shall be written out, an empty string may be passed.

Exemplary return value:

10

SF3B1
SF3B1
SF3B1
SF3B1

\%

badCoverageOverview <- reportBadRegionsGenes (thresholdl, threshold2, percentagel, percentage2,
+ badCoverageSummary, "'")

> badCoveragelverview
Gene GeneID BadRegion_offTarget BadRegion_onTarget AcceptableRegion_offTarget
1 SF3B1 ENSG00000115524 0 0.1820428 0
2 SRSF2 ENSG00000161547 0 1.0000000 0
AcceptableRegion_onTarget GoodRegions_offTarget GoodRegions_onTarget
1 0.2759473 0 0.5420099
0.0000000 0 0.0000000

The output file may be visualized using the function plotSummaryGenes (see section 4.3).

4 Visualizing the results

Apart from creating various textual reports, summing up the results of the coverage analysis, there
exist functions to automatically visualize each type of report.

4.1 Summary variant (regions)

If the user likes to visualize the output of reportBadRegionsSummary, it is recommended to use
the function plotSummary. A line graph is returned, visualizing the number of bases that fall into
each category of coverage quality. Furthermore, information on the genes located in these regions
is included:

On the y axis the coverage quality is coded. The different categories are color coded as well as
height coded. As numbers from 0 to 5 were previously assigned to the different categories, thick
lines are now drawn at the height of the category. Furthermore, The categories are color coded in
the following way: red - bad region on target; yellow - acceptable region on target; green - good
region on target; black - bad region off target; dark gray - acceptable region off target; light gray -
good region off target.

On the x axis the detected genes are printed. Wherever a new region covering a new gene is
registered, a dashed line is drawn.

For the correct functioning of reportBadRegionsSummary various input objects are necessary:

e Values defining the classes of coverage (thresholdl, percentagel, threshold2, percentage?2;
for more details on the classes see section 2.2).

e The input, which is the return value of reportBadRegionsSummary has to be provided (data
frame object).

e The folder where the output shall be saved may be defined as well. If it is defined, a png file
is saved: "CoverageQuality Summary.png". If only an empty string is defined, the plot is
printed on the screen.

> plotSummary (thresholdl, threshold2, percentagel, percentage2, badCoverageSummary, "")

NULL

11

Summarized Coverage Quality

H

g t>=¢ 100x, but >=80% with coverage >=20)
on Target Region (>=90% with coverage >=100x) 00d Regior 0)

Coverage Qualty

SFaB1 SRSF2

4.2 Detailed variant

If the user likes to visualize the output of reportBadRegionsDetailed, it is recommended to use
the function plotDetailed. A line graph is returned, visualizing the median coverage over all
samples at every position of interest. Furthermore, information on whether the base were originally
targeted or not, on the coverage quality and the corresponding genes (name and genelD) that are
located at the positions is included in the plot.

On the y axis the median coverage over all samples is coded. Every position is considered
individually.

On the x axis the names of the detected genes are printed. Wherever a new region covering a
new gene is registered, a dashed line is drawn.

Yet, additionally to the mere median coverage, the corresponding coverage quality at each
position is also included in the plot. The different categories of coverage quality are color coded in
the following way: red - bad region on target; yellow - acceptable region on target; green - good
region on target; black - bad region off target; dark gray - acceptable region off target; light gray -
good region off target. Thereby, on- and off target regions may easily be separated as well.

For the correct functioning of reportBadRegionsSummary various input objects are necessary:

e Values defining the classes of coverage (thresholdl, percentagel, threshold2, percentage?2;
for more details on the classes see section 2.2).

e The input, which is the return value of reportBadRegionsDetailed has to be provided (list
object).

e The folder where the output shall be saved may be defined as well. If it is defined, a png
file is saved: "CoverageQuality Details.png". If only an empty string is defined, the plot is
printed on the screen.

> plotDetailed(thresholdl, threshold2, percentagel, percentage2, coverage_indicators_temp, "")

12

Detailed Coverage Quality

B Bad Region on Target Region (<809% with coverage >20x)
o Target

- Ta
or . but B Acceptable Regior
B Good Region on Target Region (>=90% with coverage >=100x) BGood Region off

Region (<909 With coverage >100x, but >=80% with coverage >=20)
n (>=90% with Eoverage >=100x)

400 500 600
L L L

Median Coverage
300
L

SFaB1 SRSF2

4.3 Summary variant (genes)

If the user likes to visualize the output of reportBadRegionsGenes, it is recommended to use the
function plotSummaryGenes. The function returns a barplot, visualizing the percentage of each
gene that falls into each category of coverage quality. The plot thereby serves to quickly distinguish
well from bad covered genes.

For every gene either one or two stacked bars are plotted. If a gene is covered, but it was not
originally targeted, a bar is plotted containing the following color code: black - bad region off target;
dark gray - acceptable region off target; light gray - good region off target. If a gene was originally
targeted, a bar is plotted containing the following color code: red - bad region on target; yellow -
acceptable region on target; green - good region on target.

For the correct functioning of plotSummaryGenes, various input objects are necessary:

e Values defining the classes of coverage (thresholdl, percentagel, threshold2, percentage?2;
for more details on the classes see section 2.2).

e The input, which is the return value of reportBadRegionsGenes has to be provided (data
frame object).

e The folder where the output shall be saved may be defined as well. If it is defined, a png file
is saved: "CoverageQuality Summary.png". If only an empty string is defined, the plot is
printed on the screen.

> plotSummaryGenes (thresholdl, threshold2, percentagel, percentage2, badCoverageOverview, "'")

‘Summarized Coverage Quality

B Bad Region on Target Region (<80% with coverage >20x) ' Bad Region off Target Region (<80% with coverage >20x)
Target = B Acceptabl

i egion . .
R 5 Good Region on Target Region (+=90% with coverage >=100%) gion (>=90% wih coverage >-100x)

ity (96)

Coverage Qu:

sFaBL SRSF2

13

5 Additional functions

5.1 Determine quantiles

Regarding the coverage analysis of many samples in parallel, it may be useful not just to divide the
coverage into categories, but to determine certain quantiles over all samples concerning a predefined
region of interest. In this case the function determineQuantiles may be used.

Considering every chromosome and every position of interest individually, a set of user-defined
quantiles is calculated over all samples.

For the correct functioning of determineQuantiles, three input objects are necessary:

e The input, which is the return value of determineCoverage (with TRonly=FALSE or TRonly=TRUE)
or determineRegionsOfInterest (important: no information on the coverage quality) has
to be provided (list object).

e The quantiles that should be calculated have to be provided by a vector (e.g. ¢(0.25,0.5,0.75)).

e The folder where the output shall be saved may be defined. It is saved as: "Quantiles_ chr<chromosomename>.txt".
If no output shall be written out, an empty string may be passed.

Exemplary return value (chromosome 2):
> quantiles <- c(0.5)
> coverage_summary2 <- determineQuantiles(coverage_summary, quantiles, "")

> coverage_summary2[[2]]

GRanges object with 1611 ranges and 2 metadata columns:

seqnames ranges strand | 0.5 OnTarget

<Rle> <IRanges> <Rle> | <numeric> <numeric>

[1] 2 1-198266311 * | 0 0
[2] 2 198266312 * | 88 0
[3] 2 198266313 * | 88 0
[4] 2 198266314 * | 88 0
[5] 2 198266315 * | 88 0
[1607] 2 198267917 * | 60 0
[1608] 2 198267918 * | 60 0
[1609] 2 198267919 * | 60 0
[1610] 2 198267920 * | 60 0
[1611] 2 198267921-243199373 * | 0 0

seqinfo: 25 sequences from an unspecified genome; no seqlengths

6 Runtime

The runtime of BadRegionFinder is highly dependent on the number of reads of the samples to be
analyzed and the way they are scattered over the genome. Furthermore, the runtime is of course

14

also dependent on the number of samples, the length of the genome and the number of bases that
are in a region of interest.

The step which is most time consuming is certainly the application of the function determineCoverage.
In the above described examples two samples were analyzed. Alltogether, 1608 bases were located
on target (target region consisting of three distinct regions). However, what is much more impor-
tant, 2174 bases are covered. In the case of the function determineCoverage with TRonly=FALSE,
all covered bases are considered - on and off target. An analysis of the two samples scanning the
whole human genome takes 2.207 seconds. If only the two chromosomes which are supposed to
be covered (according to the defined target regions) are defined to be considered by the function
(TRonly=TRUE), the analysis takes 1.93 seconds.

In case the analysis is supposed to consider the coverage in the target region only, usage of
the function determineCoverage with TRonly=TRUE is recommended. The difference in runtime is
small, when only few reads are located off target, but it is considerably smaller when the bam files
contain many scattered reads.

The runtime of all the other functions is usually considerably smaller. Only in case of the whole
genome being analyzed, a high number of scattered reads across the genome and many samples to
be analyzed, running these functions may take loner than a minute.

15

References

[1] S Durinck and W Huber. Interface to biomart databases.
http://bioconductor.org/packages/release/bioc/html/biomaRt.html.

[2] A Mammana and J Helmuth. Extract read count signals from bam files.
http://www.bioconductor.org/packages/release /bioc/html/bamsignals.html.

[3] AR Quinlan and IM Hall. Bedtools: a flexible suite of utilities for comparing genomic features.
Bioinformatics, 26:841-842, 2010.

[4] MG Ross, C Russ, M Costello, A Hollinger, NJ Lennon, R Hegarty, C Nusbaum, and DB Jaffe.
Characterizing and measuring bias in sequence data. Genome Biology, 14(R51), 2013.

16

