Mass spectrometry and proteomics Using R/Bioconductor

Laurent Gatto

CSAMA - Bressanone - 25 July 2019

Slides available at: http://bit.ly/20190725csama

These slides are available under a **creative common CC-BY license**. You are free to share (copy and redistribute the material in any medium or format) and adapt (remix, transform, and build upon the material) for any purpose, even commercially

On the menu

Morning lecture:

- 1. Proteomics in R/Bioconductor
- 2. How does mass spectrometry-based proteomics work?
- 3. Quantitative proteomics
- 4. Quantitative proteomics data processing and analysis

Afternoon lab:

- Manipulating MS data (raw and identification data)
- Manipulating quantitative proteomics data
- Data processing and DE

	A	в	С	D	E		A	В	С	D	E
1	ENSG-ID	RPKM U2OS	RPKM U251MG	RPKM A431	RPKM RATIO U2C	1	ENSG-ID	INTENSITY U20	INTENSITY U251M	INTENSITY A43	SILAC RATIO
2	ENSG00000196433	0	0	0	NA	2	ENSG00000134184	10499000	340820	704250	(
3	ENSG00000166763	0	0	0	NA	3	ENSG00000164828	26281000	9406200	28673000	
4	ENSG00000168781	4.16036	3.877868	2.831423	1.072	4	ENSG00000126945	48935000	24463000	40772000	
5	ENSG00000198746	3.414995	2.182754	2.706358	1.564	5	ENSG00000162722	508090	0	0	NA
6	ENSG00000204131	0.4166259	0	0	NA	6	ENSG00000143653	3840200	7028700	5179900	4
7	ENSG00000134184	0	0	0	NA	7	ENSG00000162851	3545200	3599200	4616700	
8	ENSG00000164828	67.3945	53.05943	144.152	1.270	8	ENSG00000153187	1091800000	606190000	923910000	(
9	ENSG00000126945	9.074128	5.110208	6.99964	1.775	9	ENSG00000203667	13626000	8258900	13803000	
10	ENSG00000185220	1.566899	1.424753	0.9343607	1.099	10	ENSG00000121644	204730	76791	149950	NA
11	ENSG00000171163	4.878578	14.03779	7.697866	0.347	11	ENSG0000035687	66976000	47033000	106990000	
12	ENSG00000171161	7.504043	15.39958	10.45916	0.487	12	ENSG00000117020	1462300	1002000	1272400	
13	ENSG00000175137	4.635162	14.90939	7.502928	0.310	13	ENSG00000143702	4304700	7686900	3976500	
14	ENSG00000189181	0	0	0	NA	14	ENSG00000203668	4410400	1232100	2063400	3
15	ENSG00000177151	0	0	0	NA	15	ENSG0000091483	147560000	148660000	137460000	(
16	ENSG00000187701	0	0	0	NA	16	ENSG00000116984	2563700	1013400	1934000	
17	ENSG00000184022	0	0	0	NA	17	ENSG00000119285	80282000	39432000	63197000	
18	ENSG00000183130	0	0	0	NA	18	ENSG00000116977	402720	312940	740150	
19	ENSG00000183310	0	0	0	NA	19	ENSG00000143669	49550	40389	153270	
20	ENSG00000182783	0	0	0	NA	20	ENSG00000116957	15326000	11426000	18856000	(
21	ENSG00000188558	0	0	0	NA	21	ENSG00000152904	1257800	982140	1865100	
22	ENSG00000203661	0	0	0	NA	22	ENSG00000188739	4634100	3248500	4772200	
23	ENSG00000196539	0	0	0	NA	23	ENSG00000173726	4458400	3902200	5744800	
24	ENSG00000196240	0	0	0	NA	24	ENSG00000168264	885950	797480	1048700	
25	ENSG00000198104	0	0	0	NA	25	ENSG00000168275	1024600	1675900	1146900	
26	ENSG00000175143	0	0	0	NA	26	ENSG00000135778	11771000	3641700	4445400	
27	ENSG00000196944	0	0	0	NA	27	ENSG00000116918	25919000	10251000	13153000	(
28	ENSG00000177174	0	0	0	NA	28	ENSG00000135766	252780	296600	394150	
29	ENSG00000177201	0	0	0	NA	29	ENSG00000116903	2575100	1273000	2282500	(
30	ENSG00000177186	0	0	0	NA	30	ENSG00000119280	1411300	150880	521110	5
31	ENSG00000177212	0	0	0	NA	31	ENSG0000099977	172740000	49442000	180810000	

1. Proteomics and mass spectrometry packages, questions and workflow in Bioconductor.

2. How does mass spectrometry work?

(applies to proteomics and metabolomics)

Overview

How does MS work?

- 1. Digestion of proteins into peptides as will become clear later, the features we measure in shotgun (or bottom-up) *proteomics* are peptides, **not** proteins.
- 2. On-line liquid chromatography (LC-MS)
- 3. Mass spectrometry (MS) is a technology that **separates** charged molecules (ions, peptides) based on their mass to charge ratio (M/Z).

Chromatography

MS is generally coupled to chromatography (liquid LC, but can also be gasbased GC). The time an analytes takes to elute from the chromatography column is the **retention time**.

Chromatogram: total intensity over time

Time (sec)

An mass spectrometer is composed of three components:

- 1. The *source*, that ionises the molecules: examples are Matrix-assisted laser desorption/ionisation (MALDI) or electrospray ionisation (ESI).
- 2. The *analyser*, that separates the ions: Time of flight (TOF) or Orbitrap.
- 3. The *detector* that quantifies the ions.

Ions typically go through that cylce at least twice (MS2, tandem MS, or MSMS). Before the second cycle, individual *precursor* ions a selected and broken into *fragment* ions.

MS1 scan@21:3 min

MS2 scan, precursor m/z 460.79

Identification: fragment ions

Biemann, K Methods Enzymol (1990) 193 886-887

Identification: Peptide-spectrum matching (PSM)

Matching **expected** and *observed* spectra:

> MSnbase::calculateFragments("SIGFEGDSIGR")

	mz	ion	type	pos	z	seq			
1	88.03931	b1	b	1	1	S			
2	201.12337	b2	b	2	1	SI			
3	258.14483	b3	b	3	1	SIG			
4	405.21324	b4	b	4	1	SIGF			
5	534.25583	b5	b	5	1	SIGFE			
6	591.27729	b6	b	6	1	SIGFEG			
7	706.30423	b7	b	7	1	SIGFEGD			
8	793.33626	b8	b	8	1	SIGFEGDS			
9	906.42032	b9	b	9	1	SIGFEGDSI			
10	963.44178	b10	b	10	1	SIGFEGDSIG			
11	175.11895	y1	У	1	1	R			
12	232.14041	y2	У	2	1	GR			
13	345.22447	у3	У	3	1	IGR			
14	432.25650	у4	У	4	1	SIGR			
15	547.28344	y5	У	5	1	DSIGR			
16	604.30490	у6	У	6	1	GDSIGR			
[reached get	Optic	on("ma	ax.pr	-ir	nt") omitted	16	rows]

Identification: Peptide-spectrum matching (PSM)

Matching *expected* and **observed** spectra:

Identification: database

UniProt	Proteomes -			Advanced - Q Search
BLAST Align Retrieve/ID mapping	Peptide search		9.0	Help Contact
Proteomes - H	omo sapiens (Human)			
None	Overview			
Overview	Status			

Publications

Map to

UniProtKB (71,607)

Swiss-Prot

TrEMBL

Status	Reference proteome
Proteins	71,607
Proteome ID ¹	UP000005640
Taxonomy	9606 - Homo sapiens
Last modified	April 5, 2018
Genome assembly and annotation ¹	GCA_000001405.25 from Ensembl

Homo sapiens (Homo sapiens sapiens) or modern humans are the only living species of the evolutionary branch of great apes known as hominids. Divergence of early humans from chimpanzees and grillas is estimated to have occurred between 4 and 8 million years ago. The genus Homo (Homo habilis) appeared in Africa around 2.3 million years ago and shows the first signs of stone tool usage. The exact lineage of Homo species ie: H. habilis/H. ergaster to H. erectus to H. hodesiensis/H.heidelbergensis to H. sapiens is still hotly disputed. However, continuing evolution and in particular larger brain size and complexity culminates in Homo sapiens. The first anatomically modern humans appear in the fossil record around 200,000 years ago. Modern humans migrated across the globe essentially as hunter-gatherers until around 12,000 years ago when the practice of agriculture and animal domestication enabled large populations to grow leading to the development of civilizations. Overall life expectancy in Europe is 81 years.

Components

🛓 Download	View all proteins				
	Component name	Genome Accession(s)	Proteins		
	Chromosome 1	CM000663	5563		
0	Chromosome 2	CM000664	4596		
	Chromosome 3	CM000665	4122		

From Käll *et al.* Posterior Error Probabilities and False Discovery Rates: Two Sides of the Same Coin.

Identification: Protein inference

- Keep only reliable peptides
- From these peptides, infer proteins
- If proteins can't be resolved due to shared peptides, merge them into **protein groups** of indistinguishable or non-differentiable proteins.

From Qeli and Ahrens (2010).

3. Quantitative proteomics

	Label-free	Labelled
MS1	XIC	SILAC, 15N
MS2	Counting	iTRAQ, TMT

Label-free MS2: Spectral counting

Labelled MS2: Isobaric tagging

Label-free MS1: extracted ion chromatograms

Labelled MS1: SILAC

Credit: Wikimedia Commons.

4. Quantitative proteomics data processing and analysis

You will be use the *MSnbase* and *MSqRob* packages during the lab.

Quantitative proteomics data processing

- data processing/cleaning
- missing values
- log transformation and normalisation
- summarisation
- differential analysis

The MSnSet structure: expression (accessed with exprs), feature (fData) and sample (pData) metadata.

Missing values

Can appear because

- the feature is missing (due to biology, i.e not at random)
- the feature was missed during the acquisition process (i.e at random)
- mixture thereof

What can one do?

- filter out features (or at least those that have *too many* missing values).
- imputation
- when possible, use a statistical method that accounts for missing values (for example proDA, MSqRob, ...)

Missing values

Can appear because

- the feature is missing (due to biology, i.e not at random) for example impute(, method = "min")
- the feature was missed during the acquisition process (i.e at random) for example impute(, method = "MLE")
- mixture thereof for example impute(, method = "mixed") (used in DEP)

What can one do?

- filter out features (or at least those that have *too many* missing values).
- imputation (MSnbase::impute see above and next slide)
- Feature rescuing (identification transfer, matching between runs)
- when possible, use a statistical method that accounts for missing values (for example proDA, MSqRob, ...)

Imputation

Root-mean-square error (RMSE) observations standard deviation ratio (RSR), KNN and MinDet imputation. Lower (blue) is better. See Lazar *et al.* Accounting for the Multiple Natures of Missing Values in Label-Free Quantitative Proteomics Data Sets to Compare Imputation Strategies.

Feature rescuing

From Bond *et al.* Improving Qualitative and Quantitative Performance for MSE-based Label-free Proteomics.

Missing values

Can appear because

- the feature is missing (due to biology, i.e not at random) for example impute(, method = "min")
- the feature was missed during the acquisition process (i.e at random) for example impute(, method = "MLE")
- mixture thereof for example impute(, method = "mixed") (used in DEP)

What can one do?

- filter out features (or at least those that have *too many* missing values).
- imputation (MSnbase::impute see above and next slide)
- Feature rescuing (identification transfer, matching between runs)
- when possible, use a statistical method that accounts for missing values (for example proDA, MSqRob, ...)

Summarisation

Examples of aggregations (from the Features package).

Summarisation examples: (1) peptide-level data, (2) mean intensity of the *top three* peptides (Proteus), (3) using pair-wise abundance ratios of shared peptides between samples (MaxQuant) and (4) robust summarisation (MSqRob). From Sticker et al. (2019).

Differential analysis

1. Aggregate normalised peptide intensities of a protein using robust regression with M-estimation using Huber weights:

 $y_{sp} = eta_s^{sample} + eta_p^{pep} + \epsilon_{sp}$

2. Protein-level inference:

 $y_{st} = eta_0 + eta_t^{treatment} + \epsilon_{ts}$

Sticker *et al.* 2019, *Robust summarization and inference in proteome-wide labelfree quantification*, https://doi.org/10.1101/668863.

And also

- Data independent acquisition (DIA)
- Targets proteomics (SRM, MRM, PRM)
- Post-translational modifications (PTMs)
- Protein-protein interactions
- Sub-cellular localisation
- ...

Laurent Gatto

▲ Computational Biology Group
♦ de Duve Institute, UCLouvain
▲ laurent.gatto@uclouvain.be
♠ https://lgatto.github.io
✔ @lgatto
♥ lgatto
♥ 0000-0002-1520-2268
♠ lgatto
⑧ Google scholar
● Impact story
✔ dissem.in

Acknowledgements Sebastian Gibb and Johannes Rainer (MSnbase and *R* for Mass Spectrometry)

Open PhD or post-doc position available at the de Duve Institute, UCLouvain, in Brussels. (For international candidates only).

Slides available at

http://bit.ly/20190725csama

Thank you for your attention