Exploring the Ranges Infrastructure

Michael Lawrence

July 28, 2017
Outline

Introduction

Data structures

Algorithms

Example workflow: Structural variants
Outline

Introduction

Data structures

Algorithms

Example workflow: Structural variants
The Ranges infrastructure: what is it good for?

Insight incubation

Data Analysis
Method Prototyping
Platform Integration
Integrative data analysis
Developing and prototyping methods

Peak calling

Isoform expression

Variant calling
Software integration

- Gviz
- DESeq2
- Genomic Ranges
- IRanges
- Biostrings
- Variant Annotation
- Summarized Experiment
- rtracklayer
- S4Vectors

- Variant Annotation

- Summarized Experiment
Outline

Introduction

Data structures

Algorithms

Example workflow: Structural variants
Data types

Data on genomic ranges

Summarized data
GRanges: data on genomic ranges

- seqnames
- start
- end
- strand

<table>
<thead>
<tr>
<th>seqnames</th>
<th>start</th>
<th>end</th>
<th>strand</th>
</tr>
</thead>
<tbody>
<tr>
<td>chr1</td>
<td>1</td>
<td>10</td>
<td>+</td>
</tr>
<tr>
<td>chr1</td>
<td>15</td>
<td>24</td>
<td>-</td>
</tr>
</tbody>
</table>

- Plus, sequence information (lengths, genome, etc)
SummarizedExperiment: the central data model

se <- SummarizedExperiment(
 assays,
 rowData,
 colData,
 exptData
)

rowData(se)
rowData(se)$entrezId

assays(se)
assays(se)$count

colData(se)
colData(se)$tissue
se$tissue

exptData(se)
exptData(se)$projectId
In practice, we have a BED file:

```
bash-3.2$ ls *.bed
my.bed
```

And we turn to R to analyze the data

```
df <- read.table("my.bed", sep="\t")
colnames(df) <- c("chrom", "start", "end")
```

```
   chrom  start    end
 1  chr7 127471196 127472363
 2  chr7 127472363 127473530
 3  chr7 127473530 127474697
 4  chr9 127474697 127475864
 5  chr9 127475864 127477031
```
Reality bites

Now for a GFF file:

```r
df <- read.table("my.bed", sep="\t")
colnames(df) <- c("chr", "start", "end")
```

<table>
<thead>
<tr>
<th>GFF</th>
<th>BED</th>
</tr>
</thead>
<tbody>
<tr>
<td>chr start end</td>
<td>chrom start end</td>
</tr>
<tr>
<td>chr7 127471197 127472363</td>
<td>chr7 127471196 127472363</td>
</tr>
<tr>
<td>chr7 127472364 127473530</td>
<td>chr7 127472363 127473530</td>
</tr>
<tr>
<td>chr7 127473531 127474697</td>
<td>chr7 127473530 127474697</td>
</tr>
<tr>
<td>chr9 127474698 127475864</td>
<td>chr9 127474697 127475864</td>
</tr>
<tr>
<td>chr9 127475865 127477031</td>
<td>chr9 127475864 127477031</td>
</tr>
</tbody>
</table>
From reality to ideality

The abstraction gradient

- Abstraction is semantic enrichment
 - Enables the user to think of data in terms of the problem domain
 - Hides implementation details
 - Unifies frameworks
Science defies rigidity: we define flexible objects that combine strongly typed fields with arbitrary user-level metadata.
Abstraction is the responsibility of the user

▶ Only the user knows the true semantics of the data
▶ Explicitly declaring semantics:
 ▶ Helps the software do the right thing
 ▶ Helps the user be more expressive
Outline

Introduction

Data structures

Algorithms

Example workflow: Structural variants
The Ranges API

- Semantically rich data enables:
 - Semantically rich vocabularies and grammars
 - Semantically aware behavior (DWIM)
- The range algebra expresses typical range-oriented operations
- Base R API is extended to have range-oriented behaviors
The Ranges API: Examples

<table>
<thead>
<tr>
<th>Type</th>
<th>Range operations</th>
<th>Range extensions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Filter</td>
<td><code>subsetByOverlaps()</code></td>
<td><code>[()</code></td>
</tr>
<tr>
<td>Transform</td>
<td><code>shift()</code>, <code>resize()</code></td>
<td><code>(*) to zoom</code></td>
</tr>
<tr>
<td>Aggregation</td>
<td><code>coverage()</code>, <code>reduce()</code></td>
<td><code>intersect()</code>, <code>union()</code></td>
</tr>
<tr>
<td>Comparison</td>
<td><code>findOverlaps()</code>, <code>nearest()</code></td>
<td><code>match()</code>, <code>sort()</code></td>
</tr>
</tbody>
</table>
Range algebra

Gene model
Unspliced transcripts
Gene region
Disjoint bins
Promoter
Introns

Operation
range(gr)
reduce(gr)
disjoin(gr)
flank(gr)
psetdiff(range(gr), gr)
Overlap detection
Outline

Introduction

Data structures

Algorithms

Example workflow: Structural variants
Structural variants are important for disease

- SVs are rarer than SNVs
 - SNVs: ~ 4,000,000 per genome
 - SVs: 5,000 - 10,000 per genome
- However, SVs are much larger (typically > 1kb) and cover more genomic space than SNVs.
- The effect size of SV associations with disease is larger than those of SNVs.
 - SVs account for 13% of GTEx eQTLs
 - SVs are 26 - 54 X more likely to modulate expression than SNVs (or indels)
Detection of deletions from WGS data
Motivation

Problem
- Often need to evaluate a tool before adding it to our workflow
- "lumpy" is a popular SV caller

Goal
Evaluate the performance of lumpy
Data

- Simulated a FASTQ containing known deletions using varsim
- Aligned the reads with BWA
- Ran lumpy on the alignments
Overview

1. Import the lumpy calls and truth set
2. Tidy the data
3. Match the calls to the truth
4. Compute error rates
5. Diagnose errors
Data import

Read from VCF:

```r
library(RangesTutorial2017)
calls <- readVcf(system.file("extdata", "lumpy.vcf.gz", package="RangesTutorial2017"))
truth <- readVcf(system.file("extdata", "truth.vcf.bgz", package="RangesTutorial2017"))
```

Select for deletions:

```r
truth <- subset(truth, SVTYPE=="DEL")
calls <- subset(calls, SVTYPE=="DEL")
```
Data cleaning

Make the seqlevels compatible:

```r
seqlevelsStyle(calls) <- "NCBI"
truth <- keepStandardChromosomes(truth, pruning.mode="coarse")
```
Tighten

Move from the constrained VCF representation to a range-oriented model (`VRanges`) with a tighter cognitive link to the problem:

```r
calls <- as(calls, "VRanges")
truth <- as(truth, "VRanges")
```
More cleaning

Homogenize the ALT field:

```r
ref(truth) <- "."
```

Remove the flagged calls with poor read support:

```r
calls <- calls[called(calls)]
```
Comparison

- How to decide whether a call represents a true event?
- Ranges should at least overlap:

 \[
 \text{hits} \leftarrow \text{findOverlaps}(\text{truth}, \text{calls})
 \]

- But more filtering is needed.
Comparing breakpoints

Compute the deviation in the breakpoints:

```r
hits <- as(hits, "List")
call_rl <- extractList(ranges(calls), hits)
dev <- abs(start(truth) - start(call_rl)) +
     abs(end(truth) - end(call_rl))
```

Select and store the call with the least deviance, per true deletion:

```r
dev_ord <- order(dev)
keep <- phead(dev_ord, 1L)
truth$deviance <- drop(dev[keep])
truth$call <- drop(hits[keep])
```
Choosing a deviance cutoff

```r
library(ggplot2)
rdf <- as.data.frame(truth)
ggplot(aes(x=deviance),
    data=subset(rdf, deviance <= 500)) +
    stat_ecdf() + ylab("fraction <= deviance")
```
Choosing a deviance cutoff
Applying the deviance filter

```r
truth$called <- with(truth, !is.na(deviance) & deviance <= 300)
```
Sensitivity

\[
\text{mean}(\text{truth}\$\text{called})
\]

[1] 0.8214107
Specificity

Determine which calls were true:

```r
calls$fp <- TRUE
calls$fp[subset(truth, called)$call] <- FALSE
```

Compute FDR:

```r
mean(calls$fp)
```

[1] 0.1009852
Explaining the FDR

- Suspect that calls may be error-prone in regions where the population varies
- Load alt regions from a BED file:

```r
code
file <- system.file("extdata",  
    "altRegions.GRCh38.bed.gz",  
    package="RangesTutorial2017")
altRegions <- import(file)
seqlevelsStyle(altRegions) <- "NCBI"
altRegions <-
    keepStandardChromosomes(altRegions,
        pruning.mode="coarse")
```
Compute the association between FP status and overlap of an alt region:

```r
calls$inAlt <- calls %over% altRegions
xtabs(~ inAlt + fp, calls)
```

<table>
<thead>
<tr>
<th>fp</th>
<th>FALSE</th>
<th>TRUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>inAlt</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FALSE</td>
<td>1402</td>
<td>112</td>
</tr>
<tr>
<td>TRUE</td>
<td>58</td>
<td>52</td>
</tr>
</tbody>
</table>