
Graphics
Wolfgang Huber

Horror Picture Show

A
B
C

A
B
C

0.0

10.0

20.0

30.0

40.0

1 2 3 8 12 14 15 16 17

A
B
C

A
B
C

0.0

10.0

20.0

30.0

40.0

0 5 9 14 18

A
B
C

Why graphics?

1. To explore data (interactive)
2. To communicate data & preliminary

insights with collaborators
3. To publish results

Goals of this lecture

Chapter 4

High Quality Graphics in R

0

250

500

750

1000

0 10 20 30 40 50
Time to make plot minutes

T
im

e
 t

o
 u

n
d
e
r
st

an
d
 p

lo
t
 m

in
ut

e
s

Figure 4.1: An elementary law of visualisa-
tion.

There are two important types of data visualization. The first enables a
scientist to effectively explore the data and make discoveries about the
complex processes at work. The other type of visualization should be a clear
and informative illustration of the study’s results that she can show to others
and eventually include in the final publication.

Both of these types of graphics can be made with plotting functions in R.
In fact, R offers different approaches for making graphics, each with their
its advantages and limitations. fixme: Review this when chapter is finished:
base R graphics were historically first, simple and procedural. Complex plots
can quickly get messy to program. A more high-level approach – grammar of
graphics, plots are built in modular pieces, so that we can easily try different
visualization types for our data in an intuitive and easily deciphered way, like
we can switch in and out parts of a sentence in human language. lattice
graphics – for showing more than 2 variables at a time, with lattice graphics,
we can attempt visualisation of data to up to 4 or 5 dimensions. In the end of
the chapter, we cover some specialized forms of plotting such as maps and
ideograms, still building on the base concept of the grammar of graphics.

4.1 Goals for this chapter

• Review the basics of base R plotting
• Understand the logic behind the grammar of graphics concept
• Introduce ggplot2’s qplot function
• Show how to build complex plots from the ground up using ggplot2’s
ggplot function

• See how to plot 1D, 2D, 3-5D data, and understand faceting
• Become good at rapidly exploring data sets by visualization

base R plotting

Canvas model: a series
of instructions that
sequentially fill the
plotting canvas

62 MODERN STATISTICS FOR MODERN BIOLOGY

• Create beautiful and intuitive plots for scientific presentations and publica-
tions

4.2 Built-in R Plotting

R has built-in plotting functions that can be used to quickly and easily visualize
data. ●●

●●
●●

●●

●●

●●

●●

●●

●●
●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●

●

●

●

●●

●●
●●

●●

●●

●●

●●

●●

●●
●●
●●

●●

●●

●●

●●

●●

●●
●●
●●

●●

●●

●●

●●

●●

●●
●●
●●

●●

●●

●●

●●

●●

●●
●●
●●

●●

●●

●
●

●
●

●●

●●
●●
●●

●●

●
●

●●

●●

●●

●
●
●●
●●

●●

●●

●●

●
●

●●

●●

●●
●●

●●

●●

●●

●●

●●

0 2 4 6 8 10 12

0.
0

0.
5

1.
0

1.
5

2.
0

DNase$conc

D
N
as
e$
de
ns
ity

Figure 4.2: Plot of concentration vs. density
for an ELISA assay of DNase.

The most basic of these is the plot function. In Figure ?? it is used to
show data from an enzyme-linked immunosorbent assay (ELIZA) assay. An
ELIZA assay uses antibodies and the resulting colour change created by them
to identify an enzyme and quantify its activity, in this case the enzyme deoxyri-
bonuclease (DNase), which degrades DNA. The data are assembled in the R
object DNase, which conveniently comes with base R. DNase is a dataframe
whose columns are Run, the assay run; conc, the protein concentration that
was used; and density, the measured optical density.

head(DNase)

Run conc density

1 1 0.0488 0.017

2 1 0.0488 0.018

3 1 0.1953 0.121

4 1 0.1953 0.124

5 1 0.3906 0.206

6 1 0.3906 0.215

plot(DNase$conc, DNase$density) 0 2 4 6 8 10 12

0.
0

0.
5

1.
0

1.
5

2.
0

DNase concentration (ng/ml)

O
pt

ica
l d

en
sit

y

Figure 4.3: Same data as in Figure ?? but
with better axis labels and a different plot
symbol.

This basic plot can be customized, for example by changing the plotting
symbol and axis labels as shown in Figure ?? by using the parameters xlab,
ylab and pch (plot character). The information about the labels is stored in
the object DNAse, and we can access it with the attr function.

plot(DNase$conc, DNase$density,

ylab = attr(DNase, "labels")$y,

xlab = paste(attr(DNase, "labels")$x, attr(DNase, "units")$x),

pch = 3, col = "blue")

Besides scatterplots, we can also use built-in functions to create his-
tograms and boxplots (Figure ??).

hist(DNase$density, breaks=25, main = "")

boxplot(density ~ Run, data = DNase)

Boxplots are convenient to show multiple distributions next to each other

62 MODERN STATISTICS FOR MODERN BIOLOGY

• Create beautiful and intuitive plots for scientific presentations and publica-
tions

4.2 Built-in R Plotting

R has built-in plotting functions that can be used to quickly and easily visualize
data. ●●

●●
●●

●●

●●

●●

●●

●●

●●
●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●

●

●

●

●●

●●
●●

●●

●●

●●

●●

●●

●●
●●
●●

●●

●●

●●

●●

●●

●●
●●
●●

●●

●●

●●

●●

●●

●●
●●
●●

●●

●●

●●

●●

●●

●●
●●
●●

●●

●●

●
●

●
●

●●

●●
●●
●●

●●

●
●

●●

●●

●●

●
●
●●
●●

●●

●●

●●

●
●

●●

●●

●●
●●

●●

●●

●●

●●

●●

0 2 4 6 8 10 12

0.
0

0.
5

1.
0

1.
5

2.
0

DNase$conc

D
N
as
e$
de
ns
ity

Figure 4.2: Plot of concentration vs. density
for an ELISA assay of DNase.

The most basic of these is the plot function. In Figure ?? it is used to
show data from an enzyme-linked immunosorbent assay (ELIZA) assay. An
ELIZA assay uses antibodies and the resulting colour change created by them
to identify an enzyme and quantify its activity, in this case the enzyme deoxyri-
bonuclease (DNase), which degrades DNA. The data are assembled in the R
object DNase, which conveniently comes with base R. DNase is a dataframe
whose columns are Run, the assay run; conc, the protein concentration that
was used; and density, the measured optical density.

head(DNase)

Run conc density

1 1 0.0488 0.017

2 1 0.0488 0.018

3 1 0.1953 0.121

4 1 0.1953 0.124

5 1 0.3906 0.206

6 1 0.3906 0.215

plot(DNase$conc, DNase$density) 0 2 4 6 8 10 12

0.
0

0.
5

1.
0

1.
5

2.
0

DNase concentration (ng/ml)

O
pt

ica
l d

en
sit

y

Figure 4.3: Same data as in Figure ?? but
with better axis labels and a different plot
symbol.

This basic plot can be customized, for example by changing the plotting
symbol and axis labels as shown in Figure ?? by using the parameters xlab,
ylab and pch (plot character). The information about the labels is stored in
the object DNAse, and we can access it with the attr function.

plot(DNase$conc, DNase$density,

ylab = attr(DNase, "labels")$y,

xlab = paste(attr(DNase, "labels")$x, attr(DNase, "units")$x),

pch = 3, col = "blue")

Besides scatterplots, we can also use built-in functions to create his-
tograms and boxplots (Figure ??).

hist(DNase$density, breaks=25, main = "")

boxplot(density ~ Run, data = DNase)

Boxplots are convenient to show multiple distributions next to each other

62 MODERN STATISTICS FOR MODERN BIOLOGY

• Create beautiful and intuitive plots for scientific presentations and publica-
tions

4.2 Built-in R Plotting

R has built-in plotting functions that can be used to quickly and easily visualize
data. ●●

●●
●●

●●

●●

●●

●●

●●

●●
●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●

●

●

●

●●

●●
●●

●●

●●

●●

●●

●●

●●
●●
●●

●●

●●

●●

●●

●●

●●
●●
●●

●●

●●

●●

●●

●●

●●
●●
●●

●●

●●

●●

●●

●●

●●
●●
●●

●●

●●

●
●

●
●

●●

●●
●●
●●

●●

●
●

●●

●●

●●

●
●
●●
●●

●●

●●

●●

●
●

●●

●●

●●
●●

●●

●●

●●

●●

●●

0 2 4 6 8 10 12

0.
0

0.
5

1.
0

1.
5

2.
0

DNase$conc

D
N
as
e$
de
ns
ity

Figure 4.2: Plot of concentration vs. density
for an ELISA assay of DNase.

The most basic of these is the plot function. In Figure ?? it is used to
show data from an enzyme-linked immunosorbent assay (ELIZA) assay. An
ELIZA assay uses antibodies and the resulting colour change created by them
to identify an enzyme and quantify its activity, in this case the enzyme deoxyri-
bonuclease (DNase), which degrades DNA. The data are assembled in the R
object DNase, which conveniently comes with base R. DNase is a dataframe
whose columns are Run, the assay run; conc, the protein concentration that
was used; and density, the measured optical density.

head(DNase)

Run conc density

1 1 0.0488 0.017

2 1 0.0488 0.018

3 1 0.1953 0.121

4 1 0.1953 0.124

5 1 0.3906 0.206

6 1 0.3906 0.215

plot(DNase$conc, DNase$density) 0 2 4 6 8 10 12

0.
0

0.
5

1.
0

1.
5

2.
0

DNase concentration (ng/ml)
O

pt
ica

l d
en

sit
y

Figure 4.3: Same data as in Figure ?? but
with better axis labels and a different plot
symbol.

This basic plot can be customized, for example by changing the plotting
symbol and axis labels as shown in Figure ?? by using the parameters xlab,
ylab and pch (plot character). The information about the labels is stored in
the object DNAse, and we can access it with the attr function.

plot(DNase$conc, DNase$density,

ylab = attr(DNase, "labels")$y,

xlab = paste(attr(DNase, "labels")$x, attr(DNase, "units")$x),

pch = 3, col = "blue")

Besides scatterplots, we can also use built-in functions to create his-
tograms and boxplots (Figure ??).

hist(DNase$density, breaks=25, main = "")

boxplot(density ~ Run, data = DNase)

Boxplots are convenient to show multiple distributions next to each other

The grammar of graphics

HIGH QUALITY GRAPHICS IN R 67

0

10

20

30

E3
.2

5

E3
.2

5
(F

G
F4
−K

O
)

E3
.5

 (E
PI

)

E3
.5

 (F
G

F4
−K

O
)

E3
.5

 (P
E)

E4
.5

 (E
PI

)

E4
.5

 (F
G

F4
−K

O
)

E4
.5

 (P
E)

Groups

Nu
m

be
r o

f S
am

pl
es

Colour code
E3.25
E3.25 (FGF4−KO)
E3.5 (EPI)
E3.5 (FGF4−KO)
E3.5 (PE)
E4.5 (EPI)
E4.5 (FGF4−KO)
E4.5 (PE)

Figure 4.8: Fixing the barplot names through
rotation of the labels.

We have added on another clause, produced by the theme function, which
indicates that we like x-axis text set at an angle of 90 degrees and right
justified (hjust; the default would be to center it).

Now we have a great looking plot that clearly conveys our data on the
number of samples in each group and also the types of groups that we are
comparing.

4.5 The Grammar of Graphics

●

●

●
●

●
●

●

●

●

●● ●

●

●

●
●

●
●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●●

●

● ●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●
●

● ●●

●
● ●

●
●

●

●

●

●

● ●

●

● ●
●

●

●

●

●

●
●●

● ●

●●
●

●

●

5

10

5.0 7.5 10.0 12.5
X1426642_at

X1
41
87
65
_a
t

Figure 4.9: A scatterplot with three layers
that show different statistics of the same
data: points, a smooth regression line, and a
confidence band.

The components of ggplot2’s grammar of graphics are

1. a dataset
2. a choice of geometric object that serves as the visual representations of

the data – for instance, points, lines, rectangles, contours
3. a description of how the variables in the data are mapped to visual proper-

ties (aesthetics) of the geometric objects, and an associated scale, (e. g.,
linear, logarithmic, rank)

4. a statistical summarisation rule
5. a coordinate system
6. a facet specification, i. e. the use of several plots to look at the same data

●

●

●
●

●
●

●

●

●

●● ●

●

●

●
●

●
●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●●

●

● ●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●
●

● ●●

●
● ●

●
●

●

●

●

●

● ●

●

● ●
●

●

●

●

●

●
●●

● ●

●●
●

●

●

5

10

5.0 7.5 10.0 12.5
X1426642_at

X1
41
87
65
_a
t

Figure 4.10: As Figure ??, but in addition
with points coloured by the sample group
(as in Figure ??). We can now see that the
expression values of the gene Timd2 (whose
mRNA is targeted by the probe 1418765_at)
are consistently high in the early time points,
whereas its expression goes down in the
EPI samples at days 3.5 and 4.5. In the
FGF4-KO, this decrease is delayed - at E3.5,
its expression is still high. Conversely, the
gene Fn1 (1426642_at) is off in the early
timepoints and then goes up at days 3.5 and
4.5. The PE samples (green) show a high
degree of cell-to-cell variability.

In the examples above, Figures ??–??, the dataset was groupsize, the
variables were the numeric values as well as the names of groupsize,
which we mapped to the aesthetics y-axis and x-axis respectively, the scale
was linear on the y and rank-based on the x-axis (the bars are ordered
alphanumerically and each has the same width), the geometric object was the
rectangular bar, and the statistical summary was the trivial one (i. e., none).
We did not make use of a facet specification in the plots above, but we’ll see
examples later on (Section ??).

In fact, ggplot2’s implementation of the grammar of graphics allows you to
use the same type of component multiple times, in what are called layers?.
For example, the code below uses three types of geometric objects in the
same plot, for the same data: points, a line, and a confidence band.

dftx <- data.frame(t(exprs(x)), pData(x))

ggplot(dftx, aes(x = X1426642_at, y = X1418765_at)) +

geom_point(shape = 1) +

geom_smooth(method = "loess")

We assembled a copy of the expression data (exprs(x)) and the sample
annotation data (pData(x)) all together into the data.frame dftx – since this

66 MODERN STATISTICS FOR MODERN BIOLOGY

qplot(x = names(groupSize),

y = as.vector(groupSize),

geom = "bar", stat = "identity",

xlab = "Groups", ylab = "Number of Samples",

fill = names(groupSize)) +

scale_fill_manual(values = groupColour, name="Colour code")

0

10

20

30

E3.25E3.25 (FGF4−KO)E3.5 (EPI)E3.5 (FGF4−KO)E3.5 (PE)E4.5 (EPI)E4.5 (FGF4−KO)E4.5 (PE)
Groups

Nu
m

be
r o

f S
am

pl
es

Colour code
E3.25
E3.25 (FGF4−KO)
E3.5 (EPI)
E3.5 (FGF4−KO)
E3.5 (PE)
E4.5 (EPI)
E4.5 (FGF4−KO)
E4.5 (PE)

Figure 4.7: Similar to Figure ??, but with
coloured bars and better axis descriptions.

Let’s dissect the above "sentence". The added axis labels are straight-
forward (xlab, ylab). Then we stated that we want the bars to be coloured
(filled) based on names(groupSize) (which in this case co-incidentally also
is the x data, but that need not be so). But then we didn’t just want ggplot2
to use the default colours, but provide our own mapping from group names
to colours. How did we do this? In this case, not by adding an additional pa-
rameter to the qplot function, but by using the + operator and "adding" to the
graphics object returned by qplot the information about our prefered colour
assignment. This information is encapsulated by the object returned by the
scale_fill_manual function, and comprises the names-to-colour mapping
(as a named vector) and a title.

This object-oriented way of doing things –taking a graphics object already
produced in some way and then further refining it– can be more convenient
and easy to manage then what normally is the alternative –providing all the
instructions needed upfront, to the single function that creates the graphic. We
can quickly try out different visualisation ideas without having to rebuild our
plots each time from scratch, but rather store the basic object and then modify
it in different ways.3 3 The + operator plays well with R’s prefer-

ence for pass-by-value semantics, where you
normally don’t modify an object in place, but
rather, every function call on an object treats
its inputs as read-only, although it might
return a modified version of its input. In R,
the + operator is also just such a function,
which takes two arguments (the expressions
to its left and right) and returns a single
result.

As you can see from our colour legend, we have chosen our colours well
so that, for example, the mutant genotypes have more firey colours (orange,
red), the PE lineage samples have a greenish colour and the EPI ones a
blueish colour. In this way, we can easily look for trends in our data later at a
glance since we have already grouped the samples by colour.

One more thing that we need to fix in Figure ?? is the readability of the
bar labels. Right now they are running into each other — a common problem
when you have descriptive names. Let’s rotate the text so that it is more
readable as shown in Figure ??.

qplot(x = names(groupSize),

y = as.vector(groupSize),

geom = "bar", stat = "identity",

xlab = "Groups", ylab = "Number of Samples",

fill = names(groupSize)) +

scale_fill_manual(values = groupColour, name="Colour code") +

theme(axis.text.x = element_text(angle = 90, hjust = 1))

HIGH QUALITY GRAPHICS IN R 67

0

10

20

30

E3
.2

5

E3
.2

5
(F

G
F4
−K

O
)

E3
.5

 (E
PI

)

E3
.5

 (F
G

F4
−K

O
)

E3
.5

 (P
E)

E4
.5

 (E
PI

)

E4
.5

 (F
G

F4
−K

O
)

E4
.5

 (P
E)

Groups

Nu
m

be
r o

f S
am

pl
es

Colour code
E3.25
E3.25 (FGF4−KO)
E3.5 (EPI)
E3.5 (FGF4−KO)
E3.5 (PE)
E4.5 (EPI)
E4.5 (FGF4−KO)
E4.5 (PE)

Figure 4.8: Fixing the barplot names through
rotation of the labels.

We have added on another clause, produced by the theme function, which
indicates that we like x-axis text set at an angle of 90 degrees and right
justified (hjust; the default would be to center it).

Now we have a great looking plot that clearly conveys our data on the
number of samples in each group and also the types of groups that we are
comparing.

4.5 The Grammar of Graphics

●

●

●
●

●
●

●

●

●

●● ●

●

●

●
●

●
●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●●

●

● ●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●
●

● ●●

●
● ●

●
●

●

●

●

●

● ●

●

● ●
●

●

●

●

●

●
●●

● ●

●●
●

●

●

5

10

5.0 7.5 10.0 12.5
X1426642_at

X1
41
87
65
_a
t

Figure 4.9: A scatterplot with three layers
that show different statistics of the same
data: points, a smooth regression line, and a
confidence band.

The components of ggplot2’s grammar of graphics are

1. a dataset
2. a choice of geometric object that serves as the visual representations of

the data – for instance, points, lines, rectangles, contours
3. a description of how the variables in the data are mapped to visual proper-

ties (aesthetics) of the geometric objects, and an associated scale, (e. g.,
linear, logarithmic, rank)

4. a statistical summarisation rule
5. a coordinate system
6. a facet specification, i. e. the use of several plots to look at the same data

●

●

●
●

●
●

●

●

●

●● ●

●

●

●
●

●
●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●●

●

● ●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●
●

● ●●

●
● ●

●
●

●

●

●

●

● ●

●

● ●
●

●

●

●

●

●
●●

● ●

●●
●

●

●

5

10

5.0 7.5 10.0 12.5
X1426642_at

X1
41
87
65
_a
t

Figure 4.10: As Figure ??, but in addition
with points coloured by the sample group
(as in Figure ??). We can now see that the
expression values of the gene Timd2 (whose
mRNA is targeted by the probe 1418765_at)
are consistently high in the early time points,
whereas its expression goes down in the
EPI samples at days 3.5 and 4.5. In the
FGF4-KO, this decrease is delayed - at E3.5,
its expression is still high. Conversely, the
gene Fn1 (1426642_at) is off in the early
timepoints and then goes up at days 3.5 and
4.5. The PE samples (green) show a high
degree of cell-to-cell variability.

In the examples above, Figures ??–??, the dataset was groupsize, the
variables were the numeric values as well as the names of groupsize,
which we mapped to the aesthetics y-axis and x-axis respectively, the scale
was linear on the y and rank-based on the x-axis (the bars are ordered
alphanumerically and each has the same width), the geometric object was the
rectangular bar, and the statistical summary was the trivial one (i. e., none).
We did not make use of a facet specification in the plots above, but we’ll see
examples later on (Section ??).

In fact, ggplot2’s implementation of the grammar of graphics allows you to
use the same type of component multiple times, in what are called layers?.
For example, the code below uses three types of geometric objects in the
same plot, for the same data: points, a line, and a confidence band.

dftx <- data.frame(t(exprs(x)), pData(x))

ggplot(dftx, aes(x = X1426642_at, y = X1418765_at)) +

geom_point(shape = 1) +

geom_smooth(method = "loess")

We assembled a copy of the expression data (exprs(x)) and the sample
annotation data (pData(x)) all together into the data.frame dftx – since this

Layers

68 MODERN STATISTICS FOR MODERN BIOLOGY

is the data format that ggplot2 functions most easily take as input (more on
this in Sections ?? and ??).

We can further enhance the plot by using colours – since each of the
points in Figure ?? corresponds to one sample, it makes sense to use the
sampleColour information in the object x.

ggplot(dftx, aes(x = X1426642_at, y = X1418765_at)) +

geom_point(aes(colour = sampleColour), shape = 19) +

geom_smooth(method = "loess") +

scale_colour_discrete(guide = FALSE)

Question 4.5.1 In the code above we defined the colour aesthetics (aes)
only for the geom_point layer, while we defined the x and y aesthetics for
all layers. What happens if we set the colour aesthetics for all layers, i. e.,
move it into the argument list of ggplot? What happens if we omit the call to
scale_colour_discrete?

Question 4.5.2 Is it always meaningful to summarize scatterplot data with a
regression line as in Figures ?? and ???

As a small side remark, if we want to find out which genes are targeted by
these probe identifiers, and what they might do, we can call4. 4 Note that here were need to use the orig-

inal feature identifiers (e. g., “1426642_at”,
without the leading “X”). These is the nota-
tion used by the microarray manufacturer,
by the Bioconductor annotation packages,
and also inside the object x. The leading
“X” that we used above when working with
dftx was inserted during the creation
of dftx by the data.frame, since its ar-
gument check.names is set to TRUE by
default. Alternatively, we could have kept
the original identifer notation by setting
check.names=FALSE, but then we would
need to work with the backticks, such as
aes(x = ‘1426642_at‘, ...), to make
sure R understands them correctly.

library("mouse4302.db")

AnnotationDbi::select(mouse4302.db,

keys = c("1426642_at", "1418765_at"), keytype = "PROBEID",

columns = c("SYMBOL", "GENENAME"))

PROBEID SYMBOL

1 1426642_at Fn1

2 1418765_at Timd2

GENENAME

1 fibronectin 1

2 T cell immunoglobulin and mucin domain containing 2

Often when using ggplot you will only need to specify the data, aesthet-
ics, a geometric object, and labels (through the scale parameters). Most
geometric objects implicitly call a suitable default statistical summary of the
data, and vice versa. For example, if you are using geom_histogram, ggplot2
implicitly bins your data and displays the results in barplot (geom_bar) format.
Thus, you could equivalently plot your histogram by calling geom_bar with
stat_bin.

0

500

1000

1500

2000

4 8 12
20 E3.25

co
un

t

0

500

1000

1500

2000

4 8 12
20 E3.25

co
un

t

Figure 4.11: Two different ways of creating
the same histogram using the grammar of
graphics.

dfx <- as.data.frame(exprs(x))

p1 <- ggplot(dfx, aes(x = ‘20 E3.25‘)) +

geom_histogram(binwidth = 0.2)

p2 <- ggplot(dfx, aes(x = ‘20 E3.25‘)) +

HIGH QUALITY GRAPHICS IN R 67

0

10

20

30

E3
.2

5

E3
.2

5
(F

G
F4
−K

O
)

E3
.5

 (E
PI

)

E3
.5

 (F
G

F4
−K

O
)

E3
.5

 (P
E)

E4
.5

 (E
PI

)

E4
.5

 (F
G

F4
−K

O
)

E4
.5

 (P
E)

Groups

Nu
m

be
r o

f S
am

pl
es

Colour code
E3.25
E3.25 (FGF4−KO)
E3.5 (EPI)
E3.5 (FGF4−KO)
E3.5 (PE)
E4.5 (EPI)
E4.5 (FGF4−KO)
E4.5 (PE)

Figure 4.8: Fixing the barplot names through
rotation of the labels.

We have added on another clause, produced by the theme function, which
indicates that we like x-axis text set at an angle of 90 degrees and right
justified (hjust; the default would be to center it).

Now we have a great looking plot that clearly conveys our data on the
number of samples in each group and also the types of groups that we are
comparing.

4.5 The Grammar of Graphics

●

●

●
●

●
●

●

●

●

●● ●

●

●

●
●

●
●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●●

●

● ●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●
●

● ●●

●
● ●

●
●

●

●

●

●

● ●

●

● ●
●

●

●

●

●

●
●●

● ●

●●
●

●

●

5

10

5.0 7.5 10.0 12.5
X1426642_at

X1
41
87
65
_a
t

Figure 4.9: A scatterplot with three layers
that show different statistics of the same
data: points, a smooth regression line, and a
confidence band.

The components of ggplot2’s grammar of graphics are

1. a dataset
2. a choice of geometric object that serves as the visual representations of

the data – for instance, points, lines, rectangles, contours
3. a description of how the variables in the data are mapped to visual proper-

ties (aesthetics) of the geometric objects, and an associated scale, (e. g.,
linear, logarithmic, rank)

4. a statistical summarisation rule
5. a coordinate system
6. a facet specification, i. e. the use of several plots to look at the same data

●

●

●
●

●
●

●

●

●

●● ●

●

●

●
●

●
●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●●

●

● ●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●
●

● ●●

●
● ●

●
●

●

●

●

●

● ●

●

● ●
●

●

●

●

●

●
●●

● ●

●●
●

●

●

5

10

5.0 7.5 10.0 12.5
X1426642_at

X1
41
87
65
_a
t

Figure 4.10: As Figure ??, but in addition
with points coloured by the sample group
(as in Figure ??). We can now see that the
expression values of the gene Timd2 (whose
mRNA is targeted by the probe 1418765_at)
are consistently high in the early time points,
whereas its expression goes down in the
EPI samples at days 3.5 and 4.5. In the
FGF4-KO, this decrease is delayed - at E3.5,
its expression is still high. Conversely, the
gene Fn1 (1426642_at) is off in the early
timepoints and then goes up at days 3.5 and
4.5. The PE samples (green) show a high
degree of cell-to-cell variability.

In the examples above, Figures ??–??, the dataset was groupsize, the
variables were the numeric values as well as the names of groupsize,
which we mapped to the aesthetics y-axis and x-axis respectively, the scale
was linear on the y and rank-based on the x-axis (the bars are ordered
alphanumerically and each has the same width), the geometric object was the
rectangular bar, and the statistical summary was the trivial one (i. e., none).
We did not make use of a facet specification in the plots above, but we’ll see
examples later on (Section ??).

In fact, ggplot2’s implementation of the grammar of graphics allows you to
use the same type of component multiple times, in what are called layers?.
For example, the code below uses three types of geometric objects in the
same plot, for the same data: points, a line, and a confidence band.

dftx <- data.frame(t(exprs(x)), pData(x))

ggplot(dftx, aes(x = X1426642_at, y = X1418765_at)) +

geom_point(shape = 1) +

geom_smooth(method = "loess")

We assembled a copy of the expression data (exprs(x)) and the sample
annotation data (pData(x)) all together into the data.frame dftx – since this

geom and summary often imply each other
(by default)

68 MODERN STATISTICS FOR MODERN BIOLOGY

is the data format that ggplot2 functions most easily take as input (more on
this in Sections ?? and ??).

We can further enhance the plot by using colours – since each of the
points in Figure ?? corresponds to one sample, it makes sense to use the
sampleColour information in the object x.

ggplot(dftx, aes(x = X1426642_at, y = X1418765_at)) +

geom_point(aes(colour = sampleColour), shape = 19) +

geom_smooth(method = "loess") +

scale_colour_discrete(guide = FALSE)

Question 4.5.1 In the code above we defined the colour aesthetics (aes)
only for the geom_point layer, while we defined the x and y aesthetics for
all layers. What happens if we set the colour aesthetics for all layers, i. e.,
move it into the argument list of ggplot? What happens if we omit the call to
scale_colour_discrete?

Question 4.5.2 Is it always meaningful to summarize scatterplot data with a
regression line as in Figures ?? and ???

As a small side remark, if we want to find out which genes are targeted by
these probe identifiers, and what they might do, we can call4. 4 Note that here were need to use the orig-

inal feature identifiers (e. g., “1426642_at”,
without the leading “X”). These is the nota-
tion used by the microarray manufacturer,
by the Bioconductor annotation packages,
and also inside the object x. The leading
“X” that we used above when working with
dftx was inserted during the creation
of dftx by the data.frame, since its ar-
gument check.names is set to TRUE by
default. Alternatively, we could have kept
the original identifer notation by setting
check.names=FALSE, but then we would
need to work with the backticks, such as
aes(x = ‘1426642_at‘, ...), to make
sure R understands them correctly.

library("mouse4302.db")

AnnotationDbi::select(mouse4302.db,

keys = c("1426642_at", "1418765_at"), keytype = "PROBEID",

columns = c("SYMBOL", "GENENAME"))

PROBEID SYMBOL

1 1426642_at Fn1

2 1418765_at Timd2

GENENAME

1 fibronectin 1

2 T cell immunoglobulin and mucin domain containing 2

Often when using ggplot you will only need to specify the data, aesthet-
ics, a geometric object, and labels (through the scale parameters). Most
geometric objects implicitly call a suitable default statistical summary of the
data, and vice versa. For example, if you are using geom_histogram, ggplot2
implicitly bins your data and displays the results in barplot (geom_bar) format.
Thus, you could equivalently plot your histogram by calling geom_bar with
stat_bin.

0

500

1000

1500

2000

4 8 12
20 E3.25

co
un

t

0

500

1000

1500

2000

4 8 12
20 E3.25

co
un

t

Figure 4.11: Two different ways of creating
the same histogram using the grammar of
graphics.

dfx <- as.data.frame(exprs(x))

p1 <- ggplot(dfx, aes(x = ‘20 E3.25‘)) +

geom_histogram(binwidth = 0.2)

p2 <- ggplot(dfx, aes(x = ‘20 E3.25‘)) +

68 MODERN STATISTICS FOR MODERN BIOLOGY

is the data format that ggplot2 functions most easily take as input (more on
this in Sections ?? and ??).

We can further enhance the plot by using colours – since each of the
points in Figure ?? corresponds to one sample, it makes sense to use the
sampleColour information in the object x.

ggplot(dftx, aes(x = X1426642_at, y = X1418765_at)) +

geom_point(aes(colour = sampleColour), shape = 19) +

geom_smooth(method = "loess") +

scale_colour_discrete(guide = FALSE)

Question 4.5.1 In the code above we defined the colour aesthetics (aes)
only for the geom_point layer, while we defined the x and y aesthetics for
all layers. What happens if we set the colour aesthetics for all layers, i. e.,
move it into the argument list of ggplot? What happens if we omit the call to
scale_colour_discrete?

Question 4.5.2 Is it always meaningful to summarize scatterplot data with a
regression line as in Figures ?? and ???

As a small side remark, if we want to find out which genes are targeted by
these probe identifiers, and what they might do, we can call4. 4 Note that here were need to use the orig-

inal feature identifiers (e. g., “1426642_at”,
without the leading “X”). These is the nota-
tion used by the microarray manufacturer,
by the Bioconductor annotation packages,
and also inside the object x. The leading
“X” that we used above when working with
dftx was inserted during the creation
of dftx by the data.frame, since its ar-
gument check.names is set to TRUE by
default. Alternatively, we could have kept
the original identifer notation by setting
check.names=FALSE, but then we would
need to work with the backticks, such as
aes(x = ‘1426642_at‘, ...), to make
sure R understands them correctly.

library("mouse4302.db")

AnnotationDbi::select(mouse4302.db,

keys = c("1426642_at", "1418765_at"), keytype = "PROBEID",

columns = c("SYMBOL", "GENENAME"))

PROBEID SYMBOL

1 1426642_at Fn1

2 1418765_at Timd2

GENENAME

1 fibronectin 1

2 T cell immunoglobulin and mucin domain containing 2

Often when using ggplot you will only need to specify the data, aesthet-
ics, a geometric object, and labels (through the scale parameters). Most
geometric objects implicitly call a suitable default statistical summary of the
data, and vice versa. For example, if you are using geom_histogram, ggplot2
implicitly bins your data and displays the results in barplot (geom_bar) format.
Thus, you could equivalently plot your histogram by calling geom_bar with
stat_bin.

0

500

1000

1500

2000

4 8 12
20 E3.25

co
un

t

0

500

1000

1500

2000

4 8 12
20 E3.25

co
un

t
Figure 4.11: Two different ways of creating
the same histogram using the grammar of
graphics.

dfx <- as.data.frame(exprs(x))

p1 <- ggplot(dfx, aes(x = ‘20 E3.25‘)) +

geom_histogram(binwidth = 0.2)

p2 <- ggplot(dfx, aes(x = ‘20 E3.25‘)) +

HIGH QUALITY GRAPHICS IN R 69

geom_bar(stat = "bin", binwidth = 0.2)

library("gridExtra")

grid.arrange(p1, p2, nrow = 2)

grid.arrange is a convenient helper function to arrange multiple plots (in
this case, stored in the objects p1 and p2) in a figure.

Let’s come back to the barplot example from above and see how it is done
in the ggplot way.

pb <- ggplot(data.frame(

name = names(groupSize),

size = as.vector(groupSize)),

aes(x = name, y = size))

For now we have simply created a plot object pb and have not generated a
plot yet. In fact we cannot make a plot yet,

pb

Error: No layers in plot

because we haven’t specified what geometric object we want to use for our
plot. All that we have in our pb object so far are the data and the aesthetics.

Now we can literally add on the other components of our plot through using
the + operator:

pb <- pb + geom_bar(stat = "identity") +

aes(fill = name) +

scale_fill_manual(values = groupColour, name = "Colour code") +

theme(axis.text.x = element_text(angle = 90, hjust = 1)) +

xlab("Groups") + ylab("Number of Samples")

pb

0

10

20

30

E3
.2

5

E3
.2

5
(F

G
F4
−K

O
)

E3
.5

 (E
PI

)

E3
.5

 (F
G

F4
−K

O
)

E3
.5

 (P
E)

E4
.5

 (E
PI

)

E4
.5

 (F
G

F4
−K

O
)

E4
.5

 (P
E)

Groups

Nu
m

be
r o

f S
am

pl
es

Colour code
E3.25
E3.25 (FGF4−KO)
E3.5 (EPI)
E3.5 (FGF4−KO)
E3.5 (PE)
E4.5 (EPI)
E4.5 (FGF4−KO)
E4.5 (PE)

Figure 4.12: Using ggplot to create our
barplot.Thus we recreate our previous qplot result using the ggplot approach.

This modular approach allows us a lot of freedom in creating figures and
setting parameters. For example we can switch our plot to polar coordinates to
create a popular alternative visualization of the barplot.

pb.polar <- pb + coord_polar() +

theme(axis.text.x = element_text(angle = 0, hjust = 1),

axis.text.y = element_blank(),

axis.ticks = element_blank()) +

xlab("") + ylab("")

pb.polar

E3.25

E3.25 (FGF4−KO)

E3.5 (EPI)

E3.5 (FGF4−KO)E3.5 (PE)

E4.5 (EPI)

E4.5 (FGF4−KO)

E4.5 (PE) Colour code
E3.25
E3.25 (FGF4−KO)
E3.5 (EPI)
E3.5 (FGF4−KO)
E3.5 (PE)
E4.5 (EPI)
E4.5 (FGF4−KO)
E4.5 (PE)

Figure 4.13: Using ggplot to create a
barplot with polar coordinates.

Note above that we can override previously set theme parameters by
simply resetting them – no need to go back to recreating pb, where we

HIGH QUALITY GRAPHICS IN R 69

geom_bar(stat = "bin", binwidth = 0.2)

library("gridExtra")

grid.arrange(p1, p2, nrow = 2)

grid.arrange is a convenient helper function to arrange multiple plots (in
this case, stored in the objects p1 and p2) in a figure.

Let’s come back to the barplot example from above and see how it is done
in the ggplot way.

pb <- ggplot(data.frame(

name = names(groupSize),

size = as.vector(groupSize)),

aes(x = name, y = size))

For now we have simply created a plot object pb and have not generated a
plot yet. In fact we cannot make a plot yet,

pb

Error: No layers in plot

because we haven’t specified what geometric object we want to use for our
plot. All that we have in our pb object so far are the data and the aesthetics.

Now we can literally add on the other components of our plot through using
the + operator:

pb <- pb + geom_bar(stat = "identity") +

aes(fill = name) +

scale_fill_manual(values = groupColour, name = "Colour code") +

theme(axis.text.x = element_text(angle = 90, hjust = 1)) +

xlab("Groups") + ylab("Number of Samples")

pb

0

10

20

30

E3
.2

5

E3
.2

5
(F

G
F4
−K

O
)

E3
.5

 (E
PI

)

E3
.5

 (F
G

F4
−K

O
)

E3
.5

 (P
E)

E4
.5

 (E
PI

)

E4
.5

 (F
G

F4
−K

O
)

E4
.5

 (P
E)

Groups

Nu
m

be
r o

f S
am

pl
es

Colour code
E3.25
E3.25 (FGF4−KO)
E3.5 (EPI)
E3.5 (FGF4−KO)
E3.5 (PE)
E4.5 (EPI)
E4.5 (FGF4−KO)
E4.5 (PE)

Figure 4.12: Using ggplot to create our
barplot.Thus we recreate our previous qplot result using the ggplot approach.

This modular approach allows us a lot of freedom in creating figures and
setting parameters. For example we can switch our plot to polar coordinates to
create a popular alternative visualization of the barplot.

pb.polar <- pb + coord_polar() +

theme(axis.text.x = element_text(angle = 0, hjust = 1),

axis.text.y = element_blank(),

axis.ticks = element_blank()) +

xlab("") + ylab("")

pb.polar

E3.25

E3.25 (FGF4−KO)

E3.5 (EPI)

E3.5 (FGF4−KO)E3.5 (PE)

E4.5 (EPI)

E4.5 (FGF4−KO)

E4.5 (PE) Colour code
E3.25
E3.25 (FGF4−KO)
E3.5 (EPI)
E3.5 (FGF4−KO)
E3.5 (PE)
E4.5 (EPI)
E4.5 (FGF4−KO)
E4.5 (PE)

Figure 4.13: Using ggplot to create a
barplot with polar coordinates.

Note above that we can override previously set theme parameters by
simply resetting them – no need to go back to recreating pb, where we

A more complex example: themes

HIGH QUALITY GRAPHICS IN R 69

geom_bar(stat = "bin", binwidth = 0.2)

library("gridExtra")

grid.arrange(p1, p2, nrow = 2)

grid.arrange is a convenient helper function to arrange multiple plots (in
this case, stored in the objects p1 and p2) in a figure.

Let’s come back to the barplot example from above and see how it is done
in the ggplot way.

pb <- ggplot(data.frame(

name = names(groupSize),

size = as.vector(groupSize)),

aes(x = name, y = size))

For now we have simply created a plot object pb and have not generated a
plot yet. In fact we cannot make a plot yet,

pb

Error: No layers in plot

because we haven’t specified what geometric object we want to use for our
plot. All that we have in our pb object so far are the data and the aesthetics.

Now we can literally add on the other components of our plot through using
the + operator:

pb <- pb + geom_bar(stat = "identity") +

aes(fill = name) +

scale_fill_manual(values = groupColour, name = "Colour code") +

theme(axis.text.x = element_text(angle = 90, hjust = 1)) +

xlab("Groups") + ylab("Number of Samples")

pb

0

10

20

30

E3
.2

5

E3
.2

5
(F

G
F4
−K

O
)

E3
.5

 (E
PI

)

E3
.5

 (F
G

F4
−K

O
)

E3
.5

 (P
E)

E4
.5

 (E
PI

)

E4
.5

 (F
G

F4
−K

O
)

E4
.5

 (P
E)

Groups
Nu

m
be

r o
f S

am
pl

es

Colour code
E3.25
E3.25 (FGF4−KO)
E3.5 (EPI)
E3.5 (FGF4−KO)
E3.5 (PE)
E4.5 (EPI)
E4.5 (FGF4−KO)
E4.5 (PE)

Figure 4.12: Using ggplot to create our
barplot.Thus we recreate our previous qplot result using the ggplot approach.

This modular approach allows us a lot of freedom in creating figures and
setting parameters. For example we can switch our plot to polar coordinates to
create a popular alternative visualization of the barplot.

pb.polar <- pb + coord_polar() +

theme(axis.text.x = element_text(angle = 0, hjust = 1),

axis.text.y = element_blank(),

axis.ticks = element_blank()) +

xlab("") + ylab("")

pb.polar

E3.25

E3.25 (FGF4−KO)

E3.5 (EPI)

E3.5 (FGF4−KO)E3.5 (PE)

E4.5 (EPI)

E4.5 (FGF4−KO)

E4.5 (PE) Colour code
E3.25
E3.25 (FGF4−KO)
E3.5 (EPI)
E3.5 (FGF4−KO)
E3.5 (PE)
E4.5 (EPI)
E4.5 (FGF4−KO)
E4.5 (PE)

Figure 4.13: Using ggplot to create a
barplot with polar coordinates.

Note above that we can override previously set theme parameters by
simply resetting them – no need to go back to recreating pb, where we

HIGH QUALITY GRAPHICS IN R 69

geom_bar(stat = "bin", binwidth = 0.2)

library("gridExtra")

grid.arrange(p1, p2, nrow = 2)

grid.arrange is a convenient helper function to arrange multiple plots (in
this case, stored in the objects p1 and p2) in a figure.

Let’s come back to the barplot example from above and see how it is done
in the ggplot way.

pb <- ggplot(data.frame(

name = names(groupSize),

size = as.vector(groupSize)),

aes(x = name, y = size))

For now we have simply created a plot object pb and have not generated a
plot yet. In fact we cannot make a plot yet,

pb

Error: No layers in plot

because we haven’t specified what geometric object we want to use for our
plot. All that we have in our pb object so far are the data and the aesthetics.

Now we can literally add on the other components of our plot through using
the + operator:

pb <- pb + geom_bar(stat = "identity") +

aes(fill = name) +

scale_fill_manual(values = groupColour, name = "Colour code") +

theme(axis.text.x = element_text(angle = 90, hjust = 1)) +

xlab("Groups") + ylab("Number of Samples")

pb

0

10

20

30

E3
.2

5

E3
.2

5
(F

G
F4
−K

O
)

E3
.5

 (E
PI

)

E3
.5

 (F
G

F4
−K

O
)

E3
.5

 (P
E)

E4
.5

 (E
PI

)

E4
.5

 (F
G

F4
−K

O
)

E4
.5

 (P
E)

Groups

Nu
m

be
r o

f S
am

pl
es

Colour code
E3.25
E3.25 (FGF4−KO)
E3.5 (EPI)
E3.5 (FGF4−KO)
E3.5 (PE)
E4.5 (EPI)
E4.5 (FGF4−KO)
E4.5 (PE)

Figure 4.12: Using ggplot to create our
barplot.Thus we recreate our previous qplot result using the ggplot approach.

This modular approach allows us a lot of freedom in creating figures and
setting parameters. For example we can switch our plot to polar coordinates to
create a popular alternative visualization of the barplot.

pb.polar <- pb + coord_polar() +

theme(axis.text.x = element_text(angle = 0, hjust = 1),

axis.text.y = element_blank(),

axis.ticks = element_blank()) +

xlab("") + ylab("")

pb.polar

E3.25

E3.25 (FGF4−KO)

E3.5 (EPI)

E3.5 (FGF4−KO)E3.5 (PE)

E4.5 (EPI)

E4.5 (FGF4−KO)

E4.5 (PE) Colour code
E3.25
E3.25 (FGF4−KO)
E3.5 (EPI)
E3.5 (FGF4−KO)
E3.5 (PE)
E4.5 (EPI)
E4.5 (FGF4−KO)
E4.5 (PE)

Figure 4.13: Using ggplot to create a
barplot with polar coordinates.

Note above that we can override previously set theme parameters by
simply resetting them – no need to go back to recreating pb, where we

HIGH QUALITY GRAPHICS IN R 69

geom_bar(stat = "bin", binwidth = 0.2)

library("gridExtra")

grid.arrange(p1, p2, nrow = 2)

grid.arrange is a convenient helper function to arrange multiple plots (in
this case, stored in the objects p1 and p2) in a figure.

Let’s come back to the barplot example from above and see how it is done
in the ggplot way.

pb <- ggplot(data.frame(

name = names(groupSize),

size = as.vector(groupSize)),

aes(x = name, y = size))

For now we have simply created a plot object pb and have not generated a
plot yet. In fact we cannot make a plot yet,

pb

Error: No layers in plot

because we haven’t specified what geometric object we want to use for our
plot. All that we have in our pb object so far are the data and the aesthetics.

Now we can literally add on the other components of our plot through using
the + operator:

pb <- pb + geom_bar(stat = "identity") +

aes(fill = name) +

scale_fill_manual(values = groupColour, name = "Colour code") +

theme(axis.text.x = element_text(angle = 90, hjust = 1)) +

xlab("Groups") + ylab("Number of Samples")

pb

0

10

20

30

E3
.2

5

E3
.2

5
(F

G
F4
−K

O
)

E3
.5

 (E
PI

)

E3
.5

 (F
G

F4
−K

O
)

E3
.5

 (P
E)

E4
.5

 (E
PI

)

E4
.5

 (F
G

F4
−K

O
)

E4
.5

 (P
E)

Groups

Nu
m

be
r o

f S
am

pl
es

Colour code
E3.25
E3.25 (FGF4−KO)
E3.5 (EPI)
E3.5 (FGF4−KO)
E3.5 (PE)
E4.5 (EPI)
E4.5 (FGF4−KO)
E4.5 (PE)

Figure 4.12: Using ggplot to create our
barplot.Thus we recreate our previous qplot result using the ggplot approach.

This modular approach allows us a lot of freedom in creating figures and
setting parameters. For example we can switch our plot to polar coordinates to
create a popular alternative visualization of the barplot.

pb.polar <- pb + coord_polar() +

theme(axis.text.x = element_text(angle = 0, hjust = 1),

axis.text.y = element_blank(),

axis.ticks = element_blank()) +

xlab("") + ylab("")

pb.polar

E3.25

E3.25 (FGF4−KO)

E3.5 (EPI)

E3.5 (FGF4−KO)E3.5 (PE)

E4.5 (EPI)

E4.5 (FGF4−KO)

E4.5 (PE) Colour code
E3.25
E3.25 (FGF4−KO)
E3.5 (EPI)
E3.5 (FGF4−KO)
E3.5 (PE)
E4.5 (EPI)
E4.5 (FGF4−KO)
E4.5 (PE)

Figure 4.13: Using ggplot to create a
barplot with polar coordinates.

Note above that we can override previously set theme parameters by
simply resetting them – no need to go back to recreating pb, where we

No geom defined yet!

HIGH QUALITY GRAPHICS IN R 69

geom_bar(stat = "bin", binwidth = 0.2)

library("gridExtra")

grid.arrange(p1, p2, nrow = 2)

grid.arrange is a convenient helper function to arrange multiple plots (in
this case, stored in the objects p1 and p2) in a figure.

Let’s come back to the barplot example from above and see how it is done
in the ggplot way.

pb <- ggplot(data.frame(

name = names(groupSize),

size = as.vector(groupSize)),

aes(x = name, y = size))

For now we have simply created a plot object pb and have not generated a
plot yet. In fact we cannot make a plot yet,

pb

Error: No layers in plot

because we haven’t specified what geometric object we want to use for our
plot. All that we have in our pb object so far are the data and the aesthetics.

Now we can literally add on the other components of our plot through using
the + operator:

pb <- pb + geom_bar(stat = "identity") +

aes(fill = name) +

scale_fill_manual(values = groupColour, name = "Colour code") +

theme(axis.text.x = element_text(angle = 90, hjust = 1)) +

xlab("Groups") + ylab("Number of Samples")

pb

0

10

20

30

E3
.2

5

E3
.2

5
(F

G
F4
−K

O
)

E3
.5

 (E
PI

)

E3
.5

 (F
G

F4
−K

O
)

E3
.5

 (P
E)

E4
.5

 (E
PI

)

E4
.5

 (F
G

F4
−K

O
)

E4
.5

 (P
E)

Groups

Nu
m

be
r o

f S
am

pl
es

Colour code
E3.25
E3.25 (FGF4−KO)
E3.5 (EPI)
E3.5 (FGF4−KO)
E3.5 (PE)
E4.5 (EPI)
E4.5 (FGF4−KO)
E4.5 (PE)

Figure 4.12: Using ggplot to create our
barplot.Thus we recreate our previous qplot result using the ggplot approach.

This modular approach allows us a lot of freedom in creating figures and
setting parameters. For example we can switch our plot to polar coordinates to
create a popular alternative visualization of the barplot.

pb.polar <- pb + coord_polar() +

theme(axis.text.x = element_text(angle = 0, hjust = 1),

axis.text.y = element_blank(),

axis.ticks = element_blank()) +

xlab("") + ylab("")

pb.polar

E3.25

E3.25 (FGF4−KO)

E3.5 (EPI)

E3.5 (FGF4−KO)E3.5 (PE)

E4.5 (EPI)

E4.5 (FGF4−KO)

E4.5 (PE) Colour code
E3.25
E3.25 (FGF4−KO)
E3.5 (EPI)
E3.5 (FGF4−KO)
E3.5 (PE)
E4.5 (EPI)
E4.5 (FGF4−KO)
E4.5 (PE)

Figure 4.13: Using ggplot to create a
barplot with polar coordinates.

Note above that we can override previously set theme parameters by
simply resetting them – no need to go back to recreating pb, where we

Showing 1D data

HIGH QUALITY GRAPHICS IN R 71

3 1425463_at 1 E3.25 5.50

4 1416967_at 1 E3.25 1.73

5 1420085_at 2 E3.25 9.29

6 1418863_at 2 E3.25 5.53

For good measure, we also add a column that provides the gene symbol
along with the probe identifiers.

genes$gene <- names(probes)[match(genes$probe, probes)]

4.6.2 Barplots

A popular way to display data such as in our data.frame genes is through
barplots. See Fig. ??.

ggplot(genes, aes(x = gene, y = value)) +

stat_summary(fun.y = mean, geom = "bar")

0

2

4

6

8

Fgf4 Gata4 Gata6 Sox2
gene

va
lu
e

Figure 4.14: Barplots showing the means
of the distributions of expression measure-
ments from 4 probes.

In Figure ??, each bar represents the mean of the values for that gene.
Such plots are seen a lot in the biological sciences, as well as in the popular
media. The data summarisation into only the mean looses a lot of information,
and given the amount of space it takes, a barplot can be a poor way to
visualise data8.

8 In fact, if the mean is an appropriate
summary, such as for highly skewed
distributions, or data sets with outliers, the
barplot can be outright misleading.

Sometimes we want to add error bars, and one way to achieve this in
ggplot2 is as follows.

library("Hmisc")

ggplot(genes, aes(x = gene, y = value, fill = gene)) +

stat_summary(fun.y = mean, geom = "bar") +

stat_summary(fun.data = mean_cl_normal, geom = "errorbar",

mult = 1, width = 0.25)

Here, we see again the principle of layered graphics:fig: we use two sum-
mary functions, mean and mean_cl_normal, and two associated geometric
objects, bar and errorbar. The function mean_cl_normal is from the Hmisc
package and computes the standard error (or confidence limits) of the mean;
it’s a simple function, and we could also compute it ourselves using base R
expressions if we wished to do so. We also coloured the bars in lighter colours
for better contrast.

0.0

2.5

5.0

7.5

Fgf4 Gata4 Gata6 Sox2
gene

va
lu
e

gene
Fgf4
Gata4
Gata6
Sox2

Figure 4.15: Barplots with error bars
indicating standard error of the mean.

4.6.3 Boxplots

It’s easy to show the same data with boxplots.

HIGH QUALITY GRAPHICS IN R 71

3 1425463_at 1 E3.25 5.50

4 1416967_at 1 E3.25 1.73

5 1420085_at 2 E3.25 9.29

6 1418863_at 2 E3.25 5.53

For good measure, we also add a column that provides the gene symbol
along with the probe identifiers.

genes$gene <- names(probes)[match(genes$probe, probes)]

4.6.2 Barplots

A popular way to display data such as in our data.frame genes is through
barplots. See Fig. ??.

ggplot(genes, aes(x = gene, y = value)) +

stat_summary(fun.y = mean, geom = "bar")

0

2

4

6

8

Fgf4 Gata4 Gata6 Sox2
gene

va
lu
e

Figure 4.14: Barplots showing the means
of the distributions of expression measure-
ments from 4 probes.

In Figure ??, each bar represents the mean of the values for that gene.
Such plots are seen a lot in the biological sciences, as well as in the popular
media. The data summarisation into only the mean looses a lot of information,
and given the amount of space it takes, a barplot can be a poor way to
visualise data8.

8 In fact, if the mean is an appropriate
summary, such as for highly skewed
distributions, or data sets with outliers, the
barplot can be outright misleading.

Sometimes we want to add error bars, and one way to achieve this in
ggplot2 is as follows.

library("Hmisc")

ggplot(genes, aes(x = gene, y = value, fill = gene)) +

stat_summary(fun.y = mean, geom = "bar") +

stat_summary(fun.data = mean_cl_normal, geom = "errorbar",

mult = 1, width = 0.25)

Here, we see again the principle of layered graphics:fig: we use two sum-
mary functions, mean and mean_cl_normal, and two associated geometric
objects, bar and errorbar. The function mean_cl_normal is from the Hmisc
package and computes the standard error (or confidence limits) of the mean;
it’s a simple function, and we could also compute it ourselves using base R
expressions if we wished to do so. We also coloured the bars in lighter colours
for better contrast.

0.0

2.5

5.0

7.5

Fgf4 Gata4 Gata6 Sox2
gene

va
lu
e

gene
Fgf4
Gata4
Gata6
Sox2

Figure 4.15: Barplots with error bars
indicating standard error of the mean.

4.6.3 Boxplots

It’s easy to show the same data with boxplots.

72 MODERN STATISTICS FOR MODERN BIOLOGY

p <- ggplot(genes, aes(x = gene, y = value, fill = gene))

p + geom_boxplot()

●

●

●

●

●
●

●

●

●

●

●

●●●

●

●
●
●
●

●

●

●●
●

●

●

●

●

●

●

2.5

5.0

7.5

10.0

12.5

Fgf4 Gata4 Gata6 Sox2
gene

va
lu
e

gene
Fgf4
Gata4
Gata6
Sox2

Figure 4.16: Boxplots.

Compared to the barplots, this takes a similar amount of space, but is
much more informative. In Figure ?? we see that two of the genes (Gata4,
Gata6) have relatively concentrated distributions, with only a few data points
venturing out to the direction of higher values. For Fgf4, we see that the
distribution is right-skewed: the median, indicated by the horizontal black bar
within the box is closer to the lower (or left) side of the box. Analogously, for
Sox2 the distribution is left-skewed.

4.6.4 Violin plots

A variation of the boxplot idea, but with an even more direct representation
of the shape of the data distribution, is the violin plot. Here, the shape of the
violin gives a rough impression of the distribution density.

p + geom_violin()

2.5

5.0

7.5

10.0

12.5

Fgf4 Gata4 Gata6 Sox2
gene

va
lu
e

gene
Fgf4
Gata4
Gata6
Sox2

Figure 4.17: Violin plots.

4.6.5 Dot plots and beeswarm plots

If the number of data points is not too large, it is possible to show the data
points directly, and it is good practice to do so, compared to using more
abstract summaries.

However, plotting the data directly will often lead to overlapping points,
which can be visually unpleasant, or even obscure the data. We can try to
layout the points so that they are as near possible to their proper locations
without overlap?.

p + geom_dotplot(binaxis = "y", binwidth = 1/6,

stackdir = "center", stackratio = 0.75,

aes(color = gene))

The plot is shown in the left panel of Figure ??. The y-coordinates of the
points are discretized into bins (above we chose a bin size of 1/6), and then
they are stacked next to each other.

A fun alternative is provided by the package beeswarm. It works with base
R graphics and is not directly integrated into ggplot2’s data flows, so we can
either use the base R graphics output, or pass on the point coordinates to
ggplot as follows.

library("beeswarm")

bee <- beeswarm(value ~ gene, data = genes, spacing = 0.7)

72 MODERN STATISTICS FOR MODERN BIOLOGY

p <- ggplot(genes, aes(x = gene, y = value, fill = gene))

p + geom_boxplot()

●

●

●

●

●
●

●

●

●

●

●

●●●

●

●
●
●
●

●

●

●●
●

●

●

●

●

●

●

2.5

5.0

7.5

10.0

12.5

Fgf4 Gata4 Gata6 Sox2
gene

va
lu
e

gene
Fgf4
Gata4
Gata6
Sox2

Figure 4.16: Boxplots.

Compared to the barplots, this takes a similar amount of space, but is
much more informative. In Figure ?? we see that two of the genes (Gata4,
Gata6) have relatively concentrated distributions, with only a few data points
venturing out to the direction of higher values. For Fgf4, we see that the
distribution is right-skewed: the median, indicated by the horizontal black bar
within the box is closer to the lower (or left) side of the box. Analogously, for
Sox2 the distribution is left-skewed.

4.6.4 Violin plots

A variation of the boxplot idea, but with an even more direct representation
of the shape of the data distribution, is the violin plot. Here, the shape of the
violin gives a rough impression of the distribution density.

p + geom_violin()

2.5

5.0

7.5

10.0

12.5

Fgf4 Gata4 Gata6 Sox2
gene

va
lu
e

gene
Fgf4
Gata4
Gata6
Sox2

Figure 4.17: Violin plots.

4.6.5 Dot plots and beeswarm plots

If the number of data points is not too large, it is possible to show the data
points directly, and it is good practice to do so, compared to using more
abstract summaries.

However, plotting the data directly will often lead to overlapping points,
which can be visually unpleasant, or even obscure the data. We can try to
layout the points so that they are as near possible to their proper locations
without overlap?.

p + geom_dotplot(binaxis = "y", binwidth = 1/6,

stackdir = "center", stackratio = 0.75,

aes(color = gene))

The plot is shown in the left panel of Figure ??. The y-coordinates of the
points are discretized into bins (above we chose a bin size of 1/6), and then
they are stacked next to each other.

A fun alternative is provided by the package beeswarm. It works with base
R graphics and is not directly integrated into ggplot2’s data flows, so we can
either use the base R graphics output, or pass on the point coordinates to
ggplot as follows.

library("beeswarm")

bee <- beeswarm(value ~ gene, data = genes, spacing = 0.7)

HIGH QUALITY GRAPHICS IN R 73

ggplot(bee, aes(x = x, y = y, colour = x.orig)) +

geom_point(shape = 19) + xlab("gene") + ylab("value") +

scale_fill_manual(values = probes)

●●●
●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●
●●●●
●●●●●
●●●●●●

●●
●●●●

●
●●

●

●

●

●

●
●

●
●●●
●

●●●●
●●
●●

●●
●●
●●
●

●●●

●●●
●●●

●●●●●
●

●
●
●

●●●

●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●

●●●●●●
●●

●●●

●●●●
●●
●●

●

●●
●
●●
●

●●

●●
●●

●●
●

●

●●●●
●●●●●●●●

●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●
●●●●●●●●●●●●

●●●●
●●●●●

●

●●
●

●●●
●●
●

●●

●●

●
●

●

●●
●

●●●●●
●●●

●●

●●●

●●●

●

●●●

●●
●●

●

●●
●
●●

●●●●●●
●●

●●●
●

●●●●
●●●

●●●●●●●
●●●
●●●●
●●●●
●●●●●
●●●●

●●●●●●●
●●●●●●●●

●●●

●●●

●

2.5

5.0

7.5

10.0

12.5

Fgf4 Gata4 Gata6 Sox2
gene

va
lu
e

gene
●

●

●

●

Fgf4
Gata4
Gata6
Sox2

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●
●

●

●

●

●
●

● ●
● ●

●●●

●

● ●●

●

●

●

●

●
●

●
●

●

●

●

●

●
● ●●

●

●

●● ●
●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●●
●

●
●

●●

●

●

●

●
●
●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

● ●

●
●
●

●

●

●●

●●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●
●

●● ●

●

●

●
●

●
●

●●
●

●●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●
●

●
●

●

●

●●

●
●

●

●●

●

●
●

●

●

●

●

●
● ●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●
●

●

●

●
●

●

●

●

●

●

●

● ●

●

●●

●

●

●
●

●
● ●●

●

●

●●

●
●

●

●

●

●

●
●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●●

●

●

2.5

5.0

7.5

10.0

12.5

1 2 3 4
gene

va
lu
e

x.orig
●

●

●

●

Fgf4
Gata4
Gata6
Sox2

Figure 4.18: Left: dot plots, made us-
ing geom_dotplot from ggplot2. Right:
beeswarm plots, with layout obtained via
the beeswarm package and plotted as a
scatterplot with ggplot.

The plot is shown in the right panel of Figure ??. The default layout method
used by beeswarm is called swarm. It places points in increasing order. If a
point would overlap an existing point, it is shifted sideways (along the x-axis)
by a minimal amount sufficient to avoid overlap.

As you have seen in the above code examples, some twiddling with layout
parameters is usually needed to make a dot plot or a beeswarm plot look good
for a particular dataset.

4.6.6 Density plots

Yet another way to represent the same data is by lines plots of the density
plots

ggplot(genes, aes(x = value, colour = gene)) + geom_density()

Density estimation has a number of complications, and you can see these
in Figure ??. In particular, the need for choosing a smoothing window. A
window size that is small enough to capture peaks in the dense regions of
the data may lead to instable (“wiggly”) estimates elsewhere; if the window
is made bigger, pronounced features of the density may be smoothed out.
Moreover, the density lines do not convey the information on how much data
was used to estimate them, and plots like Figure ?? can become especially
problematic if the sample sizes for the curves differ.

0.00

0.25

0.50

0.75

2.5 5.0 7.5 10.0 12.5
value

de
ns
ity

gene
Fgf4
Gata4
Gata6
Sox2

Figure 4.19: Density plots.

HIGH QUALITY GRAPHICS IN R 73

ggplot(bee, aes(x = x, y = y, colour = x.orig)) +

geom_point(shape = 19) + xlab("gene") + ylab("value") +

scale_fill_manual(values = probes)

●●●
●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●
●●●●
●●●●●
●●●●●●

●●
●●●●

●
●●

●

●

●

●

●
●

●
●●●
●

●●●●
●●
●●

●●
●●
●●
●

●●●

●●●
●●●

●●●●●
●

●
●
●

●●●

●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●

●●●●●●
●●

●●●

●●●●
●●
●●

●

●●
●
●●
●

●●

●●
●●

●●
●

●

●●●●
●●●●●●●●

●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●
●●●●●●●●●●●●

●●●●
●●●●●

●

●●
●

●●●
●●
●

●●

●●

●
●

●

●●
●

●●●●●
●●●

●●

●●●

●●●

●

●●●

●●
●●

●

●●
●
●●

●●●●●●
●●

●●●
●

●●●●
●●●

●●●●●●●
●●●
●●●●
●●●●
●●●●●
●●●●

●●●●●●●
●●●●●●●●

●●●

●●●

●

2.5

5.0

7.5

10.0

12.5

Fgf4 Gata4 Gata6 Sox2
gene

va
lu
e

gene
●

●

●

●

Fgf4
Gata4
Gata6
Sox2

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●
●

●

●

●

●
●

● ●
● ●

●●●

●

● ●●

●

●

●

●

●
●

●
●

●

●

●

●

●
● ●●

●

●

●● ●
●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●●
●

●
●

●●

●

●

●

●
●
●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

● ●

●
●
●

●

●

●●

●●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●
●

●● ●

●

●

●
●

●
●

●●
●

●●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●
●

●
●

●

●

●●

●
●

●

●●

●

●
●

●

●

●

●

●
● ●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●
●

●

●

●
●

●

●

●

●

●

●

● ●

●

●●

●

●

●
●

●
● ●●

●

●

●●

●
●

●

●

●

●

●
●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●●

●

●

2.5

5.0

7.5

10.0

12.5

1 2 3 4
gene

va
lu
e

x.orig
●

●

●

●

Fgf4
Gata4
Gata6
Sox2

Figure 4.18: Left: dot plots, made us-
ing geom_dotplot from ggplot2. Right:
beeswarm plots, with layout obtained via
the beeswarm package and plotted as a
scatterplot with ggplot.

The plot is shown in the right panel of Figure ??. The default layout method
used by beeswarm is called swarm. It places points in increasing order. If a
point would overlap an existing point, it is shifted sideways (along the x-axis)
by a minimal amount sufficient to avoid overlap.

As you have seen in the above code examples, some twiddling with layout
parameters is usually needed to make a dot plot or a beeswarm plot look good
for a particular dataset.

4.6.6 Density plots

Yet another way to represent the same data is by lines plots of the density
plots

ggplot(genes, aes(x = value, colour = gene)) + geom_density()

Density estimation has a number of complications, and you can see these
in Figure ??. In particular, the need for choosing a smoothing window. A
window size that is small enough to capture peaks in the dense regions of
the data may lead to instable (“wiggly”) estimates elsewhere; if the window
is made bigger, pronounced features of the density may be smoothed out.
Moreover, the density lines do not convey the information on how much data
was used to estimate them, and plots like Figure ?? can become especially
problematic if the sample sizes for the curves differ.

0.00

0.25

0.50

0.75

2.5 5.0 7.5 10.0 12.5
value

de
ns
ity

gene
Fgf4
Gata4
Gata6
Sox2

Figure 4.19: Density plots.

74 MODERN STATISTICS FOR MODERN BIOLOGY

4.6.7 ECDF plots

The mathematically most robust way to describe the distribution of a one-
dimensional random variable X is its cumulative distribution function (CDF),
i. e., the function

F(x) = P(X x), (4.1)

where x takes all values along the real axis. The density of X is then the
derivative of F, if it exists9. The definition of the CDF can also be applied 9 By its definition, F tends to 0 for small x

(x ! �•) and to 1 for large x (x ! +•).to finite samples of X, i. e., samples x
1

, . . . , xn. The empirical cumulative
distribution function (ECDF) is simply

Fn(x) =
1

n

n

Â
i=1

xxi . (4.2)

An important property is that even for limited sample sizes n, the ECDF Fn

is not very far from the CDF, F. This is not the case for the empirical density!
Without smoothing, the empirical density of a finite sample is a sum of Dirac
delta functions, which is difficult to visualize and quite different from any
underlying smooth, true density. With smoothing, the difference can be less
pronounced, but is difficult to control, as discussed above.

ggplot(genes, aes(x = value, colour = gene)) + stat_ecdf()

0.00

0.25

0.50

0.75

1.00

5 10
value

y

gene
Fgf4
Gata4
Gata6
Sox2

Figure 4.20: Empirical cumulative distribution
functions (ECDF).

4.6.8 Data tidying II - Wide vs long format

Let us revisit the melt command from above. In the resulting data.frame
genes, each row corresponds to exactly one measured value, stored in the
column value. Then there are additional columns probe and sample, which
store the associated covariates. Compare this to the following data.frame (for
space reasons we print only the first five columns):

as.data.frame(exprs(x)[probes,])[, 1:5]

1 E3.25 2 E3.25 3 E3.25 4 E3.25 5 E3.25

1420085_at 3.03 9.29 2.94 9.72 8.92

1418863_at 4.84 5.53 4.42 5.98 4.92

1425463_at 5.50 6.16 4.58 4.75 4.63

1416967_at 1.73 9.70 4.16 9.54 8.71

This data.frame has several columns of data, one for each sample (an-
notated by the column names). Its rows correspond to the four probes,
annotated by the row names. This is an example for a data table in wide
format.

Now suppose we want to store somewhere not only the probe identifiers
but also the associated gene symbols. We could stick them as an additional

Discussion of 1D plot types

Boxplot makes sense for unimodal distributions
Histogram requires definition of bins (width, positions) and can

create visual artifacts esp. if the number of data points is not
large

Density requires the choice of bandwidth; plot tends to obscure
the sample size (i.e. the uncertainty of the estimate)

ecdf does not have these problems; but is more abstract and
interpretation requires some training. Good for reading off
quantiles and shifts in location in comparative plots; OK for
detecting differences in scale; less good for detecting
multimodality.

Up to a few dozens of points - just show the data! (beeswarm)

Impact of non-linear transformation on the shape of a density

 y: sample from a mixture of two log-normal distributions
 kernel density estimates

HIGH QUALITY GRAPHICS IN R 75

column into the wide format data.frame, and perhaps also throw in the genes’
ENSEMBL identifier for good measure. But now we immediately see the
problem: the data.frame now has some columns that represent different
samples, and others that refer to information for all samples (the gene symbol
and identifier) and we somehow have to "know" this when interpreting the
data.frame. This is what Hadley Wickham calls untidy data10. In contrast, in 10 There are many different ways for data to

be untidy.the tidy data.frame genes, we can add these columns, yet still know that each
row forms exactly one observation, and all information associated with that
observation is in the same row.

In tidy data?,

1. each variable forms a column,
2. each observation forms a row,
3. each type of observational unit forms a table.

A potential drawback is efficiency: even though there are only 4 probe –
gene symbol relationships, we are now storing them 404 times in the rows
of the data.frame genes. Moreover, there is no standardisation: we chose
to call this column symbol, but the next person might call it Symbol or even
something completely different, and when we find a data.frame that was
made by someone else and that contains a column symbol, we can hope,
but have no guarantee, that these are valid gene symbols. Addressing such
issues is behind the object-oriented design of the specialized data structures
in Bioconductor, such as the ExpressionSet class.

4.7 2D visualisation: Scatter Plots

Scatter plots are useful for visualizing treatment–response comparisons (as in
Figure ??), associations between variables (as in Figure ??), or paired data
(e. g., a disease biomarker in several patients before and after treatment). We
use the two dimensions of our plotting paper, or screen, to represent the two
variables.

Figure 4.21: Scatterplot of 45101 expression
measurements for two of the samples.

Let us take a look at differential expression between a wildtype and an
FGF4-KO sample.

scp <- ggplot(dfx, aes(x = ‘59 E4.5 (PE)‘ ,

y = ‘92 E4.5 (FGF4-KO)‘))

scp + geom_point()

The labels 59 E4.5 (PE) and 92 E4.5 (FGF4-KO) refer to column
names (sample names) in the data.frame dfx, which we created above. Since
they contain special characters (spaces, parentheses, hyphen) and start with
numerals, we need to enclose them with the downward sloping quotes to
make them syntactically digestible for R. The plot is shown in Figure ??. We

Showing 2D data

HIGH QUALITY GRAPHICS IN R 75

column into the wide format data.frame, and perhaps also throw in the genes’
ENSEMBL identifier for good measure. But now we immediately see the
problem: the data.frame now has some columns that represent different
samples, and others that refer to information for all samples (the gene symbol
and identifier) and we somehow have to "know" this when interpreting the
data.frame. This is what Hadley Wickham calls untidy data10. In contrast, in 10 There are many different ways for data to

be untidy.the tidy data.frame genes, we can add these columns, yet still know that each
row forms exactly one observation, and all information associated with that
observation is in the same row.

In tidy data?,

1. each variable forms a column,
2. each observation forms a row,
3. each type of observational unit forms a table.

A potential drawback is efficiency: even though there are only 4 probe –
gene symbol relationships, we are now storing them 404 times in the rows
of the data.frame genes. Moreover, there is no standardisation: we chose
to call this column symbol, but the next person might call it Symbol or even
something completely different, and when we find a data.frame that was
made by someone else and that contains a column symbol, we can hope,
but have no guarantee, that these are valid gene symbols. Addressing such
issues is behind the object-oriented design of the specialized data structures
in Bioconductor, such as the ExpressionSet class.

4.7 2D visualisation: Scatter Plots

Scatter plots are useful for visualizing treatment–response comparisons (as in
Figure ??), associations between variables (as in Figure ??), or paired data
(e. g., a disease biomarker in several patients before and after treatment). We
use the two dimensions of our plotting paper, or screen, to represent the two
variables.

Figure 4.21: Scatterplot of 45101 expression
measurements for two of the samples.

Let us take a look at differential expression between a wildtype and an
FGF4-KO sample.

scp <- ggplot(dfx, aes(x = ‘59 E4.5 (PE)‘ ,

y = ‘92 E4.5 (FGF4-KO)‘))

scp + geom_point()

The labels 59 E4.5 (PE) and 92 E4.5 (FGF4-KO) refer to column
names (sample names) in the data.frame dfx, which we created above. Since
they contain special characters (spaces, parentheses, hyphen) and start with
numerals, we need to enclose them with the downward sloping quotes to
make them syntactically digestible for R. The plot is shown in Figure ??. We

76 MODERN STATISTICS FOR MODERN BIOLOGY

get a dense point cloud that we can try and interpret on the outskirts of the
cloud, but we really have no idea visually how the data are distributed within
the denser regions of the plot.

One easy way to ameliorate the overplotting is to adjust the transparency
(alpha value) of the points by modifying the alpha parameter of geom_point
(Figure ??).

Figure 4.22: As Figure ??, but with semi-
transparent points to resolve some of the
overplotting.

scp + geom_point(alpha = 0.1)

This is already better than Figure ??, but in the very density regions even
the semi-transparent points quickly overplot to a featureless black mass, while
the more isolated, outlying points are getting faint. An alternative is a contour
plot of the 2D density, which has the added benefit of not rendering all of the
points on the plot, as in Figure ??.

scp + geom_density2d()

Figure 4.23: As Figure ??, but rendered as a
contour plot of the 2D density estimate.

However, we see in Figure ?? that the point cloud at the bottom right
(which contains a relatively small number of points) is no longer represented.
We can somewhat overcome this by tweaking the bandwidth and binning
parameters of geom_density2d (Figure ??, left panel).

scp + geom_density2d(h = 0.5, bins = 60)

We can fill in each space between the contour lines with the relative
density of points by explicitly calling the function stat_density2d (for which
geom_density2d is a wrapper) and using the geometric object polygon, as in
the right panel of Figure ??.

library("RColorBrewer")

colourscale <- scale_fill_gradientn(

colours = rev(brewer.pal(9, "YlGnBu")),

values = c(0, exp(seq(-5, 0, length.out = 100))))

scp + stat_density2d(h = 0.5, bins = 60,

aes(fill = ..level..), geom = "polygon") +

colourscale + coord_fixed()

We used the function brewer.pal from the package RColorBrewer to
define the colour scale, and we added a call to coord_fixed to fix the aspect
ratio of the plot, to make sure that the mapping of data range to x- and y-
coordinates is the same for the two variables. Both of these issues merit a
deeper look, and we’ll talk more about plot shapes in Section ?? and about
colours in Section ??.

The density based plotting methods in Figure ?? are more visually appeal-
ing and interpretable than the overplotted point clouds of Figures ?? and ??,

76 MODERN STATISTICS FOR MODERN BIOLOGY

get a dense point cloud that we can try and interpret on the outskirts of the
cloud, but we really have no idea visually how the data are distributed within
the denser regions of the plot.

One easy way to ameliorate the overplotting is to adjust the transparency
(alpha value) of the points by modifying the alpha parameter of geom_point
(Figure ??).

Figure 4.22: As Figure ??, but with semi-
transparent points to resolve some of the
overplotting.

scp + geom_point(alpha = 0.1)

This is already better than Figure ??, but in the very density regions even
the semi-transparent points quickly overplot to a featureless black mass, while
the more isolated, outlying points are getting faint. An alternative is a contour
plot of the 2D density, which has the added benefit of not rendering all of the
points on the plot, as in Figure ??.

scp + geom_density2d()

Figure 4.23: As Figure ??, but rendered as a
contour plot of the 2D density estimate.

However, we see in Figure ?? that the point cloud at the bottom right
(which contains a relatively small number of points) is no longer represented.
We can somewhat overcome this by tweaking the bandwidth and binning
parameters of geom_density2d (Figure ??, left panel).

scp + geom_density2d(h = 0.5, bins = 60)

We can fill in each space between the contour lines with the relative
density of points by explicitly calling the function stat_density2d (for which
geom_density2d is a wrapper) and using the geometric object polygon, as in
the right panel of Figure ??.

library("RColorBrewer")

colourscale <- scale_fill_gradientn(

colours = rev(brewer.pal(9, "YlGnBu")),

values = c(0, exp(seq(-5, 0, length.out = 100))))

scp + stat_density2d(h = 0.5, bins = 60,

aes(fill = ..level..), geom = "polygon") +

colourscale + coord_fixed()

We used the function brewer.pal from the package RColorBrewer to
define the colour scale, and we added a call to coord_fixed to fix the aspect
ratio of the plot, to make sure that the mapping of data range to x- and y-
coordinates is the same for the two variables. Both of these issues merit a
deeper look, and we’ll talk more about plot shapes in Section ?? and about
colours in Section ??.

The density based plotting methods in Figure ?? are more visually appeal-
ing and interpretable than the overplotted point clouds of Figures ?? and ??,

76 MODERN STATISTICS FOR MODERN BIOLOGY

get a dense point cloud that we can try and interpret on the outskirts of the
cloud, but we really have no idea visually how the data are distributed within
the denser regions of the plot.

One easy way to ameliorate the overplotting is to adjust the transparency
(alpha value) of the points by modifying the alpha parameter of geom_point
(Figure ??).

Figure 4.22: As Figure ??, but with semi-
transparent points to resolve some of the
overplotting.

scp + geom_point(alpha = 0.1)

This is already better than Figure ??, but in the very density regions even
the semi-transparent points quickly overplot to a featureless black mass, while
the more isolated, outlying points are getting faint. An alternative is a contour
plot of the 2D density, which has the added benefit of not rendering all of the
points on the plot, as in Figure ??.

scp + geom_density2d()

Figure 4.23: As Figure ??, but rendered as a
contour plot of the 2D density estimate.

However, we see in Figure ?? that the point cloud at the bottom right
(which contains a relatively small number of points) is no longer represented.
We can somewhat overcome this by tweaking the bandwidth and binning
parameters of geom_density2d (Figure ??, left panel).

scp + geom_density2d(h = 0.5, bins = 60)

We can fill in each space between the contour lines with the relative
density of points by explicitly calling the function stat_density2d (for which
geom_density2d is a wrapper) and using the geometric object polygon, as in
the right panel of Figure ??.

library("RColorBrewer")

colourscale <- scale_fill_gradientn(

colours = rev(brewer.pal(9, "YlGnBu")),

values = c(0, exp(seq(-5, 0, length.out = 100))))

scp + stat_density2d(h = 0.5, bins = 60,

aes(fill = ..level..), geom = "polygon") +

colourscale + coord_fixed()

We used the function brewer.pal from the package RColorBrewer to
define the colour scale, and we added a call to coord_fixed to fix the aspect
ratio of the plot, to make sure that the mapping of data range to x- and y-
coordinates is the same for the two variables. Both of these issues merit a
deeper look, and we’ll talk more about plot shapes in Section ?? and about
colours in Section ??.

The density based plotting methods in Figure ?? are more visually appeal-
ing and interpretable than the overplotted point clouds of Figures ?? and ??,

HIGH QUALITY GRAPHICS IN R 77

Figure 4.24: Left: as Figure ??, but with
smaller smoothing bandwidth and tighter
binning for the contour lines. Right: with
colour filling.

though we have to be careful in using them as we loose a lot of the informa-
tion on the outlier points in the sparser regions of the plot. One possibility is
using geom_point to add such points back in.

But arguably the best alternative, which avoids the limitations of smoothing,
is hexagonal binning?.

library("hexbin")

scp + stat_binhex() + coord_fixed()

scp + stat_binhex(binwidth = c(0.2, 0.2)) + colourscale +

coord_fixed()

Figure 4.25: Hexagonal binning. Left: default
parameters. Right: finer bin sizes and
customized colour scale.

4.7.1 Plot shapes

Choosing the proper shape for your plot is important to make sure the infor-
mation is conveyed well. By default, the shape parameter, that is, the ratio,
between the height of the graph and its width, is chosen by ggplot2 based on
the available space in the current plotting device. The width and height of the
device are specified when it is opened in R, either explicitly by you or through
default parameters11. Moreover, the graph dimensions also depend on the 11 E. g., see the manual pages of the pdf and

png functions.presence or absence of additional decorations, like the colour scale bars in
Figure ??.

Showing 2D data

HIGH QUALITY GRAPHICS IN R 77

Figure 4.24: Left: as Figure ??, but with
smaller smoothing bandwidth and tighter
binning for the contour lines. Right: with
colour filling.

though we have to be careful in using them as we loose a lot of the informa-
tion on the outlier points in the sparser regions of the plot. One possibility is
using geom_point to add such points back in.

But arguably the best alternative, which avoids the limitations of smoothing,
is hexagonal binning?.

library("hexbin")

scp + stat_binhex() + coord_fixed()

scp + stat_binhex(binwidth = c(0.2, 0.2)) + colourscale +

coord_fixed()

Figure 4.25: Hexagonal binning. Left: default
parameters. Right: finer bin sizes and
customized colour scale.

4.7.1 Plot shapes

Choosing the proper shape for your plot is important to make sure the infor-
mation is conveyed well. By default, the shape parameter, that is, the ratio,
between the height of the graph and its width, is chosen by ggplot2 based on
the available space in the current plotting device. The width and height of the
device are specified when it is opened in R, either explicitly by you or through
default parameters11. Moreover, the graph dimensions also depend on the 11 E. g., see the manual pages of the pdf and

png functions.presence or absence of additional decorations, like the colour scale bars in
Figure ??.

HIGH QUALITY GRAPHICS IN R 77

Figure 4.24: Left: as Figure ??, but with
smaller smoothing bandwidth and tighter
binning for the contour lines. Right: with
colour filling.

though we have to be careful in using them as we loose a lot of the informa-
tion on the outlier points in the sparser regions of the plot. One possibility is
using geom_point to add such points back in.

But arguably the best alternative, which avoids the limitations of smoothing,
is hexagonal binning?.

library("hexbin")

scp + stat_binhex() + coord_fixed()

scp + stat_binhex(binwidth = c(0.2, 0.2)) + colourscale +

coord_fixed()

Figure 4.25: Hexagonal binning. Left: default
parameters. Right: finer bin sizes and
customized colour scale.

4.7.1 Plot shapes

Choosing the proper shape for your plot is important to make sure the infor-
mation is conveyed well. By default, the shape parameter, that is, the ratio,
between the height of the graph and its width, is chosen by ggplot2 based on
the available space in the current plotting device. The width and height of the
device are specified when it is opened in R, either explicitly by you or through
default parameters11. Moreover, the graph dimensions also depend on the 11 E. g., see the manual pages of the pdf and

png functions.presence or absence of additional decorations, like the colour scale bars in
Figure ??.

package
splots

HIGH QUALITY GRAPHICS IN R 79

0

50

100

150

1700 1800 1900 2000
year

nu
m
be
r

050100150
1700 1800 1900 2000

year

nu
m
be
r

Figure 4.26: The sunspot data. In the upper
panel, the plot shape is roughly quadratic, a
frequent default choice. In the lower panel,
a technique called banking was used to
choose the plot shape.

4.8 3–5D data

Sometimes we want to show the relations between more than two variables.
Obvious choices for including additional dimensions are the plot symbol
shapes and colours. The geom_point geometric object offers the following
aesthetics (beyond x and y):

• fill

• colour

• shape

• size

• alpha

They are explored in the manual page of the geom_point function. fill
and colour refer to the fill and outline colour of an object; alpha to its trans-
parency level. Above, in Figures ?? and following, we have used colour or

Yearly sunspot numbers
1849-1924

Changes in amplitude

Banking to 45 degrees:
Choose aspect ratio so that
center of absolute values of
slopes is 45 degrees

Sawtooth: Sunspot cycles
typically rise more rapidly
than they fall (pronounced
for high peaks, less for
medium and not for lowest)

Plot shape, banking

For plots where x- and
y-axis have same
units: use 1:1 aspect
ratio (PCA!)

3-5 D, and faceting

geom_point
offers these
aesthetics
(beyond x and y):

• fill

• colour

• shape

• size

• alpha

80 MODERN STATISTICS FOR MODERN BIOLOGY

transparency to reflect point density and avoid the obscuring effects of over-
plotting. Instead, we can use them show other dimensions of the data (but
of course we can only do one or the other). In principle, we could use all the
5 aesthetics listed above simultaneously to show up to 7-dimensional data;
however, such a plot would be hard to decipher, and most often we are better
off with one or two additional dimensions and mapping them to a choice of the
available aesthetics.

4.8.1 Faceting

Another way to show additional dimensions of the data is to show multiple
plots that result from repeatedly subsetting (or “slicing”) our data based on
one (or more) of the variables, so that we can visualize each part separately.
So we can, for instance, investigate whether the observed patterns among
the other variables are the same or different across the range of the faceting
variable. Let’s look at an example12 12 The first line, mutate is not strictly

necessary – it’s just some data wrangling to
make the plots look better.dftx <- mutate(dftx, lineage = factor(sub("^$", "no", lineage),

levels = c("no", "EPI", "PE", "FGF4-KO")))

ggplot(dftx, aes(x = X1426642_at, y = X1418765_at)) +

geom_point() + facet_grid(. ~ lineage)

no EPI PE FGF4−KO
●

●

●
●

●●
●

●

●
●● ●

●

●

● ●
●●

●

●

●

●
●

●
●

● ●
●

●

●

●
●

●

●

●

●

●
●

●●

●

●

●

●

●

●●●
●
●
●

●
●

●

●●●

●

●●●

●

●
●

●

●

●
●
●

● ●●
●● ●

●
●

●

●

●

●
● ●

●
● ●●
●

●
●
●

● ●●●●
●●●

●

●

4
6
8
10
12

5.0 7.5 10.0 12.5 5.0 7.5 10.0 12.5 5.0 7.5 10.0 12.5 5.0 7.5 10.0 12.5
X1426642_at

X1
41
87
65
_a
t

Figure 4.27: An example for faceting: the
same data as in Figure ??, but now split by
the categorical variable lineage.

The result is shown in Figure ??. We used the formula language to specify
by which variable we want to do the splitting, and that the separate panels
should be in different columns: facet_grid(. ⇠ lineage). In fact, we
can specify two faceting variables, as follows; the result is shown in Figure ??.

ggplot(dftx,

aes(x = X1426642_at, y = X1418765_at)) + geom_point() +

facet_grid(Embryonic.day ~ lineage)

Another useful function is facet_wrap: if the faceting variables has too
many levels for all the plots to fit in one row or one column, then this function
can be used to wrap them into a specified number of columns or rows.

We can use a continuous variable by discretizing it into levels. The function
cut is useful for this purpose.

HIGH QUALITY GRAPHICS IN R 81

no EPI PE FGF4−KO

●

●

●
●

●
●

●

●

●
●● ●

●

●

●
●

●
●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●●

●
●

●

●
●

●●●

●

●●
●

●

●

●
●

●

●
●
●

● ●●

●
● ●
●

●
●

●

●

●
● ●

●

● ●
●

●

●
●
●

●
●●

●●

●●
●

●

●

4

6

8

10

12

4

6

8

10

12

4

6

8

10

12

E3.25
E3.5

E4.5

5.0 7.5 10.0 12.5 5.0 7.5 10.0 12.5 5.0 7.5 10.0 12.5 5.0 7.5 10.0 12.5
X1426642_at

X1
41
87
65
_a
t

Figure 4.28: Faceting: the same data as in
Figure ??, split by the categorical variables
Embryonic.day (rows) and lineage
(columns).

ggplot(mutate(dftx, Tdgf1 = cut(X1450989_at, breaks = 4)),

aes(x = X1426642_at, y = X1418765_at)) + geom_point() +

facet_wrap(~ Tdgf1, ncol = 2)

We see in Figure ?? that the number of points in the four panel is different,
this is because cut splits into bins of equal length, not equal number of points.
If we want the latter, then we can use quantile in conjunction with cut.

●
●

●

●

●
●

●

● ●
●
●

●
●

●

●

●
● ●

●

●
●

●

● ●

●
●

●

● ●● ●

●

●
●

●
●

●

●
● ●

●

●

●
●

●●

●

●

●
●

●
●

● ●
●

●

●

●
●

●
●

●
●

●
●

●

●

●

●

●

●●

●

●●
●

●●

●

●●
●
●

●

● ●
●

●

●
●
●

● ●●●●

●●
●
●

●

(2.53,5.05] (5.05,7.57]

(7.57,10.1] (10.1,12.6]

4

6

8

10

12

4

6

8

10

12

5.0 7.5 10.0 12.5 5.0 7.5 10.0 12.5
X1426642_at

X1
41
87
65
_a
t

Figure 4.29: Faceting: the same data as in
Figure ??, split by the continuous variable
X1450989_at and arranged by facet_wrap.

Axes scales In Figures ??–??, the axes scales are the same for all plots.
Alternatively, we could let them vary by setting the scales argument of the
facet_grid and facet_wrap; this parameters allows you to control whether
to leave the x-axis, the y-axis, or both to be freely variable. Such alternatives
scalings might allows us to see the full detail of each plot and thus make more
minute observations about what is going on in each. The downside is that the
plot dimensions are not comparable across the groupings.

Implicit faceting You can also facet your plots (without explicit calls to
facet_grid and facet_wrap) by specifying the aesthetics. A very sim-
ple version of implicit faceting is using a factor as your x-axis, such as in
Figures ??–??

80 MODERN STATISTICS FOR MODERN BIOLOGY

transparency to reflect point density and avoid the obscuring effects of over-
plotting. Instead, we can use them show other dimensions of the data (but
of course we can only do one or the other). In principle, we could use all the
5 aesthetics listed above simultaneously to show up to 7-dimensional data;
however, such a plot would be hard to decipher, and most often we are better
off with one or two additional dimensions and mapping them to a choice of the
available aesthetics.

4.8.1 Faceting

Another way to show additional dimensions of the data is to show multiple
plots that result from repeatedly subsetting (or “slicing”) our data based on
one (or more) of the variables, so that we can visualize each part separately.
So we can, for instance, investigate whether the observed patterns among
the other variables are the same or different across the range of the faceting
variable. Let’s look at an example12 12 The first line, mutate is not strictly

necessary – it’s just some data wrangling to
make the plots look better.dftx <- mutate(dftx, lineage = factor(sub("^$", "no", lineage),

levels = c("no", "EPI", "PE", "FGF4-KO")))

ggplot(dftx, aes(x = X1426642_at, y = X1418765_at)) +

geom_point() + facet_grid(. ~ lineage)

no EPI PE FGF4−KO
●

●

●
●

●●
●

●

●
●● ●

●

●

● ●
●●

●

●

●

●
●

●
●

● ●
●

●

●

●
●

●

●

●

●

●
●

●●

●

●

●

●

●

●●●
●
●
●

●
●

●

●●●

●

●●●

●

●
●

●

●

●
●
●

● ●●
●● ●

●
●

●

●

●

●
● ●

●
● ●●
●

●
●
●

● ●●●●
●●●

●

●

4
6
8
10
12

5.0 7.5 10.0 12.5 5.0 7.5 10.0 12.5 5.0 7.5 10.0 12.5 5.0 7.5 10.0 12.5
X1426642_at

X1
41
87
65
_a
t

Figure 4.27: An example for faceting: the
same data as in Figure ??, but now split by
the categorical variable lineage.

The result is shown in Figure ??. We used the formula language to specify
by which variable we want to do the splitting, and that the separate panels
should be in different columns: facet_grid(. ⇠ lineage). In fact, we
can specify two faceting variables, as follows; the result is shown in Figure ??.

ggplot(dftx,

aes(x = X1426642_at, y = X1418765_at)) + geom_point() +

facet_grid(Embryonic.day ~ lineage)

Another useful function is facet_wrap: if the faceting variables has too
many levels for all the plots to fit in one row or one column, then this function
can be used to wrap them into a specified number of columns or rows.

We can use a continuous variable by discretizing it into levels. The function
cut is useful for this purpose.

Data from an agricultural field trial to
study the crop barley.

At 6 sites in Minnesota, 10 varieties
of barley were grown in each of
two years.

Data: yield, for all combinations of
site, variety, and year (6 x 10 x 2 =
120 observations)

Note the data for Morris - reanalysis
in the 1990s using Trellis revealed
that the years had been flipped!

Barley Yield (bushels/acre)

SvansotaNo. 462ManchuriaNo. 475VelvetPeatlandGlabronNo. 457Wisconsin No. 38Trebi

20 30 40 50 60

Grand Rapids
SvansotaNo. 462ManchuriaNo. 475VelvetPeatlandGlabronNo. 457Wisconsin No. 38Trebi

Duluth
SvansotaNo. 462ManchuriaNo. 475VelvetPeatlandGlabronNo. 457Wisconsin No. 38Trebi

University Farm
SvansotaNo. 462ManchuriaNo. 475VelvetPeatlandGlabronNo. 457Wisconsin No. 38Trebi

Morris
SvansotaNo. 462ManchuriaNo. 475VelvetPeatlandGlabronNo. 457Wisconsin No. 38Trebi

Crookston
SvansotaNo. 462ManchuriaNo. 475VelvetPeatlandGlabronNo. 457Wisconsin No. 38Trebi

Waseca

1932
1931

library(“lattice”)
example(“barley”)

demo plotly

pheatmap

84 MODERN STATISTICS FOR MODERN BIOLOGY

function to interpolate the 11 colour into a smooth-looking palette (Figure ??).

library("pheatmap")

topGenes <- order(rowVars(exprs(x)), decreasing = TRUE)[seq_len(500)]

rowCenter <- function(x) { x - rowMeans(x) }

pheatmap(rowCenter(exprs(x)[topGenes,]),

show_rownames = FALSE, show_colnames = FALSE,

breaks = seq(-5, +5, length = 101),

annotation_col = pData(x)[, c("sampleGroup", "Embryonic.day", "ScanDate")],

annotation_colors = list(

sampleGroup = groupColour,

genotype = c(‘FGF4-KO‘ = "chocolate1", ‘WT‘ = "azure2"),

Embryonic.day = setNames(brewer.pal(9, "Blues")[c(3, 6, 9)], c("E3.25", "E3.5", "E4.5")),

ScanDate = setNames(brewer.pal(nlevels(x$ScanDate), "YlGn"), levels(x$ScanDate))

),

cutree_rows = 4

)

sampleGroup
Embryonic.day
ScanDate

ScanDate
2010−06−30
2010−07−01
2010−07−02
2010−09−16
2011−03−15
2011−03−16
2012−03−16
2012−08−16
2013−03−05

Embryonic.day
E3.25
E3.5
E4.5

sampleGroup
E3.25
E3.25 (FGF4−KO)
E3.5 (EPI)
E3.5 (FGF4−KO)
E3.5 (PE)
E4.5 (EPI)
E4.5 (FGF4−KO)
E4.5 (PE)

−4

−2

0

2

4

Figure 4.33: A heatmap of relative expres-
sion values, i. e., log

2

fold change compared
to the average expression of that gene (row)
across all samples (columns). The colour
scale uses a diverging palette, whose neutral
midpoint is at 0.

Let us take a minute to deconstruct the rather massive-looking call
to pheatmap. The options show_rownames and show_colnames control
whether the row and column names are printed at the sides of the matrix. Be-
cause our matrix is large in relation to the available plotting space, the labels
would anyway not be readable, and we suppress them. The annotation_col

many reasonable defaults

easy to add column and
row ‘metadata’ at the
sides

82 MODERN STATISTICS FOR MODERN BIOLOGY

4.8.2 plotly, webgl

fixme: Mention them as they are cool.

4.9 Colour

An important consideration when making plots is the colouring that we use in
them. Most R users are likely familiar with the built-in R colour scheme, used
by base R graphics, as shown in Figure ??.

pie(rep(1, 8), col=1:8)

1
23

4

5
6 7

8

Figure 4.30: Basic R colours.

These colour choices date back from 1980s hardware, where graphics
cards handled colours by letting each pixel either fully use or not use each
of the three basic colour channels of the display: red, green and blue (RGB):
this leads to 2

3 = 8 combinations, which lie at the 8 the extreme corners of
the RGB color cube13 The colours in Figure ?? are harsh on the eyes, and

13 Thus the 8

th colour should be white; in R,
whose basic infastructure was put together
when more sophisticated graphics display
were already available, this was replaced by
grey, as you can see in Figure ??.

there is no good excuse any more for creating graphics that are based on this
palette. Fortunately, the default colours used by some of the more modern
visualisation oriented packages (including ggplot2) are much better already,
but sometimes we want to make our own choices.

In Section ?? we saw the function scale_fill_gradientn, which al-
lowed us to create the colour gradient used in Figures ?? and ?? by interpolat-
ing the basic colour palette defined by the function brewer.pal in the RCol-
orBrewer package. This package defines a great set of colour palettes, we
can see all of them at a glance by using the function display.brewer.all

(Figure ??).

BrBG
PiYG
PRGn
PuOr
RdBu
RdGyRdYlBu

RdYlGn
Spectral
Accent
Dark2
Paired
Pastel1
Pastel2
Set1
Set2
Set3
Blues
BuGn
BuPu
GnBu

Greens
Greys

OrangesOrRd
PuBu

PuBuGn
PuRd

PurplesRdPu
Reds
YlGn

YlGnBu
YlOrBr
YlOrRd

Figure 4.31: RColorBrewer palettes.

display.brewer.all()

We can get information about the available colour palettes from the
data.frame brewer.pal.info.

head(brewer.pal.info)

maxcolors category colorblind

BrBG 11 div TRUE

PiYG 11 div TRUE

PRGn 11 div TRUE

PuOr 11 div TRUE

RdBu 11 div TRUE

RdGy 11 div FALSE

table(brewer.pal.info$category)

##

82 MODERN STATISTICS FOR MODERN BIOLOGY

4.8.2 plotly, webgl

fixme: Mention them as they are cool.

4.9 Colour

An important consideration when making plots is the colouring that we use in
them. Most R users are likely familiar with the built-in R colour scheme, used
by base R graphics, as shown in Figure ??.

pie(rep(1, 8), col=1:8)

1
23

4

5
6 7

8

Figure 4.30: Basic R colours.

These colour choices date back from 1980s hardware, where graphics
cards handled colours by letting each pixel either fully use or not use each
of the three basic colour channels of the display: red, green and blue (RGB):
this leads to 2

3 = 8 combinations, which lie at the 8 the extreme corners of
the RGB color cube13 The colours in Figure ?? are harsh on the eyes, and

13 Thus the 8

th colour should be white; in R,
whose basic infastructure was put together
when more sophisticated graphics display
were already available, this was replaced by
grey, as you can see in Figure ??.

there is no good excuse any more for creating graphics that are based on this
palette. Fortunately, the default colours used by some of the more modern
visualisation oriented packages (including ggplot2) are much better already,
but sometimes we want to make our own choices.

In Section ?? we saw the function scale_fill_gradientn, which al-
lowed us to create the colour gradient used in Figures ?? and ?? by interpolat-
ing the basic colour palette defined by the function brewer.pal in the RCol-
orBrewer package. This package defines a great set of colour palettes, we
can see all of them at a glance by using the function display.brewer.all

(Figure ??).

BrBG
PiYG
PRGn
PuOr
RdBu
RdGyRdYlBu

RdYlGn
Spectral
Accent
Dark2
Paired
Pastel1
Pastel2
Set1
Set2
Set3
Blues
BuGn
BuPu
GnBu

Greens
Greys

OrangesOrRd
PuBu

PuBuGn
PuRd

PurplesRdPu
Reds
YlGn

YlGnBu
YlOrBr
YlOrRd

Figure 4.31: RColorBrewer palettes.

display.brewer.all()

We can get information about the available colour palettes from the
data.frame brewer.pal.info.

head(brewer.pal.info)

maxcolors category colorblind

BrBG 11 div TRUE

PiYG 11 div TRUE

PRGn 11 div TRUE

PuOr 11 div TRUE

RdBu 11 div TRUE

RdGy 11 div FALSE

table(brewer.pal.info$category)

##

82 MODERN STATISTICS FOR MODERN BIOLOGY

4.8.2 plotly, webgl

fixme: Mention them as they are cool.

4.9 Colour

An important consideration when making plots is the colouring that we use in
them. Most R users are likely familiar with the built-in R colour scheme, used
by base R graphics, as shown in Figure ??.

pie(rep(1, 8), col=1:8)

1
23

4

5
6 7

8

Figure 4.30: Basic R colours.

These colour choices date back from 1980s hardware, where graphics
cards handled colours by letting each pixel either fully use or not use each
of the three basic colour channels of the display: red, green and blue (RGB):
this leads to 2

3 = 8 combinations, which lie at the 8 the extreme corners of
the RGB color cube13 The colours in Figure ?? are harsh on the eyes, and

13 Thus the 8

th colour should be white; in R,
whose basic infastructure was put together
when more sophisticated graphics display
were already available, this was replaced by
grey, as you can see in Figure ??.

there is no good excuse any more for creating graphics that are based on this
palette. Fortunately, the default colours used by some of the more modern
visualisation oriented packages (including ggplot2) are much better already,
but sometimes we want to make our own choices.

In Section ?? we saw the function scale_fill_gradientn, which al-
lowed us to create the colour gradient used in Figures ?? and ?? by interpolat-
ing the basic colour palette defined by the function brewer.pal in the RCol-
orBrewer package. This package defines a great set of colour palettes, we
can see all of them at a glance by using the function display.brewer.all

(Figure ??).

BrBG
PiYG
PRGn
PuOr
RdBu
RdGyRdYlBu

RdYlGn
Spectral
Accent
Dark2
Paired
Pastel1
Pastel2
Set1
Set2
Set3
Blues
BuGn
BuPu
GnBu

Greens
Greys

OrangesOrRd
PuBu

PuBuGn
PuRd

PurplesRdPu
Reds
YlGn

YlGnBu
YlOrBr
YlOrRd

Figure 4.31: RColorBrewer palettes.

display.brewer.all()

We can get information about the available colour palettes from the
data.frame brewer.pal.info.

head(brewer.pal.info)

maxcolors category colorblind

BrBG 11 div TRUE

PiYG 11 div TRUE

PRGn 11 div TRUE

PuOr 11 div TRUE

RdBu 11 div TRUE

RdGy 11 div FALSE

table(brewer.pal.info$category)

##

82 MODERN STATISTICS FOR MODERN BIOLOGY

4.8.2 plotly, webgl

fixme: Mention them as they are cool.

4.9 Colour

An important consideration when making plots is the colouring that we use in
them. Most R users are likely familiar with the built-in R colour scheme, used
by base R graphics, as shown in Figure ??.

pie(rep(1, 8), col=1:8)

1
23

4

5
6 7

8

Figure 4.30: Basic R colours.

These colour choices date back from 1980s hardware, where graphics
cards handled colours by letting each pixel either fully use or not use each
of the three basic colour channels of the display: red, green and blue (RGB):
this leads to 2

3 = 8 combinations, which lie at the 8 the extreme corners of
the RGB color cube13 The colours in Figure ?? are harsh on the eyes, and

13 Thus the 8

th colour should be white; in R,
whose basic infastructure was put together
when more sophisticated graphics display
were already available, this was replaced by
grey, as you can see in Figure ??.

there is no good excuse any more for creating graphics that are based on this
palette. Fortunately, the default colours used by some of the more modern
visualisation oriented packages (including ggplot2) are much better already,
but sometimes we want to make our own choices.

In Section ?? we saw the function scale_fill_gradientn, which al-
lowed us to create the colour gradient used in Figures ?? and ?? by interpolat-
ing the basic colour palette defined by the function brewer.pal in the RCol-
orBrewer package. This package defines a great set of colour palettes, we
can see all of them at a glance by using the function display.brewer.all

(Figure ??).

BrBG
PiYG
PRGn
PuOr
RdBu
RdGyRdYlBu

RdYlGn
Spectral
Accent
Dark2
Paired
Pastel1
Pastel2
Set1
Set2
Set3
Blues
BuGn
BuPu
GnBu

Greens
Greys

OrangesOrRd
PuBu

PuBuGn
PuRd

PurplesRdPu
Reds
YlGn

YlGnBu
YlOrBr
YlOrRd

Figure 4.31: RColorBrewer palettes.

display.brewer.all()

We can get information about the available colour palettes from the
data.frame brewer.pal.info.

head(brewer.pal.info)

maxcolors category colorblind

BrBG 11 div TRUE

PiYG 11 div TRUE

PRGn 11 div TRUE

PuOr 11 div TRUE

RdBu 11 div TRUE

RdGy 11 div FALSE

table(brewer.pal.info$category)

##

Consider these:

Different requirements for line & area colours

Many people are red-green colour blind

Lighter colours tend to make areas look larger than

darker colours -> use colors of equal luminance for
filled areas.

RGB color space
Motivated by computer screen hardware

HSV color space
Hue-Saturation-Value (Smith 1978)

Vmin: black (one point)

Vmax: a planar area of fully saturated
colours, with white in the centre

wikipedia

HSV color space
GIMP colour selector

linear or circular hue
chooser

and

a two-dimensional
area (usually a square

or a triangle) to
choose saturation

and value/lightness
for the selected hue

(almost) 1:1 mapping between RGB and HSV space

wikipedia

perceptual colour spaces
Human perception of colour corresponds neither to RGB nor

HSV coordinates, and neither to the physiological axes light-
dark, yellow-blue, red-green

Rather to polar coordinates in the colour plane (yellow/blue vs.
green/red) plus a third light/dark axis. Perceptually-based
colour spaces try to capture these perceptual axes:

1. hue (dominant wavelength)
2. chroma (colourfulness, intensity of coulor as compared

to grey)
3. luminance (brightness, amount of grey)

CIELUV and HCL
Commission Internationale de l’ Éclairage (CIE) in 1931, on

the basis of extensive colour matching experiments with
people, defined a “standard observer” who represents a
typical human colour response (response of the three
light cones + their processing in the brain) to a triplet
(x,y,z) of primary light sources (in principle, this could
be monochromatic R, G, B; but CIE choose something a
bit more subtle)

1976: CIELUV and CIELAB are perceptually based
coordinates of colour space.

CIELUV (L, u, v)-coordinates is prefered by those who
work with emissive colour technologies (such as
computer displays) and CIELAB by those working with
dyes and pigments (such as in the printing and textile
industries)
 Ihaka 2003

HCL colours
(u,v) = chroma * (cos h, sin h)

L the same as in CIELUV, (C, H) are
simply polar coordinates for (u,v)

1. hue (dominant wavelength)

2. chroma (colorfulness, intensity
of color as compared to gray)

3. luminance (brightness, amount
of gray)

RColorBrewer

BrBG
PiYG
PRGn
PuOr
RdBu
RdGy
RdYlBu
RdYlGn
Spectral

Accent
Dark2
Paired
Pastel1
Pastel2
Set1
Set2
Set3

Blues
BuGn
BuPu
GnBu
Greens
Greys

Oranges
OrRd
PuBu

PuBuGn
PuRd

Purples
RdPu
Reds
YlGn

YlGnBu
YlOrBr
YlOrRd

qualitative

sequential

diverging

From A. Zeileis, Reisensburg 2007

Pick your favourite

Acknowledgements

Susan Holmes
Robert Gentleman
Florian Hahne

Hadley Wickham
Ross Ihaka
Achim Zeileis
Kurt Hornik

References
Visualizing Genomic Data, R. Gentleman, F. Hahne, W. Huber (2006), Bioconductor

Project Working Papers, Paper 10
Choosing Color Palettes for Statistical Graphics, A. Zeileis, K. Hornik (2006),

Department of Statistics and Mathematics, Wirtschaftsuniversität Wien, Research
Report Series, Report 41

Albert Munsell
(1858-1918) divided the
circle of hues into 5
main hues — R, Y, G, B,
P (red, yellow, green,
blue and purple).

Value, Chroma: ranges
divided into 10 equal
steps.

E.g. R 4/5 = hue of red
with a value of 4 and a
chroma of 5.

Munsell Colour System

Albert Munsell
(1858-1918) divided the
circle of hues into 5 main
hues — R, Y, G, B, P (red,
yellow, green, blue and
purple).

Value, Chroma: ranges
divided into 10 equal
steps.

E.g. R 4/5 = hue of red
with a value of 4 and a
chroma of 5.

Colour Harmony

Balance
The intensity of colour which should be used is

dependent on the area that that colour is to
occupy. Small areas need to be much more
colourful than larger ones.

Choose colours centered on a mid-range or
neutral value, or;

Choose colours at equally spaced points along
smooth paths through (perceptually uniform)
colour space: equal luminance and chroma
and correspond to set of evenly spaced hues.

