Introduction to R and Bioconductor

Martin Morgan (mtmorgan@fredhutch.org)
Fred Hutchinson Cancer Research Center
Seattle, WA, USA

15 June, 2015

R : Statistical Computing Environment

- Vectors - logical, integer, numeric, character, ...
- list() - contains other vectors (recursive)
- factor (), NA - statistical concepts
- Can be named - c (Germany=1, Argentina=0)
- matrix(), array() - a vector with a 'dim' attribute.
- data.frame() - like spreadsheets; list of equal length vectors.
- Homogenous types within a column, heterogenous types across columns.
- An example of an R class.
- Other classes - more complicated arrangement of vectors.
- Examples: the value returned by $\operatorname{lm}()$; the DNAStringSet class used to hold DNA sequences.
- plain, 'accessor', 'generic', and 'method' functions
- Packages - base, recommended, contributed.

R: Statistical Computing Environment

> $1+2$
[1] 3
> x <- rnorm(1000)
$>y<-x+\operatorname{rnorm}(1000$, sd=.8)
> df <- data.frame(x=x, y=y)
> fit <- lm ($\mathrm{y} \sim \mathrm{x}, \mathrm{df}$)
> class(fit)
\# calculator
\# vectors, statistical
\# vectorized calculation
\# object construction
\# linear model, formula
\# discovery
[1] "lm"

R: Statistical Computing Environment

> plot (y ~x, df, cex.lab=2)
> abline(fit, col="red",
$+\quad$ lwd=2)

> library (ggplot2)
> ggplot(df, aes(x, y)) +

+ geom_point() +
+ stat_smooth(method="lm")

R : programming concepts

- Functions - built-in (e.g., rnorm()); user-defined
- Subsetting - logical, numeric, character; df [df\$x > 0,];
- Iteration - over vector elements, lapply(), mapply(), apply(),...; e.g., lapply(df, mean)

R : help!

- ?data.frame
- methods(lm), methods(class=class(fit))
- ?"plot<tab>"
- help(package="Biostrings")
- vignette(package="GenomicRanges")
- StackOverflow; R-help mailing list
"Hey, can you help me with this? I tried..."

Bioconductor

Analysis \& comprehension of high-throughput genomic data

- > 12 years old; 1024 packages; widely used
- Sequencing (RNAseq, ChIPseq, variants, copy number, ...), microarrays, flow cytometery, proteomics, ...
- http://bioconductor.org, https://support.bioconductor.org
Themes
- Interoperable - classes to work with genome-scale data, shared (where possible!) across packages
- Usable - package vignettes, man pages, examples, ...
- Reproducible - 'release' and 'devel' versions, updated every 6 months

Bioconductor: GenomicRanges


```
seqinfo: 93 sequences (1 circular) from hg19 genome
```

GRanges
length(gr); gr[1:5]
seqnames(gr)
start(gr)
end(gr)
width(gr)
strand(gr)

DataFrame
mcols(gr)
gr\$exon_id

```
Seqinfo
    seqlevels(gr)
    seqlengths(gr)
    genome(gr)
```

- Data: aligned reads, called peaks, SNP locations, CNVs, ...
- Annotation: gene models, variants, regulatory regions, ...
- findOverlaps(), nearest(), and many other useful range-based operations.

Bioconductor: SummarizedExperiment motivation

Cisplatin-resistant non-small-cell lung cancer gene sets

Hsu et al. 2007 J Clin Oncol 25: 4350-4357 (retracted)

Baggerly \& Coombes 2009 Ann Appl Stat 3: 1309-1334

Coordinated, programmatic manipulation of feature, sample, and assay data

Bioconductor: SummarizedExperiment

Expt'I Description

Regions of interest \times samples

- assay() - matrix, e.g., counts of reads overlapping regions of interest.
- rowData() - regions of interest as GRanges or GRangesList
- colData() - DataFrame describing samples.
> assay(se)[,se\$Treatment == "Control"] \# Control counts

Bioconductor: a fun demo of GRanges interoperability

GenomicFeatures And 'annotation' packages to represent gene models as GRanges.

GenomicAlignments To input aligned reads as GRanges.
Gviz For visualization.
shiny For interactivity.

Bioconductor: Resources

http://bioconductor.org

- Packages - biocViews, landing pages (e.g., AnnotationHub)
- Course \& conference material; work flows; publications
- Developer resources
https://support.bioconductor.org
- Queston \& answer forum for users; usually fast, expert, friendly responses
- Contributed tutorials, news

Citations

- Huber et al. (2015) Orchestrating high-throughput genomic analysis with Bioconductor. Nature Methods 12:115-121.
- Lawrence et al. (2013) Software for Computing and Annotating Genomic Ranges. PLoS Comput Biol 9(8): e1003118.

Acknowledgments

- Core (Seattle): Sonali Arora, Marc Carlson, Nate Hayden, Valerie Obenchain, Hervé Pagès, Paul Shannon, Dan Tenenbaum.
- The research reported in this presentation was supported by the National Cancer Institute and the National Human Genome Research Institute of the National Institutes of Health under Award numbers U24CA180996 and U41HG004059, and the National Science Foundation under Award number 1247813. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health or the National Science Foundation.

BioC 2015 Annual Conference, Seattle, WA, 20-22 July.

