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1 Introduction

This vignette describes several basic steps in the analysis of ChIP-seq for histone modification - here H3K27
acetylation (H3K27ac).

1.1 Aims of the tutorial

The aim of the present lab is to show the reader how to:
1. Read ChIP-seq experiment to R
2. Extend the reads and bin the data
3. Create .bedGraph files for data sharing
4. Visualize ChIP-seq files with R
5. Perform basic analysis of ChIP-seq peaks
6. Generate average profiles and heatmaps of ChIP-seq enrichment around a set of genomic loci
In the appendix part, we show how to download, preprocess and asses the quality of .fastq files.

2 Data

H3K27ac is a histone modification associated with active promoters and enhancers. We downloaded data
corresponding to a ChIP-seq experiment mapping the H3K27ac histone modification in two replicates of
mouse Embryonic Stem cells (mES) along with the input control sample from the study Histone H3K27ac
separates active from poised enhancers and predicts developmental state by Creyghton et al., PNAS 2010.

To get started quickly, we here describe the initial preprocessing only briefly. See the Appendix for full
details.

2.1 Preprocessing of data

The first part of ChIP-seq analysis workflow consists in read preprocessing. We will not focus here on
these first steps, we outline them and provide the code in the Appendix part of the vignette. The three
major steps in the preprocessing are briefly outlined below.

Initial quality assessment

Sequenced reads are saved in .fastq files. The very first step in the analyses of sequencing results consists
in quality assessment. The R package ShortRead provides a qa to perform this analysis. The reader can find
the code necessary to generate a HTML read quality control report in the Appendix part of the vignette.

External to R data opperations

Initial parts of the analysis of sequenced reads include: alignment, filtering and peak finding. They can
be performed using tools such as Bowtie2, samtools or MACS. We provide all the necessary code in the
Appendix part of the vignette.

Additional considerations

Visualisation and read distribution analysis parts of this vignette. They require biomart database querying
via the internet. We hence provide the necessary objects in the package. Code for their generation is found
in the Appendix part of the vignette.

To reduce memory requirements, we focus on filtered reads mapping only to chromosome 6.
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2.2 Data package

To save time, we have performed we above steps already for you and placed the produced files and
R objects in a data package called EpigeneticsCSAMA2015, which we load now. (Note that such a data
package is used for convenience in this course, but typically, you would not package up interemediate
data in this way.)

library(EpigeneticsCSAMA2015)

dataDirectory = system.file("bedfiles", package="EpigeneticsCSAMA2015")

The variable dataDirectory shows where the files that we will read in the following are on your computer.

dataDirectory

## [1] "/home/anders/R/x86_64-pc-linux-gnu-library/3.2/EpigeneticsCSAMA2015/bedfiles"

Have a look at them with a text editor.

3 Reading the filtered ChIP-seq reads

We need to load the GenomicRanges, rtracklayer and IRanges packages. To read the .bam file to R, we use the
import.bed function from the rtracklayer package. The result is a GRanges object. This is an extremely useful
and powerful class of objects which the readers are already familiar with. Each filtered read is represented
here as a genomic interval.

library(GenomicRanges)

library(rtracklayer)

library(IRanges)

input = import.bed(file.path(dataDirectory, 'ES_input_filtered_ucsc_chr6.bed'),

asRangedData=FALSE)

rep1 = import.bed(file.path(dataDirectory, 'H3K27ac_rep1_filtered_ucsc_chr6.bed'),

asRangedData=FALSE)

rep2 = import.bed(file.path(dataDirectory, 'H3K27ac_rep2_filtered_ucsc_chr6.bed'),

asRangedData=FALSE)

The objects input, rep1 and rep2 hold the genomic annotation of the filtered reads for the input sample
and ChIP-seq replicate 1 and replicate 2, respectively. We display the rep1 object. We see that the strand
information, read name along with alignment score are included as information for each read.

rep1

## GRanges object with 481412 ranges and 2 metadata columns:

## seqnames ranges strand | name

## <Rle> <IRanges> <Rle> | <character>

## [1] chr6 [ 85222462, 85222497] - | SRR066766.303

## [2] chr6 [134189439, 134189474] + | SRR066766.374

## [3] chr6 [ 47920826, 47920861] + | SRR066766.393

## [4] chr6 [143565148, 143565183] + | SRR066766.397

## [5] chr6 [ 39392692, 39392727] - | SRR066766.438

## ... ... ... ... ... ...

## [481408] chr6 [ 86800209, 86800244] - | SRR066766.14657325

## [481409] chr6 [ 91422497, 91422532] - | SRR066766.14657340

## [481410] chr6 [ 54433776, 54433811] + | SRR066766.14657362
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## [481411] chr6 [120020286, 120020321] - | SRR066766.14657382

## [481412] chr6 [ 85113322, 85113357] - | SRR066766.14657387

## score

## <numeric>

## [1] 40

## [2] 42

## [3] 42

## [4] 42

## [5] 42

## ... ...

## [481408] 42

## [481409] 42

## [481410] 42

## [481411] 42

## [481412] 42

## -------

## seqinfo: 1 sequence from an unspecified genome; no seqlengths

We see that we have roughly the same number of reads in the input and IP-ed experiments.

length(input)

## [1] 465823

length(rep1)

## [1] 481412

length(rep2)

## [1] 506287

4 Preparation of the ChIP-seq and control samples: read extension

The reads correspond to sequences at the end of each IP-ed fragment (single-end sequencing data). As
discussed in the lecture, we need to extend them to represent each IP-ed DNA fragment.

We estimate the mean read length using the estimate.mean.fraglen function from chipseq packege. Next,
we extend the reads to the inferred read length using the resize function. We remove any reads for which
the coordinates, after the extension, exceed chromosome length. These three analysis steps are wrapped
in a single function prepareChIPseq function which we define below.

library(chipseq)

prepareChIPseq = function(reads){

frag.len = median( estimate.mean.fraglen(reads) )

cat( paste0( 'Median fragment size for this library is ', round(frag.len)))

reads.extended = resize(reads, width = frag.len)

return( trim(reads.extended) )

}

We next apply it to the input and ChIP-seq samples.
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input = prepareChIPseq( input )

## Median fragment size for this library is 236

rep1 = prepareChIPseq( rep1 )

## Median fragment size for this library is 122

rep2 = prepareChIPseq( rep2 )

## Median fragment size for this library is 107

Compare with above to see how rep1 has changed.

rep1

## GRanges object with 481412 ranges and 2 metadata columns:

## seqnames ranges strand | name

## <Rle> <IRanges> <Rle> | <character>

## [1] chr6 [ 85222376, 85222497] - | SRR066766.303

## [2] chr6 [134189439, 134189560] + | SRR066766.374

## [3] chr6 [ 47920826, 47920947] + | SRR066766.393

## [4] chr6 [143565148, 143565269] + | SRR066766.397

## [5] chr6 [ 39392606, 39392727] - | SRR066766.438

## ... ... ... ... ... ...

## [481408] chr6 [ 86800123, 86800244] - | SRR066766.14657325

## [481409] chr6 [ 91422411, 91422532] - | SRR066766.14657340

## [481410] chr6 [ 54433776, 54433897] + | SRR066766.14657362

## [481411] chr6 [120020200, 120020321] - | SRR066766.14657382

## [481412] chr6 [ 85113236, 85113357] - | SRR066766.14657387

## score

## <numeric>

## [1] 40

## [2] 42

## [3] 42

## [4] 42

## [5] 42

## ... ...

## [481408] 42

## [481409] 42

## [481410] 42

## [481411] 42

## [481412] 42

## -------

## seqinfo: 1 sequence from an unspecified genome; no seqlengths

5 Binning the ChIP-seq and control

The next step in the analysis is to count how many reads map to each of the pre-established genomic
intervals (bins).

5.1 Generation of bins

We first generate the bins. We will tile the genome into non-overlapping bins of size 200 bp.
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To this end we need the information about chromosome sizes in the mouse genome (assembly mm9).
In the data package, we provide the object si, which holds this information. The reader can find the code
necessary to create the si object in the Obtaining si object for mm9 of the Appendix.

data(si)

si

## Seqinfo object with 21 sequences from mm9 genome:

## seqnames seqlengths isCircular genome

## chr1 197195432 FALSE mm9

## chr2 181748087 FALSE mm9

## chr3 159599783 FALSE mm9

## chr4 155630120 FALSE mm9

## chr5 152537259 FALSE mm9

## ... ... ... ...

## chr17 95272651 FALSE mm9

## chr18 90772031 FALSE mm9

## chr19 61342430 FALSE mm9

## chrX 166650296 FALSE mm9

## chrY 15902555 FALSE mm9

Next, we use the tileGenome function from the GenomicRanges package to generate a GRanges object with
intervals covering the genome in tiles (bins) of size of 200 bp.

binsize = 200

bins = tileGenome(si['chr6'], tilewidth=binsize,

cut.last.tile.in.chrom=TRUE)

bins

## GRanges object with 747586 ranges and 0 metadata columns:

## seqnames ranges strand

## <Rle> <IRanges> <Rle>

## [1] chr6 [ 1, 200] *

## [2] chr6 [201, 400] *

## [3] chr6 [401, 600] *

## [4] chr6 [601, 800] *

## [5] chr6 [801, 1000] *

## ... ... ... ...

## [747582] chr6 [149516201, 149516400] *

## [747583] chr6 [149516401, 149516600] *

## [747584] chr6 [149516601, 149516800] *

## [747585] chr6 [149516801, 149517000] *

## [747586] chr6 [149517001, 149517037] *

## -------

## seqinfo: 1 sequence from mm9 genome

5.2 Binning

We now count how many reads fall into each bin. For this purpose, we define the function BinChIPseq. It
takes two arguments, reads and bins which are GRanges objects.

BinChIPseq = function( reads, bins ){

mcols(bins)$score = countOverlaps( bins, reads )
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return( bins )

}

Now we apply it to the objects input, rep1 and rep2. We obtain input.200bins, rep1.200bins and rep2.200bins,
which are GRanges objects that contain the binned read coverage of the input and ChIP-seq experiments.

input.200bins = BinChIPseq( input, bins )

rep1.200bins = BinChIPseq( rep1, bins )

rep2.200bins = BinChIPseq( rep2, bins )

rep1.200bins

## GRanges object with 747586 ranges and 1 metadata column:

## seqnames ranges strand | score

## <Rle> <IRanges> <Rle> | <integer>

## [1] chr6 [ 1, 200] * | 0

## [2] chr6 [201, 400] * | 0

## [3] chr6 [401, 600] * | 0

## [4] chr6 [601, 800] * | 0

## [5] chr6 [801, 1000] * | 0

## ... ... ... ... ... ...

## [747582] chr6 [149516201, 149516400] * | 0

## [747583] chr6 [149516401, 149516600] * | 0

## [747584] chr6 [149516601, 149516800] * | 0

## [747585] chr6 [149516801, 149517000] * | 0

## [747586] chr6 [149517001, 149517037] * | 0

## -------

## seqinfo: 1 sequence from mm9 genome

We can quickly plot coverage for 1000 bins, starting from bin 200,000.

plot( 200000:201000, rep1.200bins$score[200000:201000],

xlab="chr6", ylab="counts per bin" )
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Below, we will see more sophisticaed ways of plotting coverage.

5.3 Exporting binned data

At this step of the analysis, the data is ready to be visualized and shared. One of the most common
means of sharing ChIP-seq data is to generate .wig, .binWig or .bedGraph files. They are memory and
size-efficient files holding the information about the signal along the genome. Moreover, these files can
be visualized in genome browsers such as IGV and IGB. We show how to export the binned data as a
.bedGraph file.

export(input.200bins,

con='input_chr6.bedGraph',

format = "bedGraph")

export(rep1.200bins,

con='H3K27ac_rep1_chr6.bedGraph',

format = "bedGraph")

export(rep2.200bins,

con='H3K27ac_rep2_chr6.bedGraph',

format = "bedGraph")

If you have a genome browser (like IGB) installed, have a look at the bedGraph files. In the next section,
we see how to visualize them with R.

6 Visualisation of ChIP-seq data wit Gviz

Now, we have data which we would like to display along the genome. R offers a flexible infrastructure for
visualisation of many types of genomics data. Here, we use the Gviz package for this purposes.
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library(Gviz)

The principle of working with Gviz relies on the generation of tracks which can be, for example ChIP-
seq signal along the genome, ChIP-seq peaks, gene models or any kind of other data such as annotation of
CpG islands in the genome. We start with loading the gene models for chromosome 6 starting at position
122,530,000 and ending at position 122,900,000. We focus on this region as it harbors the Nanog gene, which
is stongly expressed in ES cells.

We obtain the annotation using biomaRt package. Work with biomaRt package relies on querying the
biomart database. In the Appendix, we show how to obtain gene models for protein coding genes for the
archive mouse genome assembly (mm9) and how to generate the bm object holding the annotation of all
the RefSeq genes.

data(bm)

bm

## GeneRegionTrack 'RefSeq'

## | genome: mm9

## | active chromosome: chr6

## | annotation features: 102

We include the GenomeAxisTrack object which is a coordinate axis showing the genomic span of the
analyzed region.

AT = GenomeAxisTrack( )

We plot the result using the plotTracks function. We choose the region to zoom into with the from and
to arguments. The transcriptAnnotation argument allows to put the gene symbols in the plot.

plotTracks(c( bm, AT),

from=122530000, to=122900000,

transcriptAnnotation="symbol", window="auto",

cex.title=1, fontsize=10 )
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We next add our two data tracks to the plot. We first generate DataTrack objects with DataTrack function.
We include the information about how the track is be labaled anc colored. We obtain input.track, rep1.track
and rep2.track objects.

input.track = DataTrack(input.200bins,

strand="*", genome="mm9", col.histogram='gray',

fill.histogram='black', name="Input", col.axis="black",

cex.axis=0.4, ylim=c(0,150))

rep1.track = DataTrack(rep1.200bins,

strand="*", genome="mm9", col.histogram='steelblue',

fill.histogram='black', name="Rep. 1", col.axis='steelblue',

cex.axis=0.4, ylim=c(0,150))

rep2.track = DataTrack(rep2.200bins,

strand="*", genome="mm9", col.histogram='steelblue',

fill.histogram='black', name="Rep. 2", col.axis='steelblue',

cex.axis=0.4, ylim=c(0,150))

Finally, we plot these tracks along with the genomic features. We observe a uniform coverage in the
case of the input track and pronounced peaks of enrichment H3K27ac in promoter and intergenic regions.
Importantly, H3K27ac enriched regions are easily identified.

plotTracks(c(input.track, rep1.track, rep2.track, bm, AT),

from=122530000, to=122900000,

transcriptAnnotation="symbol", window="auto",

type="histogram", cex.title=0.7, fontsize=10 )
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7 ChIP-seq peaks

ChIP-seq experiments are designed to isolate regions enriched in a factor of interest. The identification of
enriched regions, often refered to as peak finding, is an area of research by itself. There are many algo-
rithms and tools used for peak finding. The choice of a method is strongly motivated by the kind of factor
analyzed. For instance, transcription factor ChIP-seq yield well defined narrow peaks whereas histone
modifications ChIP-seq experiments such as H3K36me3 yield extended regions of high coverage. Finally,
ChIP-seq with antobodies recognizing polymerase II result in narrow peaks combined with extended re-
gions of enrichment.

7.1 Identification of peaks

As we saw in the previous section of the tutorial, H3K27ac mark shows well defined peaks. In such a
case, MACS is one of the most commonly used software for peak finding. ChIP-seq peak calling can also
be done in R with the BayesPeak package. However, we stick here to the most common approach and use
MACS. We ran MACS for you and provide the result in the data package. You can find the code necessary
to obtain the peaks in the Appendix of the vignette.

7.2 Peaks – basic analysis in R

We next import the .bed files of the isolated peaks from the data package.
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peaks.rep1 = import.bed(file.path(dataDirectory,'Rep1_peaks_ucsc_chr6.bed'),

asRangedData=FALSE)

peaks.rep2 = import.bed(file.path(dataDirectory,'Rep2_peaks_ucsc_chr6.bed'),

asRangedData=FALSE)

First step in the analysis of the identified peaks is to simply display them in the browser, along with
the ChIP-seq and input tracks. To this end, we use AnnotationTrack function. We display peaks as boxes
colored in blue.

peaks1.track = AnnotationTrack(peaks.rep1,

genome="mm9", name='Peaks Rep. 1',

chromosome='chr6',

shape='box',fill='blue3',size=2)

peaks2.track = AnnotationTrack(peaks.rep2,

genome="mm9", name='Peaks Rep. 2',

chromosome='chr6',

shape='box',fill='blue3',size=2)

We visualise the Nanog locus.

plotTracks(c(input.track, rep1.track, peaks1.track,

rep2.track, peaks2.track, bm, AT),

from=122630000, to=122700000,

transcriptAnnotation="symbol", window="auto",

type="histogram", cex.title=0.7, fontsize=10 )
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We can see thath MACS has succesfully identified regions showing high H3K27ac signal. We see that
both biological replicates agree well, however, in some cases peaks are called only in one sample. In the
next section, we will analyse how often do we see the overlap between peaks and isolate reproducible
peaks.

7.3 Venn diagrams

We first find the overlap between the peak sets of the two replicates.

ovlp = findOverlaps( peaks.rep1, peaks.rep2 )

ovlp

## Hits object with 2528 hits and 0 metadata columns:

## queryHits subjectHits

## <integer> <integer>

## [1] 1 1

## [2] 2 2

## [3] 3 3

## [4] 4 4

## [5] 5 5

## ... ... ...

## [2524] 3025 3025

## [2525] 3026 3026

## [2526] 3029 3027
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## [2527] 3030 3028

## [2528] 3031 3030

## -------

## queryLength: 3032

## subjectLength: 3032

If a peak in one replicate overlps with mutiple peaks in the other replicate, it will appear multiple times
in ovlp. To see, how many peaks overlap with something in the other replicate, we count the number of
unique peaks in each of the two columns of ovlp and take the smaller of these two counts to as the number
of common peaks.

ov = min( length(unique(ovlp@queryHits)), length(unique(ovlp@subjectHits)) )

We draw this as a Venn diagram, using the draw.pairwise.venn function from the VennDiagram package.

library(VennDiagram)

draw.pairwise.venn(

area1=length(peaks.rep1),

area2=length(peaks.rep2),

cross.area=ov,

category=c("rep1", "rep2"),

fill=c("steelblue", "blue3"),

cat.cex=0.7)

731 7312301

rep1 rep2
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## (polygon[GRID.polygon.549], polygon[GRID.polygon.550], polygon[GRID.polygon.551], polygon[GRID.polygon.552], text[GRID.text.553], text[GRID.text.554], text[GRID.text.555], text[GRID.text.556], text[GRID.text.557])

We will focus only on peaks identified in both replicates (hereafter refered to as enriched areas). The
enriched areas are colored in green.

enriched.regions = Reduce(subsetByOverlaps, list(peaks.rep1, peaks.rep2))

enr.reg.track = AnnotationTrack(enriched.regions,

genome="mm9", name='Enriched regions',

chromosome='chr6',

shape='box',fill='green3',size=2)

plotTracks(c(input.track, rep1.track, peaks1.track,

rep2.track, peaks2.track, enr.reg.track,

bm, AT),

from=122630000, to=122700000,

transcriptAnnotation="symbol", window="auto",

type="histogram", cex.title=0.5, fontsize=10 )
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7.4 Isolation of promoters overlapping H3K27ac peaks

One of the questions of a ChIP seq analyses is to which extend ChIP-enriched regions overlap a chosen
type of features, such as promoters or regions enriched with other modifications. To this end, the overlap
between peaks of ChIP-seq signal and the features of interest is analysed.

We exemplify such an analysis by testing how many of the H3K27ac enriched regions overlap promoter
regions.

Identification of promoters

As shown in the Appendix, we have used biomaRt to get coordinates for start and end of all mouse genes.
(These are the coordinates of the outermost UTR boundaries.) We load the results of the biomaRt query
from the data package. It is given in the object egs, a data.frame containing ensembl ID along with gene
symbols, genomic coordiantes and orientation of of mouse genes.
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data(egs)

head(egs)

## ensembl_gene_id external_gene_id chromosome_name start_position

## 1 ENSMUSG00000030270 Cpne9 6 113232301

## 2 ENSMUSG00000001632 Brpf1 6 113257175

## 3 ENSMUSG00000030271 Ogg1 6 113276966

## 4 ENSMUSG00000030272 Camk1 6 113284118

## 5 ENSMUSG00000048930 Tada3 6 113316019

## 6 ENSMUSG00000079426 Arpc4 6 113328107

## end_position strand

## 1 113255621 1

## 2 113274851 1

## 3 113285062 1

## 4 113293978 -1

## 5 113327877 -1

## 6 113340442 1

We next identify the transcription start site (TSS), taking into account gene orientation.

egs$TSS = ifelse( egs$strand == "1", egs$start_position, egs$end_position )

head(egs)

## ensembl_gene_id external_gene_id chromosome_name start_position

## 1 ENSMUSG00000030270 Cpne9 6 113232301

## 2 ENSMUSG00000001632 Brpf1 6 113257175

## 3 ENSMUSG00000030271 Ogg1 6 113276966

## 4 ENSMUSG00000030272 Camk1 6 113284118

## 5 ENSMUSG00000048930 Tada3 6 113316019

## 6 ENSMUSG00000079426 Arpc4 6 113328107

## end_position strand TSS

## 1 113255621 1 113232301

## 2 113274851 1 113257175

## 3 113285062 1 113276966

## 4 113293978 -1 113293978

## 5 113327877 -1 113327877

## 6 113340442 1 113328107

We consider regions of ±200 bp around the TSS as promoters.

promoter_regions =

GRanges(seqnames = Rle( paste0('chr', egs$chromosome_name) ),

ranges = IRanges( start = egs$TSS - 200,

end = egs$TSS + 200 ),

strand = Rle( rep("*", nrow(egs)) ),

gene = egs$external_gene_id)

promoter_regions

## GRanges object with 1973 ranges and 1 metadata column:

## seqnames ranges strand | gene

## <Rle> <IRanges> <Rle> | <character>

## [1] chr6 [113232101, 113232501] * | Cpne9

## [2] chr6 [113256975, 113257375] * | Brpf1

## [3] chr6 [113276766, 113277166] * | Ogg1

## [4] chr6 [113293778, 113294178] * | Camk1
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## [5] chr6 [113327677, 113328077] * | Tada3

## ... ... ... ... ... ...

## [1969] chr6 [ 30119537, 30119937] * | Mir183

## [1970] chr6 [ 93743566, 93743966] * | U6

## [1971] chr6 [116321886, 116322286] * | SNORA17

## [1972] chr6 [ 76150072, 76150472] * | U1

## [1973] chr6 [106951246, 106951646] * | U6

## -------

## seqinfo: 1 sequence from an unspecified genome; no seqlengths

Overlapping promoters with H3K27ac enriched regions

Now we would like to know how many of out the promoters overlap with a H3K27ac enriched regions.

ovlp2 = findOverlaps( enriched.regions, promoter_regions )

cat(sprintf( "%d of %d promoters are overlapped by an enriched region.",

length( unique(ovlp2@subjectHits) ), length( promoter_regions ) ) )

## 634 of 1973 promoters are overlapped by an enriched region.

We can also turn the question around:

ovlp2b = findOverlaps( promoter_regions, enriched.regions )

cat(sprintf( "%d of %d enriched regions overlap a promoter.",

length( unique(ovlp2b@subjectHits) ), length( enriched.regions ) ) )

## 546 of 2301 enriched regions overlap a promoter.

Is this a significant enrichment? To see, we first calculate how much chromosome 6 is part of a promotor
region. The following command reduces the promotor list to non-overlapping intervals and sums up their
widths

promotor_total_length = sum(width(reduce(promoter_regions)))

promotor_total_length

## [1] 766386

Which fraction of the chromsome is this?

promotor_fraction_of_chromosome_6 = promotor_total_length / seqlengths(si)["chr6"]

Nearly a quarter of promoters are overlapped by H3K27ac-enriched regions even though they make up
only half a percent of the chromosome. Clearly, this is a strong enrichment. A binomial test confirms this:

binom.test( length( unique(ovlp2b@subjectHits) ), length( enriched.regions ), promotor_fraction_of_chromosome_6 )

##

## Exact binomial test

##

## data: length(unique(ovlp2b@subjectHits)) and length(enriched.regions)

## number of successes = 546, number of trials = 2301, p-value <

18



## 0.00000000000000022

## alternative hypothesis: true probability of success is not equal to 0.005125744

## 95 percent confidence interval:

## 0.2200317 0.2552159

## sample estimates:

## probability of success

## 0.2372881

Which promotors are overlapped with an H3K27ac peak? Let’s see some examples:

pos.TSS = egs[ unique(findOverlaps( promoter_regions, enriched.regions )@queryHits),]

pos.TSS[1:3,]

## ensembl_gene_id external_gene_id chromosome_name start_position

## 2 ENSMUSG00000001632 Brpf1 6 113257175

## 3 ENSMUSG00000030271 Ogg1 6 113276966

## 4 ENSMUSG00000030272 Camk1 6 113284118

## end_position strand TSS

## 2 113274851 1 113257175

## 3 113285062 1 113276966

## 4 113293978 -1 113293978

The first three promoters identified as overlapping a H3K27ac peak include: Brpf1, Ogg1 and Camk1
loci.

7.5 Analysis of the distribution of H3K27ac around a subset of gene promoters

In this part of the analysis, we show how to generate plots displaying the distribution of ChIP-seq signal
around certain genomic positions, here a set of promoter regions. These include a heatmap representation
and an average profile for H3K27ac signal at promoters overlapping a peak of H3K27ac identified by
MACS. These are one of the most frequently performed analysis steps in ChIP-seq experiments.

In the previous section, we have identified promoters overlaping a H3K27ac peak (the pos.TSS object).
In order to get a comprehensive view of the distribution of H3K27ac around the corresponding TSS, we
extend the analysed region to ±1000 bp around the TSS. We divide each of these 2000 bp regions into
20 bins of 100 bp length each and order the bins with increasing position for genes on the ’+’ strand and
decreasing for genes on the ’-’ strand.

Next, we tile the promoter regions with consecutive 100bp tiles. For each region, we order the tiles
according to the gene orientation. We create 20 tiles per promoter region.

tiles = sapply( 1:nrow(pos.TSS), function(i)

if( pos.TSS$strand[i] == "1" )

pos.TSS$TSS[i] + seq( -1000, 900, length.out=20 )

else

pos.TSS$TSS[i] + seq( 900, -1000, length.out=20 ) )

tiles = GRanges(tilename = paste( rep( pos.TSS$ensembl_gene_id, each=20), 1:20, sep="_" ),

seqnames = Rle( rep(paste0('chr', pos.TSS$chromosome_name), each=20) ),

ranges = IRanges(start = as.vector(tiles),

width = 100),

strand = Rle(rep("*", length(as.vector(tiles)))),

seqinfo=si)

tiles

## GRanges object with 12680 ranges and 1 metadata column:
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## seqnames ranges strand | tilename

## <Rle> <IRanges> <Rle> | <character>

## [1] chr6 [113256175, 113256274] * | ENSMUSG00000001632_1

## [2] chr6 [113256275, 113256374] * | ENSMUSG00000001632_2

## [3] chr6 [113256375, 113256474] * | ENSMUSG00000001632_3

## [4] chr6 [113256475, 113256574] * | ENSMUSG00000001632_4

## [5] chr6 [113256575, 113256674] * | ENSMUSG00000001632_5

## ... ... ... ... ... ...

## [12676] chr6 [30119137, 30119236] * | ENSMUSG00000065619_16

## [12677] chr6 [30119037, 30119136] * | ENSMUSG00000065619_17

## [12678] chr6 [30118937, 30119036] * | ENSMUSG00000065619_18

## [12679] chr6 [30118837, 30118936] * | ENSMUSG00000065619_19

## [12680] chr6 [30118737, 30118836] * | ENSMUSG00000065619_20

## -------

## seqinfo: 21 sequences from mm9 genome

Next, we count how many reads are mapping to each tile. The resulting vector H3K27ac.p is next
used to create a matrix (H3K27ac.p.matrix), where each row is a H3K27ac-enriched promoter. Each column
coresponds to a consecutive 100bp tile of 2000 bp region around the TSS overlapping a H3K27ac peak.
Since we have divided each promoter region in 21 tiles, we obtain a matrix with 21 columns and 634 rows
(the number of promoters overlapping H3K27ac peak).

H3K27ac.p = countOverlaps( tiles, rep1) +

countOverlaps( tiles, rep2 )

H3K27ac.p.matrix = matrix( H3K27ac.p, nrow=nrow(pos.TSS),

ncol=20, byrow=TRUE )

Finally, we plot the result as a heatmap and as a plot of average values per each tile for all the included
promoters.

colors = colorRampPalette(c('white','red','gray','black'))(100)

layout(mat=matrix(c(1,2,0,3), 2, 2),

widths=c(2,2,2),

heights=c(0.5,5,0.5,5), TRUE)

par(mar=c(4,4,1.5,1))

image(seq(0, max(H3K27ac.p.matrix), length.out=100), 1,

matrix(seq(0, max(H3K27ac.p.matrix), length.out=100),100,1),

col = colors,

xlab='Distance from TSS', ylab='',

main='Number of reads', yaxt='n',

lwd=3, axes=TRUE)

box(col='black', lwd=2)

image(x=seq(-1000, 1000, length.out=20),

y=1:nrow(H3K27ac.p.matrix),

z=t(H3K27ac.p.matrix[order(rowSums(H3K27ac.p.matrix)),]),

col=colors,

xlab='Distance from TSS (bp)',

ylab='Promoters', lwd=2)

box(col='black', lwd=2)

abline(v=0, lwd=1, col='gray')
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plot(x=seq(-1000, 1000, length.out=20),

y=colMeans(H3K27ac.p.matrix),

ty='b', pch=19,

col='red4',lwd=2,

ylab='Mean tag count',

xlab='Distance from TSS (bp)')

abline(h=seq(1,100,by=5),

v=seq(-1000, 1000, length.out=20),

lwd=0.25, col='gray')

box(col='black', lwd=2)
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We observe a strong enrichment of H3K27ac modification right after the TSS and a weaker peak of
H3K27ac at the region immediately upstream of the TSS.

8 Session info
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sessionInfo()

## R version 3.2.0 (2015-04-16)

## Platform: x86_64-pc-linux-gnu (64-bit)

## Running under: Ubuntu 14.04.2 LTS

##

## locale:

## [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C

## [3] LC_TIME=en_GB.UTF-8 LC_COLLATE=en_US.UTF-8

## [5] LC_MONETARY=en_GB.UTF-8 LC_MESSAGES=en_US.UTF-8

## [7] LC_PAPER=en_GB.UTF-8 LC_NAME=C

## [9] LC_ADDRESS=C LC_TELEPHONE=C

## [11] LC_MEASUREMENT=en_GB.UTF-8 LC_IDENTIFICATION=C

##

## attached base packages:

## [1] grid stats4 parallel stats graphics grDevices utils

## [8] datasets methods base

##

## other attached packages:

## [1] VennDiagram_1.6.9 Gviz_1.12.0

## [3] chipseq_1.18.0 ShortRead_1.26.0

## [5] GenomicAlignments_1.4.1 Rsamtools_1.20.4

## [7] BiocParallel_1.2.3 BSgenome_1.36.0

## [9] Biostrings_2.36.1 XVector_0.8.0

## [11] rtracklayer_1.28.4 GenomicRanges_1.20.5

## [13] GenomeInfoDb_1.4.0 IRanges_2.2.4

## [15] S4Vectors_0.6.0 BiocGenerics_0.14.0

## [17] EpigeneticsCSAMA2015_0.0.2 knitr_1.10.5

##

## loaded via a namespace (and not attached):

## [1] VariantAnnotation_1.14.3 reshape2_1.4.1

## [3] splines_3.2.0 lattice_0.20-31

## [5] colorspace_1.2-6 GenomicFeatures_1.20.1

## [7] XML_3.98-1.2 survival_2.38-2

## [9] foreign_0.8-63 DBI_0.3.1

## [11] RColorBrewer_1.1-2 lambda.r_1.1.7

## [13] matrixStats_0.14.0 plyr_1.8.3

## [15] stringr_1.0.0 zlibbioc_1.14.0

## [17] munsell_0.4.2 gtable_0.1.2

## [19] futile.logger_1.4.1 hwriter_1.3.2

## [21] evaluate_0.7 latticeExtra_0.6-26

## [23] Biobase_2.28.0 biomaRt_2.24.0

## [25] AnnotationDbi_1.30.1 highr_0.5

## [27] proto_0.3-10 Rcpp_0.11.6

## [29] acepack_1.3-3.3 scales_0.2.5

## [31] formatR_1.2 Hmisc_3.16-0

## [33] gridExtra_0.9.1 ggplot2_1.0.1

## [35] digest_0.6.8 stringi_0.4-1

## [37] biovizBase_1.16.0 tools_3.2.0

## [39] bitops_1.0-6 magrittr_1.5

## [41] RCurl_1.95-4.6 RSQLite_1.0.0

## [43] dichromat_2.0-0 Formula_1.2-1

## [45] cluster_2.0.1 futile.options_1.0.0

## [47] MASS_7.3-40 rpart_4.1-9
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## [49] nnet_7.3-9

9 Appendix

9.1 Obtaining data from European Nucleotide Archive

The European Nucleotide Archive (http://www.ebi.ac.uk/ena) provides many types of raw sequencing
data, sequence assembly information and functional annotation. We download the data corresponding to
ChIP-seq experiment mapping the H3K27ac histone modification in mouse Embryonic Stem cells (mES
cells) along with the input control sample from the study Histone H3K27ac separates active from poised en-
hancers and predicts developmental state by Creyghton et al.

wget ftp://ftp.sra.ebi.ac.uk/vol1/fastq/SRR066/SRR066787/SRR066787.fastq.gz .

wget ftp://ftp.sra.ebi.ac.uk/vol1/fastq/SRR066/SRR066766/SRR066766.fastq.gz .

wget ftp://ftp.sra.ebi.ac.uk/vol1/fastq/SRR066/SRR066767/SRR066767.fastq.gz .

9.2 Read quality

Read quality is the first step in all the analyses of sequenced reads. The package ShortRead provides a
function taking as input the .fastq files downloaded from the ENA database. We first generate a vector
with fastq file names.

fls = list.files(dataDirectory, ".fastq$", full=TRUE)

names(fls) = sub(".fastq", "", basename(fls))

We read each of these files and apply the qas function assessing the quality of the reads in each file.
Finally, we generate a HTML quality report.

library(ShortRead)

qas = lapply(seq_along(fls),

function(i, fls) qa(readFastq(fls[i]), names(fls)[i]),

fls)

qa = do.call(rbind, qas)

rpt = report(qa,dest = 'QA_report.html')

9.3 External file preparations

The next step is to align the reads to mm9 mouse genome assembly. This is done using Bowtie2 tool. The
resulting .sam files are next transformed to .bam files and filtered for best aligned reads using samtools.
PCR duplicates are removed. BAM files are next transfomed to bed files. For the sake of consistency with
other tools, in the final step of data preprocessing we add a ’chr’ prefix to the chromosome names using
awk.

gunzip SRR066787.fastq.gz

gunzip SRR066766.fastq.gz

gunzip SRR066767.fastq.gz

9.4 Alignment
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bowtie2 -p 8 -q NCBIM37.67 SRR066787.fastq -S ES_input.sam

bowtie2 -p 8 -q NCBIM37.67 SRR066766.fastq -S H3K27ac_rep1.sam

bowtie2 -p 8 -q NCBIM37.67 SRR066767.fastq -S H3K27ac_rep2.sam

9.5 Retaining only best alignments

samtools view -bS -q 40 ES_input.sam > ES_input_bestAlignment.bam

samtools view -bS -q 40 H3K27ac_rep1.sam > H3K27ac_rep1_bestAlignment.bam

samtools view -bS -q 40 H3K27ac_rep2.sam > H3K27ac_rep2_bestAlignment.bam

9.6 PCR duplicate removal

samtools rmdup -s ES_input_bestAlignment.bam ES_input_filtered.bam

samtools rmdup -s H3K27ac_rep1_bestAlignment.bam H3K27ac_rep1_filtered.bam

samtools rmdup -s H3K27ac_rep2_bestAlignment.bam H3K27ac_rep2_filtered.bam

9.7 Transforming reads to .bed format

bedtools bamtobed -i ES_input_filtered.bam > ES_input_filtered.bed

bedtools bamtobed -i H3K27ac_rep1_filtered.bam > H3K27ac_rep1_filtered.bed

bedtools bamtobed -i H3K27ac_rep2_filtered.bam > H3K27ac_rep2_filtered.bed

9.8 Additional preparations

awk '$0="chr"$0' ES_input_filtered.bed > ES_input_filtered_ucsc.bed

awk '$0="chr"$0' H3K27ac_rep1_filtered.bed > H3K27ac_rep1_filtered_ucsc.bed

awk '$0="chr"$0' H3K27ac_rep2_filtered.bed > H3K27ac_rep2_filtered_ucsc.bed

Finally, for the purpose of this lab, we isolate data for only one chromosome (chr6).

awk '{if($1=="chr6") print $0}' ES_input_filtered_ucsc.bed

> ES_input_filtered_ucsc_chr6.bed

awk '{if($1=="chr6") print $0}' H3K27ac_rep1_filtered_ucsc.bed

> H3K27ac_rep1_filtered_ucsc_chr6.bed

awk '{if($1=="chr6") print $0}' H3K27ac_rep2_filtered_ucsc.bed

> H3K27ac_rep2_filtered_ucsc_chr6.bed

Obtaining object si for mm9

We obtain chromosome lengths from the BSgenome.Mmusculus.UCSC.mm9 package. The chromosome
names in the si file are in the ensembl format, we add a prefix ’chr’ to chromosome names.

library(BSgenome.Mmusculus.UCSC.mm9)

genome = BSgenome.Mmusculus.UCSC.mm9

si = seqinfo(genome)

si = si[ paste0('chr', c(1:19, 'X', 'Y'))]
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Obtaining object bm for mm9

library(biomaRt)

mart = useMart(biomart = "ENSEMBL_MART_ENSEMBL",

dataset = "mmusculus_gene_ensembl",

host="may2012.archive.ensembl.org")

fm = Gviz:::.getBMFeatureMap()

fm["symbol"] = "external_gene_id"

Next, we get a snapshot of the results for chromosome 6 starting at position 122530000 and ending at
position 122900000. This region amongst others encodes a highly ES cell specific Nanog gene. We first
isolate gene models for this interval. The result bm is saved in the data directory.

bm = BiomartGeneRegionTrack(chromosome='chr6', genome="mm9",

start=122530000, end = 122900000,

biomart=mart,filter=list("with_ox_refseq_mrna"=TRUE),

size=4, name="RefSeq", utr5="red3", utr3="red3",

protein_coding="black", col.line=NULL, cex=7,

collapseTranscripts="longest",

featureMap=fm)

Peak finding with MACS

macs14 -t H3K27ac_rep1_filtered.bed -c ES_input_filtered_ucsc.bed -f BED -g mm --nomodel -n Rep1

macs14 -t H3K27ac_rep2_filtered.bed -c ES_input_filtered_ucsc.bed -f BED -g mm --nomodel -n Rep2

awk '$0="chr"$0' Rep1_peaks.bed > Rep1_peaks_ucsc.bed

awk '$0="chr"$0' Rep2_peaks.bed > Rep2_peaks_ucsc.bed

awk '{if($1=="chr6") print $0}' Rep1_peaks_ucsc.bed > Rep1_peaks_ucsc_chr6.bed

awk '{if($1=="chr6") print $0}' Rep2_peaks_ucsc.bed > Rep2_peaks_ucsc_chr6.bed

Promoter isolation

Here we provide the code necessary to isolate gene models from the biomart data base. The object egs
contains the annotation of the most external 5 and 3 prime UTRs for each gene model.

listAttributes(mart)[1:3,]

ds = useDataset('mmusculus_gene_ensembl', mart=mart)

chroms = 6

egs = getBM(attributes = c('ensembl_gene_id','external_gene_id',

'chromosome_name','start_position',

'end_position','strand'),

filters='chromosome_name',

values=chroms,

mart=ds)
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