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Common file formats The ‘big data’ component of high-throughput sequence analyses seems to be a tangle of
transformations between file types; common files are summarized in Table˜1. FASTQ and BAM (sometimes CRAM)
files are the primary formats for representing raw sequences and their alignments. VCF are used to summarize
called variants in DNA-seq; BED and sometimes WIG files are used to represent ChIP and other regulatory peaks
and ‘coverage’. GTF / GFF files are important for providing feature annotations, e.g., of exons organization into
transcripts and genes.

1 Short reads: FASTQ files

1.1 FASTQ files

The Illumina GAII and HiSeq technologies generate sequences by measuring incorporation of florescent nu-
cleotides over successive PCR cycles. These sequencers produce output in a variety of formats, but FASTQ
is ubiquitous. Each read is represented by a record of four components:

## @ERR127302.200 HWI-EAS350_0441:1:1:1196:1175#0/2

## CTCAGCGACACCAATCTCCTCCTTGAAGTGCACGTGGACCAGGCCCTCCGCCCGACGGCGGGAGTTGGGGAG

## +

## B<BGGADEAB>73A/(?BD8EBAAA<?>>>BAAA><+*<8:,-5&E>??;B#####################
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Table 1: Common file types and Bioconductor packages used for input.
File Description Package
FASTQ Unaligned sequences: identifier, sequence, and encoded quality

score tuples
ShortRead

BAM Aligned sequences: identifier, sequence, reference sequence name,
strand position, cigar and additional tags

Rsamtools

VCF Called single nucleotide, indel, copy number, and structural variants,
often compressed and indexed (with Rsamtools bgzip, indexTabix)

VariantAnnotation

GFF, GTF Gene annotations: reference sequence name, data source, feature
type, start and end positions, strand, etc.

rtracklayer

BED Range-based annotation: reference sequence name, start, end co-
ordinates.

rtracklayer

WIG, bigWig ‘Continuous’ single-nucleotide annotation. rtracklayer
2bit Compressed FASTA files with ‘masks’

The first and third lines (beginning with @ and + respectively) are unique identifiers. The identifier produced by the
sequencer typically includes a machine id followed by colon-separated information on the lane, tile, x, and y coor-
dinate of the read. The example illustrated here also includes the SRA accession number, added when the data
was submitted to the archive. The machine identifier could potentially be used to extract information about batch
effects. The spatial coordinates (lane, tile, x, y) are often used to identify optical duplicates; spatial coordinates
can also be used during quality assessment to identify artifacts of sequencing, e.g., uneven amplification across
the flow cell, though these spatial effects are rarely pursued.

The second and fourth lines of the FASTQ record are the nucleotides and qualities of each cycle in the read.
This information is given in 5’ to 3’ orientation as seen by the sequencer. A letter N in the sequence is used to
signify bases that the sequencer was not able to call. The fourth line of the FASTQ record encodes the quality
(confidence) of the corresponding base call. The quality score is encoded following one of several conventions,
with the general notion being that letters later in the visible ASCII alphabet

## ! " # $ % & ' ( ) * + , - . / 0 1 2 3 4 5 6 7 8 9 : ; < = >

## 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

## ? @ A B C D E F G H I J

## 30 31 32 33 34 35 36 37 38 39 40 41

are of higher quality. Letters map to numbers, and numbers correspond (most commonly) to −10 log10 p. In the
encoding above, I corresponds to a phred score of 40, hence p = 0.0001. Both the sequence and quality scores
may span multiple lines.

1.2 Basic Manipulations of a FASTQ file

Exercise 1
Here we take a first look at FASTQ files from the ArrayExpress repository E-MTAB-11471 [1].

a. Load the ShortRead and BiocParallel packages.
b. Create a character vector dirPath to the ’bigdata/fastq’ directory containing the files ’ERR127302 1.fastq.gz’,

’ERR127302 2.fastq.gz’.
c. Read in a representative sample from ’ERR127302 1.fastq.gz’
d. simple manipulations on a FASTQ file -id, reads and quality
e. summarize use of nucleotides at each cycle
f. Analyzing nucleotides per cycle, gc content and quality score per cycle

g. Construct histogram of the GC content of individual reads
1http://www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-1147/

http://genome.ucsc.edu/FAQ/FAQformat.html
http://bioconductor.org/packages/release/bioc/html/ShortRead.html
http://bioconductor.org/packages/release/bioc/html/Rsamtools.html
http://bioconductor.org/packages/release/bioc/html/Rsamtools.html
http://bioconductor.org/packages/release/bioc/html/VariantAnnotation.html
http://bioconductor.org/packages/release/bioc/html/rtracklayer.html
http://bioconductor.org/packages/release/bioc/html/rtracklayer.html
http://bioconductor.org/packages/release/bioc/html/rtracklayer.html
http://bioconductor.org/packages/release/bioc/html/ShortRead.html
http://bioconductor.org/packages/release/bioc/html/BiocParallel.html
http://www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-1147/
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Solution: Load the ShortRead and BiocParallel packages

library(ShortRead)

library(BiocParallel)

FASTQ files are getting larger. A very common reason for looking at data at this early stage in the processing
pipeline is to explore sequence quality. In these circumstances it is often not necessary to parse the entire FASTQ
file. Instead create a representative sample

dirPath <- "~/bigdata/fastq"

sampler <- FastqSampler(file.path(dirPath, "ERR127302_1.fastq.gz"), 1000000)

reads <- yield(sampler)

Look at the id , reads and the quality
# outputs read ids as a list as BStringSet

head( id(reads) )

## A BStringSet instance of length 6

## width seq

## [1] 54 ERR127302.21497683 HWI-EAS350_0441:1:88:16089:7399#0/1

## [2] 55 ERR127302.11177186 HWI-EAS350_0441:1:45:17900:13469#0/1

## [3] 46 ERR127302.3 HWI-EAS350_0441:1:1:1057:13164#0/1

## [4] 56 ERR127302.27539470 HWI-EAS350_0441:1:112:12072:12739#0/1

## [5] 54 ERR127302.16830936 HWI-EAS350_0441:1:69:15306:6412#0/1

## [6] 53 ERR127302.6432183 HWI-EAS350_0441:1:26:9147:15825#0/1

# outputs read sequences as a list as DNAStringSet

head(sread(reads) )

## A DNAStringSet instance of length 6

## width seq

## [1] 72 CTGCTTGTTTGAGACAAAATATTCTGTGGGAGCAAACTACTGGCATCACTGGAATGCTTGTCTTGCATTCCA

## [2] 72 CCGATACTACACACCGACTATCTCACGTGAGAGGGCAGTGGAACTCCTTAGGAAATGTCTGGAGGAGCTCCA

## [3] 72 GGCCGCAGTGCCATTGAGCTCACCAAAATGCTCTGTGAAATCCTGCAGGTTGGGGANNNNNNNNNNNNNNGA

## [4] 72 TCCTTTCCTGCCTCTCTTGTTCTTCAAACAGATAATTCTGAATCGAAACCTGGGCTGTAATGTTCCTTTGGT

## [5] 72 CCACCCATGCCTCTGAGAACATTGGACCATGCACCCTTGAAAAAAGCTTTGCCTCCTTCATCACGAGCAATC

## [6] 72 CCCACTCCGAGCTGGACGTGCGAACGGCGGGCGCCAAAGGCACGTCGGGGGTTTTTTTTGTGGGGGGGGGGG

# outputs list of quality scores as BStringSet

head(quality(reads))

## class: FastqQuality

## quality:

## A BStringSet instance of length 6

## width seq

## [1] 72 IIIIIIIIIIIIHIIIIIGIDIIIIIIIIIIIHIIIIIIIIIIIIIIIIIIIIIIIIIIIGGGE)GGGGGII

## [2] 72 IIIIGIIHIIIHIIIHIIIGII<IIIGIIIIHIGIIHIFIIIIHIHIIIIIIIGIEIIH>GGEGGDGG@GBE

## [3] 72 DFBH?GDEG>GEGGDHH>HBDBEGD8G<GG<DGGGCB><82???@DDBBDDGGE##################

## [4] 72 HHHHHHHHHHHHHHHHHHBHHHHHHHHHHHFEF'EFFEFFEEF-<CAAAAHHHHEHDHHHFGHHHFHHGG@G

## [5] 72 HHHHHHDHHHHHHGHEHDGHHHHGHHHHHDGDHHHHHHHGHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHH

## [6] 72 HHHHHHHHHHHEHGHFGGGFDGBGGHHHGD##########################################

The alphabetByCycle function summarizes use of nucleotides at each cycle in a (equal width) ShortReadQ or
DNAStringSet instance.

abc <- alphabetByCycle(sread(reads))

abc[1:4, 1:8]

## cycle

http://bioconductor.org/packages/release/bioc/html/ShortRead.html
http://cran.fhcrc.org/web/packages/BiocParallel/index.html
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## alphabet [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8]

## A 115088 241900 253297 292604 292325 341461 129442 193788

## C 511494 216417 246406 232560 197310 260368 258476 320921

## G 153548 285908 309744 319477 325651 256346 215248 273148

## T 218775 255775 190547 155358 176643 141744 396791 212143

matplot(t(abc[c("A","G","T","C"),]), type="l")
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A histogram of the GC content of individual reads is obtained with:

alf0 <- alphabetFrequency(sread(reads), as.prob=TRUE)

hist(alf0[,c("G", "C")] ,
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main = "Histogram of gc Content",

xlab="individual reads" )
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1.3 Quality assessment

Exercise 2
Here we create a quality assessment report of FASTQ files from the ArrayExpress repository E-MTAB-11472 [1].

2http://www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-1147/

http://www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-1147/
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a. Create a quality report for these two files using the ShortRead::qa function, e.g., qa <- qa(dirPath,

"ERR*", type="fastq").
b. View the quality report in a web browser with browseURL(report(qa))

c. View the QA report for all fastq files in the full experiment. Do this by loading the prepared data object
’E-MTAB-1147-qa report.Rda’. Discuss the meaning of each plot with your neighbor. What technology arti

Solution: Create the QA report from two sample files

qa <- qa(dirPath, "ERR*", type="fastq")

View the report

browseURL(report(qa))

Load the report for all lanes

(load(file.path(dirPath, "E-MTAB-1147-qa_report.Rda")))

## [1] "qa"

View the report

browseURL(report(qa))

1.4 Trimming

Exercise 3
This exercise explores trimming, then applies a trimming filter to several FASTQ files.

Start by loading the BiocIntro package

library(BiocIntro)

a. Create a character vector pointing to a FASTQ file, fl <- file.path(dirPath, "ERR127302 1.fastq.gz")

b. Load a random sample of 100,000 reads from the FASTQ file, using fq <- FastqSampler() and srq <-

yield(fq)

c. Plot a histogram of qualities as a function of cycle, plotByCycle(srq).
d. Look at how qualities are encoded using encoding(quality(srq)).
e. Trim reads after the first 3 nucleotides with aveage quality less than 20 (encoding "5") using trimTails(srq,

3, "5")

Solution: Load a sample of 100,000 reads and visualize their quality

fl <- file.path(dirPath, "ERR127302_1.fastq.gz")

fq <- FastqSampler(fl, 100000)

srq <- yield(fq)

srq

## class: ShortReadQ

## length: 100000 reads; width: 72 cycles

plotByCycle(quality(srq))
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Trim the reads and visualize qualities

trimmed <- trimTails(srq, 3, "5")

plotByCycle(quality(trimmed))
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Exercise 4
(Optional) This exercise trims all reads using our trimming function.

a. List the full path to all fastq files using fls <- dir(dirPath, pattern="fastq.gz", full=TRUE).
b. Create destination files for each source file, using destinations <- sub("fastq.gz", "trimmed.fastq",

fls)

c. Trim reads as before, but use the file paths and destinations as arguments, trimTails(fls, 3, "5",

FALSE, destinations=destinations).

Solution: Identify relevant files
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(fls <- dir(dirPath, pattern="fastq.gz", full=TRUE))

## [1] "/home/mtmorgan/bigdata/fastq/ERR127302_1.fastq.gz"

## [2] "/home/mtmorgan/bigdata/fastq/ERR127302_2.fastq.gz"

Map the file names to destinations

(destinations <- sub("fastq.gz", "trimmed.fastq", fls))

## [1] "/home/mtmorgan/bigdata/fastq/ERR127302_1.trimmed.fastq"

## [2] "/home/mtmorgan/bigdata/fastq/ERR127302_2.trimmed.fastq"

Perform the trimming

trimTails(fls, 2, "5", destinations=destinations)

2 Aligned reads: BAM files

2.1 BAM files

Most down-stream analysis of short read sequences is based on reads aligned to reference genomes. There are
many aligners available, including BWA [2, 3], Bowtie / Bowtie2 [4], and GSNAP; merits of these are discussed in
the literature. There are also alignment algorithms implemented in Bioconductor (e.g., matchPDict in the Biostrings
package, and the Rsubread package); matchPDict is particularly useful for flexible alignment of moderately sized
subsets of data.

Alignment formats Most main-stream aligners produce output in SAM (text-based) or BAM format. A SAM file
is a text file, with one line per aligned read, and fields separated by tabs. Here is an example of a single SAM line,
split into fields.

fl <- system.file("extdata", "ex1.sam", package="Rsamtools")

strsplit(readLines(fl, 1), "\t")[[1]]

## [1] "B7_591:4:96:693:509" "73"

## [3] "seq1" "1"

## [5] "99" "36M"

## [7] "*" "0"

## [9] "0" "CACTAGTGGCTCATTGTAAATGTGTGGTTTAACTCG"

## [11] "<<<<<<<<<<<<<<<;<<<<<<<<<5<<<<<;:<;7" "MF:i:18"

## [13] "Aq:i:73" "NM:i:0"

## [15] "UQ:i:0" "H0:i:1"

## [17] "H1:i:0"

Fields in a SAM file are summarized in Table˜2. We recognize from the FASTQ file the identifier string, read
sequence and quality. The alignment is to a chromosome ‘seq1’ starting at position 1. The strand of alignment is
encoded in the ‘flag’ field. The alignment record also includes a measure of mapping quality, and a CIGAR string
describing the nature of the alignment. In this case, the CIGAR is 36M, indicating that the alignment consisted of
36 Matches or mismatches, with no indels or gaps; indels are represented by I and D; gaps (e.g., from alignments
spanning introns) by N.

BAM files encode the same information as SAM files, but in a format that is more efficiently parsed by software;
BAM files are the primary way in which aligned reads are imported in to R.

http://bio-bwa.sourceforge.net/
http://bowtie-bio.sourceforge.net/
http://bowtie-bio.sourceforge.net/bowtie2/
http://research-pub.gene.com/gmap/
http://bioconductor.org/packages/release/bioc/html/Biostrings.html
http://bioconductor.org/packages/release/bioc/html/Rsubread.html


Bioconductor for Sequence Analysis 9

Table 2: Fields in a SAM record. From http://samtools.sourceforge.net/samtools.shtml

Field Name Value
1 QNAME Query (read) NAME
2 FLAG Bitwise FLAG, e.g., strand of alignment
3 RNAME Reference sequence NAME
4 POS 1-based leftmost POSition of sequence
5 MAPQ MAPping Quality (Phred-scaled)
6 CIGAR Extended CIGAR string
7 MRNM Mate Reference sequence NaMe
8 MPOS 1-based Mate POSition
9 ISIZE Inferred insert SIZE
10 SEQ Query SEQuence on the reference strand
11 QUAL Query QUALity
12+ OPT OPTional fields, format TAG:VTYPE:VALUE

2.2 Gapped alignments in R

The readGAlignments function from the GenomicAlignments package reads essential information from a BAM file
in to R. The result is an instance of the GappedAlignments class. The GappedAlignments class has been designed
to allow useful manipulation of many reads (e.g., 20 million) under moderate memory requirements (e.g., 4 GB).

Exercise 5
This exercise explores the GappedAlignments class.

a. Load the RNAseqData.HNRNPC.bam.chr14 and retrieve the names of the BAM files it contains. These BAM
files are subsets of a larger experiment.

b. Read one BAM file in to R using readGAlignments. How many reads are there? What do the first few records
look like?

c. Use the strand accessor and the standard R function table to tabulate the number of reads on the plus
and minus strand. Use the width and cigar accessors to summarize the aligned width and to explore the
alignment cigars.

d. The readGAlignments function takes an additional argument, param, allowing the user to specify regions of
the BAM file (e.g., known gene coordinates) from which to extract alignments, and other data to be extracted
from the BAM file. Create a ScanBamParam object with argument what="seq", and use this to input the read
sequences as well as basic alignment information.

e. With larger BAM files we often want to iterate through the file in chunks. Do this by creating a BamFile from
a file path, specifying a yieldSize. Then write a short loop that uses readGAlignments to input successive
chunks until there are no more records left.

Solution: Load the experiment data library and read in one file, discovering the number of reads present

library(GenomicAlignments)

library(RNAseqData.HNRNPC.bam.chr14)

fls <- RNAseqData.HNRNPC.bam.chr14_BAMFILES

basename(fls)

## [1] "ERR127306_chr14.bam" "ERR127307_chr14.bam" "ERR127308_chr14.bam"

## [4] "ERR127309_chr14.bam" "ERR127302_chr14.bam" "ERR127303_chr14.bam"

## [7] "ERR127304_chr14.bam" "ERR127305_chr14.bam"

aln <- readGAlignments(fls[1])

length(aln)

## [1] 800484

http://samtools.sourceforge.net/samtools.shtml
http://bioconductor.org/packages/release/bioc/html/GenomicAlignments.html
http://bioconductor.org/packages/release/data/experiment/html/RNAseqData.HNRNPC.bam.chr14.html
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head(aln, 3)

## GAlignments with 3 alignments and 0 metadata columns:

## seqnames strand cigar qwidth start end width ngap

## <Rle> <Rle> <character> <integer> <integer> <integer> <integer> <integer>

## [1] chr14 + 72M 72 19069583 19069654 72 0

## [2] chr14 + 72M 72 19363738 19363809 72 0

## [3] chr14 - 72M 72 19363755 19363826 72 0

## ---

## seqlengths:

## chr1 chr10 ... chrY

## 249250621 135534747 ... 59373566

A GappedAlignments instance is like a data frame, but with accessors as suggested by the column names. It is
easy to query, e.g., the distribution of reads aligning to each strand, the width of reads, or the cigar strings

table(strand(aln))

##

## + - *

## 400242 400242 0

range(width(aln))

## [1] 70 404751

head(sort(table(cigar(aln)), decreasing=TRUE))

##

## 72M 35M123N37M 38M670N34M 64M316N8M 36M123N36M 18M123N54M

## 603939 272 264 261 228 225

Here we construct a ScanBamParam object and indicate that we would also like to input the read sequence.

param <- ScanBamParam(what="seq")

aln <- readGAlignments(fls[1], param=param)

To iterate through a BAM file, create a BamFile instance with appropriate yieldSize. We use yieldSize=200000

in the work below, but in reality this could be one or two orders of magnitude larger.

bf <- open(BamFile(fls[1], yieldSize=200000))

repeat {
aln <- readGAlignments(bf)

if (length(aln) == 0)

break # no more records

## do work

message(length(aln))

}

## 200000

## 200000

## 200000

## 200000

## 484

close(bf)
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2.3 Summarizing overlaps

Exercise 6
A basic operation in RNA-seq and other work flows is to count the number of times aligned reads overlap features
of interest.

a. Load the ‘transcript db’ package that contains the coordinates of each exon of the UCSC ’known genes’ track
of hg19.

b. Extract the exon coordinates grouped by gene; the result is an GRangesList object that we will discuss more
latter.

c. Use the summarizeOverlaps function with the exon coordinates and BAM files to generate a count of the
number of reads overlapping each gene. Visit the help page ?summarizeOverlaps to read about the counting
strategy used.

d. The counts can be extracted from the return value of summarizeOverlaps using the function assay. This is
standard R matrix. How many reads overlapped regions of interest in each sample? How many genes had
non-zero counts?

Solution:

## library(BiocParallel)

library(TxDb.Hsapiens.UCSC.hg19.knownGene)

ex <- exonsBy(TxDb.Hsapiens.UCSC.hg19.knownGene, "gene")

counts <- summarizeOverlaps(ex, fls)

colSums(assay(counts))

## ERR127306 ERR127307 ERR127308 ERR127309 ERR127302 ERR127303 ERR127304 ERR127305

## 340669 373302 371666 331540 313817 331160 331639 329672

sum(rowSums(assay(counts)) != 0)

## [1] 528

3 Variants: VCF files

A major product of DNASeq experiments are catalogs of called variants (e.g., SNPs, indels). We will use the
VariantAnnotation package to explore this type of data. Sample data included in the package are a subset of
chromosome 22 from the 1000 Genomes project. Variant Call Format (VCF; full description) text files contain meta-
information lines, a header line with column names, data lines with information about a position in the genome,
and optional genotype information on samples for each position.

3.1 Coding consequences

Locating variants in and around genes Variant location with respect to genes can be identified with the
locateVariants function. Regions are specified in the region argument and can be one of the following construc-
tors: CodingVariants(), IntronVariants(), FiveUTRVariants(), ThreeUTRVariants(), IntergenicVariants(),
SpliceSiteVariants(), or AllVariants(). Location definitions are shown in Table˜3.

Exercise 7
Load the TxDb.Hsapiens.UCSC.hg19.knownGene annotation package, and read in the chr22.vcf.gz example file
from the VariantAnnotation package.

Remembering to re-name sequence levels, use the locateVariants function to identify coding variants.

http://bioconductor.org/packages/release/bioc/html/VariantAnnotation.html
ftp://ftp-trace.ncbi.nih.gov/1000genomes/ftp/release/20110521/
http://www.1000genomes.org/wiki/Analysis/Variant%20Call%20Format/vcf-variant-call-format-version-41
http://bioconductor.org/packages/release/data/annotation/html/TxDb.Hsapiens.UCSC.hg19.knownGene.html
http://bioconductor.org/packages/release/bioc/html/VariantAnnotation.html
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Table 3: Variant locations
Location Details
coding Within a coding region
fiveUTR Within a 5’ untranslated region
threeUTR Within a 3’ untranslated region
intron Within an intron region
intergenic Not within a transcript associated with a gene
spliceSite Overlaps any of the first or last 2 nucleotides of an intron

Summarize aspects of your data, e.g., did any coding variants match more than one gene? How many coding
variants are there per gene ID?

Solution: Here we open the known genes data base, and read in the VCF file.

library(VariantAnnotation)

library(TxDb.Hsapiens.UCSC.hg19.knownGene)

txdb <- TxDb.Hsapiens.UCSC.hg19.knownGene

fl <- system.file("extdata", "chr22.vcf.gz", package="VariantAnnotation")

vcf <- readVcf(fl, "hg19")

vcf <- renameSeqlevels(vcf, c("22"="chr22"))

The next lines locate coding variants.

rd <- rowData(vcf)

loc <- locateVariants(rd, txdb, CodingVariants())

head(loc, 3)

## GRanges with 3 ranges and 7 metadata columns:

## seqnames ranges strand | LOCATION QUERYID TXID CDSID

## <Rle> <IRanges> <Rle> | <factor> <integer> <integer> <integer>

## [1] chr22 [50301422, 50301422] - | coding 24 75253 218562

## [2] chr22 [50301476, 50301476] - | coding 25 75253 218562

## [3] chr22 [50301488, 50301488] - | coding 26 75253 218562

## GENEID PRECEDEID FOLLOWID

## <character> <CharacterList> <CharacterList>

## [1] 79087

## [2] 79087

## [3] 79087

## ---

## seqlengths:

## chr22

## NA

To answer gene-centric questions data can be summarized by gene regardless of transcript.
## Did any coding variants match more than one gene?

splt <- split(loc$GENEID, loc$QUERYID)

table(sapply(splt, function(x) length(unique(x)) > 1))

##

## FALSE TRUE

## 965 15

## Summarize the number of coding variants by gene ID

splt <- split(loc$QUERYID, loc$GENEID)
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head(sapply(splt, function(x) length(unique(x))), 3)

## 113730 1890 23209

## 22 15 30

Amino acid coding changes predictCoding computes amino acid coding changes for non-synonymous vari-
ants. Only ranges in query that overlap with a coding region in subject are considered. Reference sequences
are retrieved from either a BSgenome or fasta file specified in seqSource. Variant sequences are constructed by
substituting, inserting or deleting values in the varAllele column into the reference sequence. Amino acid codes
are computed for the variant codon sequence when the length is a multiple of 3.

The query argument to predictCoding can be a GRanges or VCF. When a GRanges is supplied the varAllele

argument must be specified. In the case of a VCF object, the alternate alleles are taken from alt(<VCF>) and the
varAllele argument is not specified.

The result is a modified query containing only variants that fall within coding regions. Each row represents a
variant-transcript match so more than one row per original variant is possible.

library(BSgenome.Hsapiens.UCSC.hg19)

coding <- predictCoding(vcf, txdb, seqSource=Hsapiens)

coding[5:9]

## GRanges with 5 ranges and 17 metadata columns:

## seqnames ranges strand | paramRangeID REF

## <Rle> <IRanges> <Rle> | <factor> <DNAStringSet>

## 22:50301584_C/T chr22 [50301584, 50301584] - | <NA> C

## rs114264124 chr22 [50302962, 50302962] - | <NA> C

## rs149209714 chr22 [50302995, 50302995] - | <NA> C

## 22:50303554_T/C chr22 [50303554, 50303554] - | <NA> T

## rs12167668 chr22 [50303561, 50303561] - | <NA> C

## ALT QUAL FILTER varAllele CDSLOC

## <DNAStringSetList> <numeric> <character> <DNAStringSet> <IRanges>

## 22:50301584_C/T T 100 PASS A [777, 777]

## rs114264124 T 100 PASS A [698, 698]

## rs149209714 G 100 PASS C [665, 665]

## 22:50303554_T/C C 100 PASS G [652, 652]

## rs12167668 T 100 PASS A [645, 645]

## PROTEINLOC QUERYID TXID CDSID GENEID CONSEQUENCE

## <IntegerList> <integer> <character> <integer> <character> <factor>

## 22:50301584_C/T 259 28 75253 218562 79087 synonymous

## rs114264124 233 57 75253 218563 79087 nonsynonymous

## rs149209714 222 58 75253 218563 79087 nonsynonymous

## 22:50303554_T/C 218 73 75253 218564 79087 nonsynonymous

## rs12167668 215 74 75253 218564 79087 synonymous

## REFCODON VARCODON REFAA VARAA

## <DNAStringSet> <DNAStringSet> <AAStringSet> <AAStringSet>

## 22:50301584_C/T CCG CCA P P

## rs114264124 CGG CAG R Q

## rs149209714 GGA GCA G A

## 22:50303554_T/C ATC GTC I V

## rs12167668 CCG CCA P P

## ---

## seqlengths:

## chr22
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## NA

Using variant rs114264124 as an example, we see varAllele A has been substituted into the refCodon CGG to
produce varCodon CAG. The refCodon is the sequence of codons necessary to make the variant allele substitution
and therefore often includes more nucleotides than indicated in the range (i.e. the range is 50302962, 50302962,
width of 1). Notice it is the second position in the refCodon that has been substituted. This position in the codon,
the position of substitution, corresponds to genomic position 50302962. This genomic position maps to position
698 in coding region-based coordinates and to triplet 233 in the protein. This is a non-synonymous coding variant
where the amino acid has changed from R (Arg) to Q (Gln).

When the resulting varCodon is not a multiple of 3 it cannot be translated. The consequence is considered a
frameshift and varAA will be missing.

coding[coding$CONSEQUENCE == "frameshift"]

## GRanges with 2 ranges and 17 metadata columns:

## seqnames ranges strand | paramRangeID REF

## <Rle> <IRanges> <Rle> | <factor> <DNAStringSet>

## 22:50317001_G/GCACT chr22 [50317001, 50317001] + | <NA> G

## 22:50317001_G/GCACT chr22 [50317001, 50317001] + | <NA> G

## ALT QUAL FILTER varAllele CDSLOC

## <DNAStringSetList> <numeric> <character> <DNAStringSet> <IRanges>

## 22:50317001_G/GCACT GCACT 233 PASS GCACT [808, 808]

## 22:50317001_G/GCACT GCACT 233 PASS GCACT [628, 628]

## PROTEINLOC QUERYID TXID CDSID GENEID

## <IntegerList> <integer> <character> <integer> <character>

## 22:50317001_G/GCACT 270 359 74357 216303 79174

## 22:50317001_G/GCACT 210 359 74358 216303 79174

## CONSEQUENCE REFCODON VARCODON REFAA

## <factor> <DNAStringSet> <DNAStringSet> <AAStringSet>

## 22:50317001_G/GCACT frameshift GCC GCC A

## 22:50317001_G/GCACT frameshift GCC GCC A

## VARAA

## <AAStringSet>

## 22:50317001_G/GCACT

## 22:50317001_G/GCACT

## ---

## seqlengths:

## chr22

## NA
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