
Introduction to Variant Calling

Michael Lawrence

June 24, 2014

Outline

Introduction

Calling variants vs. reference

Downstream of variant calling

VariantTools package

Visualization

Outline

Introduction

Calling variants vs. reference

Downstream of variant calling

VariantTools package

Visualization

Variant calls

Definition
I A variant call is a conclusion that there is a nucleotide

difference vs. some reference at a given position in an
individual genome or transcriptome,

I Usually accompanied by an estimate of variant frequency and
some measure of confidence.

Use cases

DNA-seq: variants

I Genetic associations with disease
I Mutations in cancer
I Characterizing heterogeneous cell populations

RNA-seq: allele-specific expression

I Allelic imbalance, often differential
I Association with isoform usage (splicing QTLs)
I RNA editing (allele absent from genome)

ChIP-seq: allele-specific binding

Variant calls are more general than genotypes
Genotypes make additional assumptions

I A genotype identifies the set of alleles present at each locus.
I The number of alleles (the ploidy) is decided and fixed.
I Most genotyping algorithms output genotypes directly, under a

blind diploid assumption and special consideration of SNPs
and haplotypes.

Those assumptions are not valid in general

I Non-genomic input (RNA-seq) does not represent a genotype.
I Cancer genome samples are subject to:

I Copy number changes
I Tumor heterogeneity
I Tumor/normal contamination

So there is a mixture of potentially non-diploid genotypes, and
there is no interpretable genotype for the sample

Typical variant calling workflow

FASTQ

Typical variant calling workflow

Alignment
BWA GSNAP

FASTQ

gmapR

Typical variant calling workflow

Alignment
BWA GSNAP

FASTQ

Filters
Remove

PCR Dups
(Picard)

Realign
Indels

(GATK)

gmapR

Typical variant calling workflow

Alignment
BWA GSNAP

FASTQ

Filters
Remove

PCR Dups
(Picard)

Realign
Indels

(GATK)

Tally
samtools bam_tally gmapR

gmapR

A
CT

T
T A

C G

T
T
T
T
T
T
T
T
T

A
A

A

T

T
T
T
T

C
C
C
C
C
C
C

G
G
G
G
G
G
G
G
G

T
T
T

T
T
T
T
T
T
T

T

A C
C
C
C
C
C
C
C
C

G
G
G
G
G
G
G
G
G
G

C

C
C
C
C

G
T
T
T
C

C
C
C

A

A
A

A
A
A

A
A

A

A
A

A

A
A

A
A

A
C

Typical variant calling workflow

Alignment
BWA GSNAP

FASTQ

Filters
Remove

PCR Dups
(Picard)

Realign
Indels

(GATK)

Tally
samtools bam_tally gmapR

gmapR

Calling
GATK VarScan2

VariantTools

A
CT

T
T A

C G

T
T
T
T
T
T
T
T
T

A
A

A

T

T
T
T
T

C
C
C
C
C
C
C

G
G
G
G
G
G
G
G
G

T
T
T

T
T
T
T
T
T
T

T

A C
C
C
C
C
C
C
C
C

G
G
G
G
G
G
G
G
G
G

C

C
C
C
C

G
T
T
T
C

C
C
C

A

A
A

A
A
A

A
A

A

A
A

A

A
A

A
A

A
C

A
CT

T
T A

C G

T
T
T
T
T
T
T
T
T

A
A

A

T

T
T
T
T

C
C
C
C
C
C
C

G
G
G
G
G
G
G
G
G

T
T
T

T
T
T
T
T
T
T

T

A C
C
C
C
C
C
C
C
C

G
G
G
G
G
G
G
G
G
G

C

C
C
C
C

G
T
T
T
C

C
C
C

A

A
A

A
A
A

A
A

A

A
A

A
A

A
C

Het

Hom-alt

Low
Freq

Error

POS REF ALT

2 T A
4 A G
8 C T

Typical variant calling workflow

Alignment
BWA GSNAP

FASTQ

Filters
Remove

PCR Dups
(Picard)

Realign
Indels

(GATK)

Tally
samtools bam_tally gmapR

gmapR

Calling
GATK VarScan2

VariantTools

A
CT

T
T A

C G

T
T
T
T
T
T
T
T
T

A
A

A

T

T
T
T
T

C
C
C
C
C
C
C

G
G
G
G
G
G
G
G
G

T
T
T

T
T
T
T
T
T
T

T

A C
C
C
C
C
C
C
C
C

G
G
G
G
G
G
G
G
G
G

C

C
C
C
C

G
T
T
T
C

C
C
C

A

A
A

A
A
A

A
A

A

A
A

A

A
A

A
A

A
C

A
CT

T
T A

C G

T
T
T
T
T
T
T
T
T

A
A

A

T

T
T
T
T

C
C
C
C
C
C
C

G
G
G
G
G
G
G
G
G

T
T
T

T
T
T
T
T
T
T

T

A C
C
C
C
C
C
C
C
C

G
G
G
G
G
G
G
G
G
G

C

C
C
C
C

G
T
T
T
C

C
C
C

A

A
A

A
A
A

A
A

A

A
A

A
A

A
C

Het

Hom-alt

Low
Freq

Error

POS REF ALT

2 T A
4 A G
8 C T

Annotation Comparison

Sources of technical error

Errors can occur at each stage of data generation:
I Library prep
I Sequencing
I Alignment

Variant information for filtering

Information we know about each variant, and how it is useful:

Information Utility
Base Qualities Low quality indicates sequencing error
Read Positions Bias indicates mapping issues
Genomic Strand Bias indicates mapping issues
Genomic Position PCR dupes; self-chain, homopolymers
Mapping Info Aligner-dependent quality score/flags

Typical QC filters

10.1038/nbt.2514

These filters are heuristics
that aim to reduce the
FDR; however, they will
also generate false
negatives and are best
applied as soft filters
(annotations).

10.1038/nbt.2514

Whole-genome sequencing and problematic regions

I Many genomic regions are inherently difficult to interpret.
I Including homopolymers, simple repeats

I These will complicate the analysis with little compensating
benefit and should usually be excluded.

Outline

Introduction

Calling variants vs. reference

Downstream of variant calling

VariantTools package

Visualization

VariantTools pipeline

At least two
alt reads

At least 4%
alt read fractionC

al
l

P
o

st
 F

ilt
er

Max Count
in Neighborhood

O
u

tp
u

t

In
p

u
t

Variants

T
al

ly

Unique Alignments

Mapping
Quality > 13

Require > 23
Base Quality

Mask Simple
Repeats

Ignore Picard
Duplicates

QA

dbSNP positions
not considered;

mostly useful for WGS

Not overlapping
HP (> 6nt)

Overlapping
ends in same pair

are clipped

Binomial Likelihood
Ratio Test:

p(var) = 0.2 /
p(error) = 0.001

UCSC self-chain as indicator of mappability

I UCSC publishes the self-chain score as a generic indicator of
intragenomic similarity that is independent of any aligner

I About 6% of the genome fits this definition
I Virtually all (GSNAP) multi-mapping is in self-chains
I Lower unique coverage in self-chains

Aligner matters: coverage and mappability

BWA coverage

G
S

N
A

P
co

ve
ra

ge

0

50

100

150

200

0

50

100

150

200

0 50 100 150 200 0 50 100 150 200 0 50 100 150 200

FN

self−chained

FP

self−chained

TP

self−chained

unchained unchained unchained

FN FP TP

Aligning indels is error prone
Resolved by indel realignment

Homopolymers are problematic

Discard variants
over or next to
homopolymers
(>6nt)

FAIL

PASS

CTGCGAAAAAAAA

CTGCGAAAAAAAA

0.0

0.1

0.2

0.3

inside/adjacent outside

Relationship to Nearest Homopolymer

F
D

R

Choosing the homopolymer length cutoff

I We fit two logistic regressions to find the optimal length cutoff
for our filter

I Response, TP: whether the variant call is a true positive
I Length as linear predictor:

I TP ~ I(hp.dtn <= 1) + hp.length
I Indicator for when length exceeds 7:

I TP ~ I(hp.dtn <= 1) + I(hp.length > 7)

Logistic regression results

0.7

0.8

0.9

1.0

0.4 0.6 0.8 1.0
Fraction of FP retained

F
ra

ct
io

n
of

 T
P

 r
et

ai
ne

d

group TP ~ I(dtn.hp <= 1) + hp.length TP ~ I(dtn.hp <= 1) + I(hp.length > 7)

sample 10 YRI x 90 CEU 50 YRI x 50 CEU 90 YRI x 10 CEU

Effect of coverage extremes on frequencies

0

2

4

6

8

0.00 0.25 0.50 0.75 1.00

altDepth/totalDepth

D
en

si
ty

Coverage (1,40]

(40,120]

(120,Inf]
I Coverage sweet-spot

(40-120) matches expected
distribution.

I High coverage (>120) has
much lower frequencies than
expected; mapping error?

I Low coverage also different

Coverage extremes and self-chained regions

self−chained unchained

0.0

0.1

0.2

0.3

0.4
[0

,1
0]

[1
0,

20
]

[2
0,

30
]

[3
0,

40
]

[4
0,

50
]

[5
0,

60
]

[6
0,

70
]

[7
0,

80
]

[8
0,

90
]

[9
0,

10
0]

[1
00

,In
f]

[0
,1

0]

[1
0,

20
]

[2
0,

30
]

[3
0,

40
]

[4
0,

50
]

[5
0,

60
]

[6
0,

70
]

[7
0,

80
]

[8
0,

90
]

[9
0,

10
0]

[1
00

,In
f]

Coverage Bin

F
D

R

Variant density filter performance

Discard variants
clumped on the
chromosome.

FAIL

PASS

0.0

0.1

0.2

0.3

0.4

0.5

> 0.1 ≤ 0.1

Neighborhood Score

F
D

R

Outline

Introduction

Calling variants vs. reference

Downstream of variant calling

VariantTools package

Visualization

Downstream of variant calling

Calling
(vs reference)

GATK VarScan2

VariantTools

POS REF ALT

2 T A
4 A G
8 C T

Functional
Annotations

Genomic context,
coding consequences,
disease assocations

Annovar Ensembl VEP

VariantAnnotation

VariantFiltering

Two sample
comparisons

Mutation calling
RNA-editing

ensemblVEP

mutect strelka

VariantTools

Interpretation

VarScan2

Direct

Calling mutations through filtering

I We have two sets of variant calls (vs. reference) and need to
decide which are specific to one (i.e., the tumor)

I We have to decide whether the variant frequency is:
I Non-zero in tumor but
I Zero in normal

I Variant frequencies are a function of:
I Copy number changes
I Tumor/normal contamination
I Sub-clonality (tumor heterogeneity)
I Mutations

I Mutations often present at low frequency and may even show
up in the normal data due to contamination

VariantTools mutation calling algorithm

A mutation must pass the following filters:
I The variant was only called in the tumor
I There was sufficient coverage in normal to detect a variant,

assuming the likelihood ratio model and given a power cutoff
I The raw frequency in normal is sufficiently lower than the

frequency in tumor (avoids near-misses in normal)

Functional annotations with VariantAnnotation

The VariantAnnotation package

I Handles import/export of variants from/to VCF
I Defines central data structures for representing variants

I VCF objects represent full complexity of VCF as a derivative of
SummarizedExperiment

I VRanges extends GRanges for special handling of variants
I Annotates variants with:

I Genomic context: locateVariants()
I Coding consequences: predictCoding()
I SIFT/PolyPhen

I Filters VCF files as a stream (filterVcf())

Learn more
Thursday lab on annotating variants

Outline

Introduction

Calling variants vs. reference

Downstream of variant calling

VariantTools package

Visualization

Overview

I Convenient interface for tallying mismatches and indels
I Several built-in variant filters
I Combines filters into a default calling algorithm
I Other utilities: call wildtype, ID verification
I Integrates:

I VRanges data structure from VariantAnnotation
I Tallying with bam_tally via gmapR
I FilterRules framework from IRanges

Tallying

The underlying bam_tally from Tom Wu’s GSTRUCT accepts a
number of parameters, which we specify as a TallyVariantsParam
object. The genome is required; we also mask out the repeats.

library(VariantTools)
data(repeats, package = "VariantToolsTutorial")
param <- TallyVariantsParam(TP53Genome(), mask = repeats)

Tallies are generated via the tallyVariants function:
tallies <- tallyVariants(bam, param)

VRanges

I The tally results are stored in a VRanges object
I Extension of GRanges to describe variants
I One element/row per position + alt combination
I Adds these fixed columns:

ref ref allele
alt alt allele
totalDepth total read depth
refDepth ref allele read depth
altDepth alt allele read depth
sampleNames sample identifiers
softFilterMatrix FilterMatrix of filter results
hardFilters FilterRules used to subset object

VRanges features

I Rough, lossy, two-way conversion between VCF and VRanges
I Matching/set operations by position and alt (match, %in%)
I Recurrence across samples (tabulate)
I Provenance tracking of applied hard filters
I Convenient summaries of soft filter results (FilterMatrix)
I Lift-over across genome builds (liftOver)
I VRangesList, stackable into a VRanges by sample
I All of the features of GRanges (overlap, etc)

Tally statistics

In addition to the alleles and read depths, tallyVariants provides:

Raw counts Count before quality filter for alt/ref/total
Mean quality Mean base quality for alt/ref
Strand counts Plus/minus counts for alt/ref
Uniq read pos Number of unique read positions for alt/ref
Mean read pos Mean read position (cycle) for alt/ref
Var read pos Variance in read position for alt/ref
MDFNE Median distance from nearest end for alt/ref
Read pos bins Counts in user-defined read pos bins for alt

Filtering framework

VariantTools implements its filters within the FilterRules framework
from IRanges. The default variant calling filters are constructed by
VariantCallingFilters:
calling.filters <- VariantCallingFilters()

Post-filters are filters that attempt to remove anomalies from the
called variants:
post.filters <- VariantPostFilters()

Filter tallies into variant calls

The filters are then passed to the callVariants function:
variants <- callVariants(tallies, calling.filters,

post.filters)

Or more simply in this case:
variants <- callVariants(tallies)

Interoperability via VCF

We can export the variant calls to a VCF file:
writeVcf(variants, "variants.vcf", index = TRUE)

Outline

Introduction

Calling variants vs. reference

Downstream of variant calling

VariantTools package

Visualization

Visualizing variants with IGV SRAdb

Creating a connection to IGV

library(SRAdb)
startIGV("lm")
sock <- IGVsocket()

Exporting our calls as VCF

vcf <- writeVcf(variants, "variants.vcf", index = TRUE)

Creating an IGV session

Create an IGV session with our VCF, BAMs and custom p53
genome:
rtracklayer::export(genome, "genome.fa")
session <- IGVsession(c(bam.paths, vcf), "session.xml",

"genome.fa")

Load the session:
IGVload(sock, session)

Browsing regions of interest

IGV will (manually) load BED files as a list of bookmarks:
rtracklayer::export(interesting.variants, "bookmarks.bed")

IGV section, from R

VariantExplorer package

I The VariantExplorer package by Julian Gehring is an
unreleased package for visually diagnosing variant calls

I Produces static ggbio plots and interactive web-based plots
based on epivizr

I The epivizr package (Hector Corrada Bravo) is a
browser-based genomic visualization platform that pulls data
directly from a running R session

I Get epivizr:
devtools::install_github("epivizr", "epiviz")

	Introduction
	Calling variants vs. reference
	Downstream of variant calling
	VariantTools package
	Visualization

