
CSAMA 2014 Tutorial - HDF5 based nucleotide tallies
Paul Theodor Pyl

19 Jun 2014

Contents

Introduction 1

Motivation . 1

Nucleotide Tally Definition . 2

Intorduction to HDF5 . 3

Getting Started: Loading example data . 4

Writing to the HDF5 tally file . 8

Did we save some space? . 11

Interacting with the tally file 11

Reading blocks of data . 11

Calling variants 19

Creating variant reports . 26

Creating custom plots . 27

Summary . 28

Introduction

In this tutorial we will work through the full process of generating an HDF5 tally file from a set of .bam files,
calling variants and visualising our findings, as well as creating a report.

Motivation

The challenges researchers face with the advent of massive sequencing efforts aimed at sequencing RNA and
DNA of thousands of samples will need to be addressed now, before the flood of data becomes a real problem.

The effects of the infeasibility of handling the sequencing data of large cohorts with the current standards
(BAM, VCF, BCF, GTF, etc.) have become apparent in recent publications that performed population level
analyses of mutations in many cancer samples and worked exclusively on the level of preprocessed variant
calls stored in VCF/MAF files simply because there is no way to look at the data itself with reasonable
resource usage (e.g. in Kandoth et. al 2013).

This challenge can be adressed by augmenting the available legacy formats typically used for sequencing
analyses (SAM/BAM files) with an intermediate file format that stores only the most essential information
and provides efficient access to the cohort level data whilst reducing the information loss relative to the raw
alignments.

This file format will store nucleotide tallies rather than alignments and allow for easy and efficient real-time
random access to the data of a whole cohort of samples. The details are described in the following section.

1

http://www.nature.com/nature/journal/v502/n7471/full/nature12634.html

h5vc is a tool that is designed to provide researchers with a more intuitive and effective way of interacting with
data from large cohorts of samples that have been sequenced with next generation sequencing technologies.

Nucleotide Tally Definition

The tally data structure proposed here consists of 4 datasets that are stored for each chromosome (or contig).
Those datasets are:

• Counts: A table that contains the number of observed mismatches at any combination of base, sample,
strand and genomic position,

• Coverages: A table that contains the number of reads overlapping at any combination of sample, strand
and genomic position

• Deletions: A Table that contains the number of observed deletions of bases at any combination of
sample, strand and genomic position

• Reference: A Table that contains the reference base against which the calls in the ‘Deletions’ and
‘Counts’ table were made.

We outline the basic layout of this set of tables here:

Name Dimensions Datatype

Counts [#bases, #samples, #strands, #positions] int
Coverages [#samples, #strands, #positions] int
Deletions [#samples, #strands, #positions] int
Reference [#positions] int

An HDF5 file has an internal structure that is similar to a file system, where groups are the directories and
datasets are the files. The layout of the tally file is as follows:

2

A tally file can contain data from more than one study but each study will reside in a separate tree with a
group named with the study-ID at its root and sub-groups for all the chromosomes / contigs that are present
in the study. Attached to each of the chromosome groups are the 4 datasets described above.

Additionally each chromsome group stores sample data about the samples involved in the experiment
(patientID, type, location in the sample dimension) as HDF5 attributes. Convenience functions for extracting
the metadata are provided, see examples below.

Intorduction to HDF5

The following code examples create an HDF5 file and fill it with some random data to illustrate the functions
we can use to interact with HDF5 files.

#We use the rhdf5 package
library(rhdf5)
filename <- tempfile() #using a temporary file
h5createFile(filename) #creating the basic file layout

[1] TRUE

We can use the h5ls function to list the content of the file (it is empty right now).

3

h5ls(filename)

[1] group name otype dclass dim
<0 rows> (or 0-length row.names)

Let us use h5write to write some stuff into the file (we use small examples, in a nucleotide tally file the array
dimensions will be several orders of magnitude larger).

h5write(obj = array(rnorm(20), dim=c(4,5)), file = filename, name = "/RandomArray")
h5write(obj = rpois(100, 10), file = filename, name = "/PoissonVector")
h5ls(filename)

group name otype dclass dim
0 / PoissonVector H5I_DATASET INTEGER 100
1 / RandomArray H5I_DATASET FLOAT 4 x 5

As you can see each dataset shows up in the listing of the file content (h5ls(filename)). We can use h5read
to extract the data from the file again, if we simpy specify a filename and dataset name we will retrieve the
whole dataset. Since this is a really bad idea for large scale projects (e.g. nucleotide tallies of human samples),
we can also use subsetting to extract parts of the data. Have a look at ?h5read if you want to know more
about the possible ways of retrieving data.

h5read(file = filename, name = "/PoissonVector")

[1] 5 13 14 12 13 7 9 12 11 10 11 7 15 8 12 13 11 9 11 6 13 14 15
[24] 15 9 8 17 10 6 15 15 12 20 3 19 6 8 11 7 9 15 15 13 11 5 10
[47] 10 10 9 12 11 6 12 14 9 9 8 4 12 8 9 9 14 13 11 7 11 10 9
[70] 10 15 9 14 5 9 9 6 10 12 6 12 14 7 7 5 11 15 10 12 12 11 12
[93] 12 10 9 16 13 21 11 14

h5read(file = filename, name = "/RandomArray", index = list(2:4, 3:5))

[,1] [,2] [,3]
[1,] 1.3869 -0.04903 -2.1607
[2,] 0.3426 -0.32988 -0.5712
[3,] 0.1115 -0.61792 0.5584

Question: How would you extract all the numbers from the /PoissonVector dataset, that have
an odd index (Hint: 7 %% 2 is equal to 1)

This should give you a basic idea of how we can interact with HDF5 files on a low level. Luckily there are
wrapper functions in h5vc that we can use to access the file in a more efficient way. Those will be discussed
in the following sections.

Getting Started: Loading example data

We use an example set of 24 pairs of .bam files (control and case each) of which the last 6 pairs (samples
37 through 48) are whole genome sequencing data and the others are whole exome sequencing data. The
.bam files have been subsetted to only contain reads that span our region of interest (the NRAS gene, see

4

below). The samples are numbered 1 to 48 and successive samples belong together (e.g. samples 3 and 4 are
the control and case sample of the second pair, . . .). All samples are from human tissue and represent pairs
of tumour and matched control.

If you have not obtained a copy of the example data, do so now: while connected to the csama wlan download
[http://192.168.0.9/materials/04_Thursday/labs/ExampleData.zip] and extract the contents into a subfolder
of your working directory that you name ExampleData. (You can find out the current working directory of
your R session by typing getwd() at the R prompt.)

getwd()

[1] "/Users/pyl/Projects/CSAMA2014"

The .bam files should now be located in the ExampleData folder and the first step is to load the required
packages and get the list of .bam files.

library(h5vc)
library(Rsamtools)

bamFiles <- list.files("ExampleData", "bam$") #list available data files
bamFiles <- file.path("ExampleData", bamFiles)
we use scanBamHeader to extract information about the contigs
chromdim <- sapply(scanBamHeader(bamFiles), function(x) x$targets)
colnames(chromdim) <- bamFiles
chromdim[,1]

1 2 3 4 5 6 7
249250621 243199373 198022430 191154276 180915260 171115067 159138663
8 9 10 11 12 13 14
146364022 141213431 135534747 135006516 133851895 115169878 107349540
15 16 17 18 19 20 21
102531392 90354753 81195210 78077248 59128983 63025520 48129895
22 X Y MT
51304566 155270560 59373566 16569

In this tutorial we will look at a region on the genome from 115200000 to 115300000 bases on chromosome
one (overlapping the NRAS gene). Note that the .bam files we use only contain reads overlapping this region.

chrom = "1"
startpos = 115200000
endpos = 115300000

We can create nucleotide tallies using a number of different functions:

• h5vc::tallyBAM is a function that creates a nucleotide tally for one given .bam file, chromosome and
region

• h5vc::applyTallies is a function that applies h5vc::tallyBAM to a list of .bam files and
handles the correct merging of the results into one block of data. This implementation uses
BiocParallel::bplapply with the last registered BPPARAM, which defaults to serial execution
but can be used with multicore (BiocParallel::MulticoreParam) as well as multi-machine
(BiocParallel::BatchJobsParam) setups.

5

http://192.168.0.9/materials/04_Thursday/labs/ExampleData.zip

We will use the applyTallies function and if your machine has more than one core available you could test
the influence of registereing BiocParallel::MulticoreParam objects with different numbers of workers. It is
not expected to yield significant speed-ups (and might even slow things down) on a normal laptop computer.
Once you move to a server with a powerful RAID setup or a network fileserver, you should be able to speed
things up considerably, since there the I/O performance will not be the limiting factor anymore. Furthermore
a big part of the used runtime goes to merging the tallies from the different files into one block of data, this
can not be parallelised easily and remains an influential factor in the calculation.

library(BiocParallel) #load the library to enable parallel execution
maxWorkers <- 2 #Set this to 1 if you want serial execution
tallyList <- list() #outputs go in this list
timeList <- list() #time measurements go here
for(nWorkers in 1:maxWorkers){

set the number of concurrent jobs (see ?register for details)
register(MulticoreParam(workers = nWorkers))
timeList[[nWorkers]] <- system.time(

tallyList[[nWorkers]] <- applyTallies(bamFiles, chrom, startpos, endpos)
)

print(paste("Tallied with", nWorkers, "parallel tasks!"))
}

[1] "Tallied with 1 parallel tasks!"
[1] "Tallied with 2 parallel tasks!"

timeList

[[1]]
user system elapsed
84.84 3.57 89.05
##
[[2]]
user system elapsed
90.465 7.269 102.447

In the tally calls we just ran we didn’t specify a reference genome sequence and the algorithm will default to
a majority vote amongst all samples in this case. In order to call also homozygous variants reliably we will
have to specify the reference sequence, since at a homozygous position the majority-vote based best guess for
what the reference base was, will in fact be the alternative allele of the homozygous variant. Please also read
?tallyBAM for background on the function and an explanation of the parameters.

To avoid this problem we can provide a DNAString to the function which will be used as the refer-
ence sequence, we get this from one of the BSGenome packages. Note that the following code uses
BSgenome.Hsapiens.UCSC.hg19 which has a naming convention that is different from the names of the choro-
mosomes used in the .bam files (“chrX” vs. “X”) and we need to fix this through the call to paste0("chr",
chrom).

we load a reference genome and use a subset of it as a parameter to applyTallies
suppressPackageStartupMessages(library(BSgenome.Hsapiens.UCSC.hg19))
tallies <- applyTallies(

bamFiles, chrom = chrom, start = startpos, stop = endpos, ncycles = 10,
reference = BSgenome.Hsapiens.UCSC.hg19[[paste0("chr", chrom)]][startpos:endpos])

the first and last 10 sequencing cycles are called unreliable
str(tallies)

6

List of 4
$ Counts : num [1:12, 1:48, 1:2, 1:100001] 0 0 0 0 0 0 0 0 0 0 ...
..- attr(*, "dimnames")=List of 4
.. ..$: chr [1:12] "A.front" "C.front" "G.front" "T.front" ...
.. ..$: NULL
.. ..$: chr [1:2] "+" "-"
.. ..$: NULL
$ Coverages: int [1:48, 1:2, 1:100001] 0 0 0 0 0 0 0 0 0 0 ...
..- attr(*, "dimnames")=List of 3
.. ..$: NULL
.. ..$: chr [1:2] "+" "-"
.. ..$: NULL
$ Deletions: int [1:48, 1:2, 1:100001] 0 0 0 0 0 0 0 0 0 0 ...
..- attr(*, "dimnames")=List of 3
.. ..$: NULL
.. ..$: chr [1:2] "+" "-"
.. ..$: NULL
$ Reference: num [1:100001] 0 0 1 3 1 1 0 0 0 0 ...

It is advisable to have a look at ?tallyBAM and ?applyTallies for an explanation of the parameters.

Question: Try to replace the BSgenome object that is used by one that follows ENSEMBL
notation (e.g. “BSgenome.Hsapiens.NCBI.GRCh38”) and remove the unneccessary paste
command. Compare the results of head(seqlevels(BSgenome.Hsapiens.NCBI.GRCh38)) and
head(seqlevels(BSgenome.Hsapiens.UCSC.hg19)).

As you can see the resulting object of the call is a simple list containing a set of arrays, which each
correspond to one of the datasets we want to write to the HDF5 file.
Now that we have created the tally object we have to write the data to an HDF5 file so that we may reference
it at a later point. In this simple example case we could always recreate the tally in each R session since it
doesn’t take long, but on a genome-wide scale this is completely impractical to do. You can see the substantial
amount of time and compute resources used to create a whole-genome tally file as an investment that will
pay off in the future, when you are (re-)running analyses and developing methods on the data. (have a look
at the help page of ?batchTallies to see how to calculate tallies for many samples genome-wide using a
compute cluster).
We will use the rhdf5::h5write function to write the data to the tally file, but first we must set up the tally
file with the correct structure of groups and datasets. Note that each element of the list that was returned
by our call to applyTallies corresponds to one dataset in the file.

chromlength <- chromdim[chrom,1] #grab the chromosome length from the first sample
study <- "/NRAS" #This will be the name of the main folder in the HDF5 file
tallyFile <- "NRAS.tally.hfs5"
if(file.exists(tallyFile)){

file.remove(tallyFile)
}

[1] TRUE

if(prepareTallyFile(tallyFile, study, chrom, chromlength, nsamples = length(bamFiles))){
h5ls(tallyFile)

}else{
message(paste("Preparation of:", tallyFile, "failed"))

}

7

group name otype dclass dim
0 / NRAS H5I_GROUP
1 /NRAS 1 H5I_GROUP
2 /NRAS/1 Counts H5I_DATASET INTEGER 12 x 48 x 2 x 249250621
3 /NRAS/1 Coverages H5I_DATASET INTEGER 48 x 2 x 249250621
4 /NRAS/1 Deletions H5I_DATASET INTEGER 48 x 2 x 249250621
5 /NRAS/1 Reference H5I_DATASET INTEGER 249250621

Question: Investigate ?prepareTallyFile and read about the influence of the chunkSize and
compressionLevel parameters.

Writing to the HDF5 tally file

Now that we have set up the file we can start writing the tally data to it, this we do using the rhdf5::h5write
function on each dataset, specifying the target file, location within the file and the exact block of data we
are writing to. For example the code index = list(NULL, NULL, startpos:endpos) in the command
used to write the “Coverages” dataset to the file, specifies that the block of data we are going to write covers
all samples (the first NULL) on both strands (the second NULL) and goes from startpos to endpos in the
genomic position dimension.

group <- paste(study, chrom, sep="/")
h5write(tallies$Counts, tallyFile, paste(group, "Counts", sep = "/"),

index = list(NULL, NULL, NULL, startpos:endpos))
h5write(tallies$Coverages, tallyFile, paste(group, "Coverages", sep = "/"),

index = list(NULL, NULL, startpos:endpos))
h5write(tallies$Deletions, tallyFile, paste(group, "Deletions", sep = "/"),

index = list(NULL, NULL, startpos:endpos))
h5write(tallies$Reference, tallyFile, paste(group, "Reference", sep = "/"),

index = list(startpos:endpos))
h5ls(tallyFile)

group name otype dclass dim
0 / NRAS H5I_GROUP
1 /NRAS 1 H5I_GROUP
2 /NRAS/1 Counts H5I_DATASET INTEGER 12 x 48 x 2 x 249250621
3 /NRAS/1 Coverages H5I_DATASET INTEGER 48 x 2 x 249250621
4 /NRAS/1 Deletions H5I_DATASET INTEGER 48 x 2 x 249250621
5 /NRAS/1 Reference H5I_DATASET INTEGER 249250621

Another important aspect of using tally files is the sample meta-data. Since HDF5 datasets only store
matrices without dimension names we need a way of knowing which id in the sample dimension corresponds
to which sample and we probably want to keep some type of auxiliary information about each sample as
well. We will construct the sample meta-data object (a data.frame) manually and use the setSampleData
function to write is to the tally file. With the getSampleData function we can then retrieve the sample
meta-data we wrote to the tally file to check if everything worked. To familiarise yourself with the required
fields in a sample meta-data object, have a look at ?setSampleData

sampleData <- data.frame(
Sample = gsub(".bam", "", gsub(pattern = "ExampleData/", "", bamFiles)),
Column = seq_along(bamFiles),
Type = "Control",
Library = "WholeExome",

8

stringsAsFactors = FALSE
)

sampleData$SampleID <- sapply(
strsplit(sampleData$Sample, "\\."),
function(x) as.numeric(x[2])
)

sampleData$Type[sampleData$SampleID %% 2 == 0] <- "Case"
sampleData$Patient <- paste0("Patient", floor((sampleData$SampleID + 1) / 2))
sampleData$Library[sampleData$SampleID >= 37] <- "WholeGenome"
setSampleData(tallyFile, group, sampleData, largeAttributes = TRUE)
getSampleData(tallyFile, group)

Column Library Patient Sample SampleID Type
1 1 WholeExome Patient1 Sample.1.rh 1 Control
2 2 WholeExome Patient5 Sample.10.rh 10 Case
3 3 WholeExome Patient6 Sample.11.rh 11 Control
4 4 WholeExome Patient6 Sample.12.rh 12 Case
5 5 WholeExome Patient7 Sample.13.rh 13 Control
6 6 WholeExome Patient7 Sample.14.rh 14 Case
7 7 WholeExome Patient8 Sample.15.rh 15 Control
8 8 WholeExome Patient8 Sample.16.rh 16 Case
9 9 WholeExome Patient9 Sample.17.rh 17 Control
10 10 WholeExome Patient9 Sample.18.rh 18 Case
11 11 WholeExome Patient10 Sample.19.rh 19 Control
12 12 WholeExome Patient1 Sample.2.rh 2 Case
13 13 WholeExome Patient10 Sample.20.rh 20 Case
14 14 WholeExome Patient11 Sample.21.rh 21 Control
15 15 WholeExome Patient11 Sample.22.rh 22 Case
16 16 WholeExome Patient12 Sample.23.rh 23 Control
17 17 WholeExome Patient12 Sample.24.rh 24 Case
18 18 WholeExome Patient13 Sample.25.rh 25 Control
19 19 WholeExome Patient13 Sample.26.rh 26 Case
20 20 WholeExome Patient14 Sample.27.rh 27 Control
21 21 WholeExome Patient14 Sample.28.rh 28 Case
22 22 WholeExome Patient15 Sample.29.rh 29 Control
23 23 WholeExome Patient2 Sample.3.rh 3 Control
24 24 WholeExome Patient15 Sample.30.rh 30 Case
25 25 WholeExome Patient16 Sample.31.rh 31 Control
26 26 WholeExome Patient16 Sample.32.rh 32 Case
27 27 WholeExome Patient17 Sample.33.rh 33 Control
28 28 WholeExome Patient17 Sample.34.rh 34 Case
29 29 WholeExome Patient18 Sample.35.rh 35 Control
30 30 WholeExome Patient18 Sample.36.rh 36 Case
31 31 WholeGenome Patient19 Sample.37.rh 37 Control
32 32 WholeGenome Patient19 Sample.38.rh 38 Case
33 33 WholeGenome Patient20 Sample.39.rh 39 Control
34 34 WholeExome Patient2 Sample.4.rh 4 Case
35 35 WholeGenome Patient20 Sample.40.rh 40 Case
36 36 WholeGenome Patient21 Sample.41.rh 41 Control
37 37 WholeGenome Patient21 Sample.42.rh 42 Case
38 38 WholeGenome Patient22 Sample.43.rh 43 Control
39 39 WholeGenome Patient22 Sample.44.rh 44 Case
40 40 WholeGenome Patient23 Sample.45.rh 45 Control

9

41 41 WholeGenome Patient23 Sample.46.rh 46 Case
42 42 WholeGenome Patient24 Sample.47.rh 47 Control
43 43 WholeGenome Patient24 Sample.48.rh 48 Case
44 44 WholeExome Patient3 Sample.5.rh 5 Control
45 45 WholeExome Patient3 Sample.6.rh 6 Case
46 46 WholeExome Patient4 Sample.7.rh 7 Control
47 47 WholeExome Patient4 Sample.8.rh 8 Case
48 48 WholeExome Patient5 Sample.9.rh 9 Control

Modifying the sample meta-data is facilitated through the use of getSampleData and setSampleData, we
can for example add another column to the data.frame.

sampleData <- getSampleData(tallyFile, group) #read from file
sampleData$ClinicalVariable <- rnorm(nrow(x = sampleData)) # add some data
setSampleData(tallyFile, group, sampleData, largeAttributes = TRUE) # write it back
head(getSampleData(tallyFile, group)) #did it work?

ClinicalVariable Column Library Patient Sample SampleID
1 1.4223 1 WholeExome Patient1 Sample.1.rh 1
2 -0.6157 2 WholeExome Patient5 Sample.10.rh 10
3 -2.9283 3 WholeExome Patient6 Sample.11.rh 11
4 -0.6877 4 WholeExome Patient6 Sample.12.rh 12
5 0.7190 5 WholeExome Patient7 Sample.13.rh 13
6 1.1485 6 WholeExome Patient7 Sample.14.rh 14
Type
1 Control
2 Case
3 Control
4 Case
5 Control
6 Case

Special attention has to be paid when mixing largeAttributes = TRUE and the default of largeAttributes
= FALSE when using the setSampleData function, since they will write the sample meta-data to the tally file
in two different ways and the getSampleData function will always use the data stored with largeAttributes
= TRUE if it is present.

sampleData <- getSampleData(tallyFile, group) #read from file
sampleData$Sample <- "********"
head(sampleData)

ClinicalVariable Column Library Patient Sample SampleID Type
1 1.4223 1 WholeExome Patient1 ******** 1 Control
2 -0.6157 2 WholeExome Patient5 ******** 10 Case
3 -2.9283 3 WholeExome Patient6 ******** 11 Control
4 -0.6877 4 WholeExome Patient6 ******** 12 Case
5 0.7190 5 WholeExome Patient7 ******** 13 Control
6 1.1485 6 WholeExome Patient7 ******** 14 Case

setSampleData(tallyFile, group, sampleData) # write it back without largeAttributes=TRUE
sampleData <- getSampleData(tallyFile, group) #did it work?
head(sampleData) #apparently not

10

ClinicalVariable Column Library Patient Sample SampleID
1 1.4223 1 WholeExome Patient1 Sample.1.rh 1
2 -0.6157 2 WholeExome Patient5 Sample.10.rh 10
3 -2.9283 3 WholeExome Patient6 Sample.11.rh 11
4 -0.6877 4 WholeExome Patient6 Sample.12.rh 12
5 0.7190 5 WholeExome Patient7 Sample.13.rh 13
6 1.1485 6 WholeExome Patient7 Sample.14.rh 14
Type
1 Control
2 Case
3 Control
4 Case
5 Control
6 Case

Did we save some space?

Let’s have a look at how much smaller the tally file is compared to the input .bam files.

tallySize <- file.info(tallyFile)$size
bamSize <- sum(sapply(

list.files("ExampleData/", pattern= "*.bam$", full.names=TRUE),
function(x) file.info(x)$size)
)

tallySize / bamSize

[1] 0.05772

Interacting with the tally file

h5vc provides two functions to access data stored in an HDF5 based tally file:

1. h5readBlock is a function that can be used to extract a block of data from a tally file; the limits of the
block can be specified in the genomic position as well as the sample dimension

2. h5dapply is a general purpose function which we can use to apply a function over blocks along the
genomic position axis in a tally file; this is useful for creating binned statistics (e.g. GC content or
coverage values) as well as applying functions whose results are independent of adjacent positions values
(e.g. variant calling functions)

Reading blocks of data

Let us first investigate the usage of the h5readBlock function, it has the following parameters:

1. filename: the name of the tally file (this must be an absoulte path or a path relative to the current
working directory)

2. group: the group within the tally file that we want to extract data from (/NRAS/1 in our case)

3. names: the names of the datasets we want to extract (this can be any subset of c("Counts",
"Coverages", "Deletions", "Reference"))

11

4. dims: the dimensions along which the datasets shall be subsetted for the block (the defaults select the
genomic position but there are cases where another dimension might be used)

5. range: the first and last index of the block in the dimension specified in dims

6. samples = NULL: a subselector for extracting data for specific samples, useful if the analysis is not
using cohort-level data

7. sampleDimMap = .sampleDimMap: a function that maps dataset names to their respective sample
dimensions

8. verbose = FALSE: boolean flag that specifies how much info is printed

Question: Try extracting different blocks of data using selectors for samples, datasets and
genomic positions to see the effects of all those parameters.

startpos <- 115247090
endpos <- 115259515
data <- h5readBlock(

filename = tallyFile,
group = group,
range = c(startpos, endpos)

)
str(data)

List of 5
$ Counts : int [1:12, 1:48, 1:2, 1:12426] 0 0 0 0 0 0 0 0 0 0 ...
$ Coverages : int [1:48, 1:2, 1:12426] 0 0 0 0 0 0 0 1 0 0 ...
$ Deletions : int [1:48, 1:2, 1:12426] 0 0 0 0 0 0 0 0 0 0 ...
$ Reference : int [1:12426(1d)] 3 3 0 3 2 0 1 3 0 0 ...
$ h5dapplyInfo:List of 4
..$ Blockstart: num 1.15e+08
..$ Blockend : num 1.15e+08
..$ Datasets :'data.frame': 4 obs. of 7 variables:
.. ..$ group : chr [1:4] "/NRAS/1" "/NRAS/1" "/NRAS/1" "/NRAS/1"
.. ..$ name : chr [1:4] "Counts" "Coverages" "Deletions" "Reference"
.. ..$ otype : Factor w/ 7 levels "H5I_FILE","H5I_GROUP",..: 5 5 5 5
.. ..$ dclass : chr [1:4] "INTEGER" "INTEGER" "INTEGER" "INTEGER"
.. ..$ dim : chr [1:4] "12 x 48 x 2 x 249250621" "48 x 2 x 249250621" "48 x 2 x 249250621" "249250621"
.. ..$ DimCount: int [1:4] 4 3 3 1
.. ..$ PosDim : int [1:4] 4 3 3 1
..$ Group : chr "/NRAS/1"

data <- h5readBlock(
filename = tallyFile,
group = group,
names = c("Coverages", "Reference"),
range = c(startpos, endpos)

)
str(data)

List of 3
$ Coverages : int [1:48, 1:2, 1:12426] 0 0 0 0 0 0 0 1 0 0 ...
$ Reference : int [1:12426(1d)] 3 3 0 3 2 0 1 3 0 0 ...

12

$ h5dapplyInfo:List of 4
..$ Blockstart: num 1.15e+08
..$ Blockend : num 1.15e+08
..$ Datasets :'data.frame': 2 obs. of 7 variables:
.. ..$ group : chr [1:2] "/NRAS/1" "/NRAS/1"
.. ..$ name : chr [1:2] "Coverages" "Reference"
.. ..$ otype : Factor w/ 7 levels "H5I_FILE","H5I_GROUP",..: 5 5
.. ..$ dclass : chr [1:2] "INTEGER" "INTEGER"
.. ..$ dim : chr [1:2] "48 x 2 x 249250621" "249250621"
.. ..$ DimCount: int [1:2] 3 1
.. ..$ PosDim : int [1:2] 3 1
..$ Group : chr "/NRAS/1"

data <- h5readBlock(
filename = tallyFile,
group = group,
names = c("Coverages", "Reference"),
samples = sampleData$Sample[3:7],
range = c(startpos, endpos)

)
str(data)

List of 3
$ Coverages : int [1:5, 1:2, 1:12426] 0 0 0 0 0 0 0 0 0 0 ...
$ Reference : int [1:12426(1d)] 3 3 0 3 2 0 1 3 0 0 ...
$ h5dapplyInfo:List of 4
..$ Blockstart: num 1.15e+08
..$ Blockend : num 1.15e+08
..$ Datasets :'data.frame': 2 obs. of 7 variables:
.. ..$ group : chr [1:2] "/NRAS/1" "/NRAS/1"
.. ..$ name : chr [1:2] "Coverages" "Reference"
.. ..$ otype : Factor w/ 7 levels "H5I_FILE","H5I_GROUP",..: 5 5
.. ..$ dclass : chr [1:2] "INTEGER" "INTEGER"
.. ..$ dim : chr [1:2] "48 x 2 x 249250621" "249250621"
.. ..$ DimCount: int [1:2] 3 1
.. ..$ PosDim : int [1:2] 3 1
..$ Group : chr "/NRAS/1"

The data object that are returned are lists of arrays with one entry per requested dataset, the layout is
essentially the same as the results of a call to tallyBAM or applyTallies would have yielded. In addition
there is always the special slot named h5dapplyInfo which contains a list specifying the start and end of the
current block as well as a data.frame with information about the returned datasets and the group they were
extracted from.

While extracting a single block of data can be interesting for the investigation of specific regions within
specific samples, when we want to calculate more general statistics the h5dapply function is of more use.
The interface of the function is essentially identical to that of h5readBlock and only contains two additional
paramters, which are the blocksize and the function to apply.

An example of usage is this bit of code, that calculates binned coverage for all the samples. Note that they are
whole exome sequencing data and therefore the binned coverage signal is heavily influenced by the presence
or absence of coding sequence within each bin. You can tell which samples are whole exome and which are
whole genome simply by looking at the numbers below.

13

startpos = 115200000
endpos = 115300000
data <- h5dapply(# extracting coverage binned at 1000 bases

filename = tallyFile,
group = group,
blocksize = 1000,
FUN = binnedCoverage,
sampledata = sampleData,
gccount = TRUE,
names = c("Coverages", "Reference"),
range = c(startpos, endpos)

)
data <- do.call(rbind, data)
rownames(data) <- NULL
head(data)

Sample.1.rh Sample.10.rh Sample.11.rh Sample.12.rh Sample.13.rh
1 395 0 201 300 197
2 921 716 899 1109 737
3 770 1157 932 674 811
4 414 800 542 606 343
5 0 0 177 186 385
6 1203 594 597 813 369
Sample.14.rh Sample.15.rh Sample.16.rh Sample.17.rh Sample.18.rh
1 605 396 200 563 0
2 473 404 773 812 337
3 1856 592 231 797 1005
4 1580 596 572 605 840
5 278 14 0 0 0
6 1108 969 363 1507 490
Sample.19.rh Sample.2.rh Sample.20.rh Sample.21.rh Sample.22.rh
1 307 0 400 388 458
2 322 621 1060 940 733
3 396 510 1029 497 0
4 535 1356 675 760 321
5 88 101 202 0 0
6 858 1211 1260 1091 197
Sample.23.rh Sample.24.rh Sample.25.rh Sample.26.rh Sample.27.rh
1 169 197 235 560 355
2 327 383 513 1338 1002
3 744 987 1107 975 239
4 742 400 1308 1231 846
5 397 191 389 0 0
6 701 347 389 712 394
Sample.28.rh Sample.29.rh Sample.3.rh Sample.30.rh Sample.31.rh
1 202 397 659 0 404
2 611 610 2302 805 598
3 300 628 575 1007 621
4 371 786 1508 601 1129
5 0 66 0 202 202
6 805 337 403 1008 798
Sample.32.rh Sample.33.rh Sample.34.rh Sample.35.rh Sample.36.rh
1 604 217 303 495 426

14

2 362 1390 218 296 862
3 199 786 1826 1091 850
4 558 720 1289 1109 600
5 31 404 202 213 602
6 1331 604 804 791 403
Sample.37.rh Sample.38.rh Sample.39.rh Sample.4.rh Sample.40.rh
1 28603 27125 56168 681 59472
2 27959 24008 49592 605 51395
3 20460 20195 38953 591 40939
4 23075 19342 47689 1333 40777
5 26071 28562 63268 202 51423
6 21846 29644 54014 1610 51261
Sample.41.rh Sample.42.rh Sample.43.rh Sample.44.rh Sample.45.rh
1 67059 55770 52634 43861 54070
2 58227 44666 53105 33861 54047
3 42877 41245 47637 33508 37812
4 41228 32405 40293 35153 51363
5 75804 49853 52495 38889 53600
6 56492 50890 49215 34889 49276
Sample.46.rh Sample.47.rh Sample.48.rh Sample.5.rh Sample.6.rh
1 45876 43447 40732 238 198
2 48049 37404 39476 402 0
3 38221 38956 39059 534 143
4 44523 38318 34201 1075 120
5 45096 40383 40283 0 99
6 47027 40833 40850 804 438
Sample.7.rh Sample.8.rh Sample.9.rh Start End GCCount
1 390 296 401 115200000 115200999 389
2 137 614 169 115201000 115201999 373
3 977 300 1366 115202000 115202999 427
4 542 866 201 115203000 115203999 424
5 0 333 200 115204000 115204999 315
6 1101 594 773 115205000 115205999 369

Upon investigating the signature of the binnedCoverage function we can see that certain parameters must
always be present in the signature of a function to be used with h5dapply, i.e. the data parameter is always
the same with the name data and the structure of a list of entries with one slot per dataset.

binnedCoverage

function (data, sampledata, gccount = FALSE)
{
ret = rowSums(data$Coverages[sampledata$Column, ,])
names(ret) = sampledata$Sample[order(sampledata$Column)]
ret = as.data.frame(t(ret))
ret$Start = data$h5dapplyInfo$Blockstart
ret$End = data$h5dapplyInfo$Blockend
if (gccount) {
stopifnot("Reference" %in% names(data))
ret$GCCount <- sum(table(data$Reference)[c("1", "2")])
}
ret
}
<environment: namespace:h5vc>

15

Since we have some whole genome samples available within the datasets, we will re-run the binnedCoverage
function only on those samples since we can make more reliable fits to GC content in them. At this point the
subsetting by sample functionality build into h5dapply is helpful. Using this subsetting approach reduces
time and memory requirements, since only the corresponding data is loaded from the HDF5 file. We do have
to adapt the sampleData a bit, since the positions of the samples in the respective sample dimension are
shifted by the subsetting.

Grab only the whole genome samples
selectedSamples <- sampleData$Sample[sampleData$Library == "WholeGenome"]
sampleDataSubset <- subset(sampleData, Sample %in% selectedSamples)
The Column propertie specifies the position of the sample in the datasets,
since we subset, the indexes are off and need to be adjusted
sampleDataSubset$Column <- rank(sampleDataSubset$Column)
Apply the binnedCoverage function
data <- h5dapply(# extracting coverage binned at 1000 bases

filename = tallyFile,
group = group,
blocksize = 1000,
samples = selectedSamples,
FUN = binnedCoverage,
sampledata = sampleDataSubset,
gccount = TRUE,
names = c("Coverages", "Reference"),
range = c(startpos, endpos)

)
h5dapply returns a list, we need to merge the results by row
data <- do.call(rbind, data)
rownames(data) <- NULL
head(data)

Sample.37.rh Sample.38.rh Sample.39.rh Sample.40.rh Sample.41.rh
1 28603 27125 56168 59472 67059
2 27959 24008 49592 51395 58227
3 20460 20195 38953 40939 42877
4 23075 19342 47689 40777 41228
5 26071 28562 63268 51423 75804
6 21846 29644 54014 51261 56492
Sample.42.rh Sample.43.rh Sample.44.rh Sample.45.rh Sample.46.rh
1 55770 52634 43861 54070 45876
2 44666 53105 33861 54047 48049
3 41245 47637 33508 37812 38221
4 32405 40293 35153 51363 44523
5 49853 52495 38889 53600 45096
6 50890 49215 34889 49276 47027
Sample.47.rh Sample.48.rh Start End GCCount
1 43447 40732 115200000 115200999 389
2 37404 39476 115201000 115201999 373
3 38956 39059 115202000 115202999 427
4 38318 34201 115203000 115203999 424
5 40383 40283 115204000 115204999 315
6 40833 40850 115205000 115205999 369

This simple function returns a dataset with one column per sample as well as the gc-count in each bin. This
is a pretty good starting point for a copy number analysis using e.g. the HMMCopy package. We can for

16

example plot the coverages in bins vs. their GC count to check for biases.

library(ggplot2)
library(reshape2)
data <- melt(data, id.vars = c("Start", "End", "GCCount"))
colnames(data)[4] <- "Sample"
colnames(data)[5] <- "Coverage"
p <- ggplot(data, aes(x=GCCount, y = Coverage, col = Sample)) +

geom_point() + facet_wrap(~ Sample, ncol = 2)
print(p)

Sample.37.rh Sample.38.rh

Sample.39.rh Sample.40.rh

Sample.41.rh Sample.42.rh

Sample.43.rh Sample.44.rh

Sample.45.rh Sample.46.rh

Sample.47.rh Sample.48.rh

20000

40000

60000

80000

20000

40000

60000

80000

20000

40000

60000

80000

20000

40000

60000

80000

20000

40000

60000

80000

20000

40000

60000

80000

300 400 500 600 300 400 500 600
GCCount

C
ov

er
ag

e

Sample

Sample.37.rh

Sample.38.rh

Sample.39.rh

Sample.40.rh

Sample.41.rh

Sample.42.rh

Sample.43.rh

Sample.44.rh

Sample.45.rh

Sample.46.rh

Sample.47.rh

Sample.48.rh

As we can see here, there are some differences between the samples (e.g. Sample.41 seems to have the strongest
coverage-dependency on GC), in general most samples look rather flat, which indicates little influence of
the GC content on the local coverage. If we wanted to we could now use e.g. locfit.robust to fit a model
GCCount ~ Coverage for each sample and obtain a correction factor for each possible value of GCCount for
each sample, which we could use to correct for GC-dependencies, which otherwise could generate noise in our
log2-ratios between the matched normal and control samples, which we might want to use to produce copy
number calls.

Question: I will leave the GC-dependency fitting, correction and calculation of log2-ratios as an
exercise for the reader. Hint: have a look at ?locfit.robust after calling library(locfit) as
well as ?predict

17

There is only one requirement on the FUN argument to h5dapply (i.e. the function we want to apply to each
block). We can use any function as FUN that expects its first argument to be a list of arrays corresponding to
the datasets in the current block. Further arguments are passed through by h5dapply but their names may
not collide with the named arguments of h5dapply (filename, group, blocksize, FUN, names, dims, range,
samples, sampleDimMap, verbose and BPPARAM).
With the BPPARAM parameter we can control parallelisation behaviour of h5dapply, which can yield substantial
runtime improvements, as exemplified below (note that this code uses 4 concurrent processes for the
calculations, if you are operating on a dual-core machine set this to 2, if you are on a bigger machine, increase
the number of workers accordingly).
In this simple benchmark we will use system.time to measure the runtime of a single call to h5dapply.

startpos = 115200000
endpos = 115300000
system.time(

dataS <- h5dapply(# extracting coverage binned at 1000 bases
filename = tallyFile,
group = group,
blocksize = 1000,
FUN = binnedCoverage,
sampledata = sampleData,
gccount = TRUE,
names = c("Coverages", "Reference"),
range = c(startpos, endpos)

)
)

user system elapsed
5.472 1.071 6.590

dataS <- do.call(rbind, dataS)
system.time(

dataP <- h5dapply(# extracting coverage binned at 1000 bases
filename = tallyFile,
group = group,
blocksize = 1000,
FUN = binnedCoverage,
sampledata = sampleData,
gccount = TRUE,
names = c("Coverages", "Reference"),
range = c(startpos, endpos),
BPPARAM = MulticoreParam(workers = 4)

)
)

user system elapsed
3.899 1.054 2.928

dataP <- do.call(rbind, dataP)
Are results of serial and parallel execution identical?
identical(dataS, dataP)

[1] TRUE

18

Calling variants

As an example of how to develop new functions for usage with h5dapply we will now implement a naive,
single-sample variant calling function. The function will be called myVariantCaller and will take four
arguments:

1. data: the list of arrays corresponding to the current block

2. sampleNames: a vector of names to be used for the samples in the same order as the samples are stored
in the sample dimension of the nucleotide tally.

3. minAF: minimal allelic frequency a variant should have to be called

4. minCov: minimal coverage a position must have in order for a variant to be called there

Our implementation is exceedingly naive, in that it simply adds up all mismatches per sample irrespective
of the alternative allele and then calculates the allelic frequency from that. We then build a filter on the
coverage and allelic frequency and return all positions which fulfill our two criteria (allelic freqeuncy and
coverage minimum).

myVariantCaller <- function(data, sampleNames, minAF = 0.2, minCov = 20){
#sanity checks for the data
stopifnot("Counts" %in% names(data))
stopifnot("Coverages" %in% names(data))
#sum up coverages for each sample (forward strand + reverse strand coverage)
coverages <- apply(data$Coverages, c(1,3), sum)
sum up all counts for each sample (i.e. #A + #C + #G + #T on both strands)
counts <- apply(data$Counts, c(2,4), sum)
Now counts and coverage have a compatible shape
and we can calculate estimates for the allelic frequency
afs <- counts / coverages
Here we do the calling, by filtering for a minimal allelic Frequency and
Coverage in each sample and position
filter <- afs >= minAF & coverages >= minCov
require(reshape2) #use melt to convert the array into a data.frame
filter <- melt(filter)
#rename the columns
colnames(filter) <- c("Sample", "Position", "Called")
filter$Sample <- sampleNames[filter$Sample]
fix the position to reflect genomic coordinates
filter$Position <- filter$Position + data$h5dapplyInfo$Blockstart - 1
We return only those positions that pass the filter
return(subset(filter, Called == TRUE))

}

We will now apply this variant caller to the whole genome sequencing samples we had extracted earlier.

selectedSamples <- sampleData$Sample[sampleData$Library == "WholeGenome"]
sampleDataSubset <- subset(sampleData, Sample %in% selectedSamples)
sampleDataSubset$Column <- rank(sampleDataSubset$Column)
data <- h5dapply(# calling variants in bins of size 10kb

filename = tallyFile,
group = group,
blocksize = 10000,

19

samples = selectedSamples,
FUN = myVariantCaller,
sampleNames = selectedSamples,
names = c("Coverages", "Counts"),
range = c(startpos, endpos)

)
data <- do.call(rbind, data)
rownames(data) <- NULL
head(data)

Sample Position Called
1 Sample.37.rh 115200808 TRUE
2 Sample.38.rh 115200808 TRUE
3 Sample.39.rh 115200808 TRUE
4 Sample.40.rh 115200808 TRUE
5 Sample.41.rh 115200808 TRUE
6 Sample.42.rh 115200808 TRUE

Let’s have a look at the first positions where a variant has been called. We extract the nucleotide tally data
around that position with a call to h5readBlock and use it to create a mismatchPlot, which gives us an
overview over the region in the different samples.

varpos <- data$Position[1]
windowsize <- 50
plotData <- h5readBlock(

filename = tallyFile,
group = group,
samples = selectedSamples,
range = c(varpos - windowsize, varpos + windowsize)

)
p <- mismatchPlot(

data = plotData,
sampledata = sampleDataSubset,
position = varpos, windowsize = windowsize)

print(p)

20

−20
−10

0
10
20

−20
−10

0
10

−40
−30
−20
−10

0
10
20
30
40

−30
−20
−10

0
10
20
30

−40
−30
−20
−10

0
10
20
30
40
50

−30
−20
−10

0
10
20
30

−30
−20
−10

0
10
20

−20
−10

0
10
20

−30
−20
−10

0
10
20
30

−30
−20
−10

0
10
20

−30
−20
−10

0
10
20

−30
−20
−10

0
10
20

0

S
am

ple.37.rh
S

am
ple.38.rhS

am
ple.39.rh

S
am

ple.40.rh
S

am
ple.41.rh

S
am

ple.42.rh
S

am
ple.43.rhS

am
ple.44.rh

S
am

ple.45.rh
S

am
ple.46.rhSam

ple.47.rhSam
ple.48.rhRef

−50 −40 −30 −20 −10 115200808 10 20 30 40 50

R
ea

d
D

ep
th

Base

A

A_lq

C

C_lq

Del

G

G_lq

T

T_lq

We can see a nice heterozygous variant (actually homozygous in some of the patients) that we found at this
position (not bad for a variant caller written in 5 minutes), but we can also see that it occurs always in both
samples of all patients (the sample pairs are in order always control and case) and that it is therefore not a
very interesting variant in the current setting (a cohort of paired cancer samples). Maybe we need a smarter
approach to finding the interesting positions.

Question: I strongly recommend the user to think about how to implement a pairwise comparative
variant callign scheme and experiment with adapting the myVariantCaller function to add
comparative calling and more importantly calling of the alternative allele.

Question: Familiarise yourself with the different step of the variant caller you just implemented.
Load some data with a call to h5readBlock, store it in an object that you name data and try
out some of the calls, e.g. coverages <- apply(data$Coverages, c(1,3), sum) and counts

21

<- apply(data$Counts, c(2,4), sum) as well as the filter call (filter <- afs >= minAF &
coverages >= minCov). Also have a look at ?melt to find out what this function does.

Question: Modify the myVariantCaller function so that is uses binom.test to give a p-Value
for each variant call testing for an assumed allelix freqeuncy of 0.5 (i.e. heterozygousity in diploid
regions)

An example implementation of a comparative SNV caller is provided in the h5vc::callVariantsPaired
function, which we can run on the whole dataset with the following code:

startpos = 115200000
endpos = 115300000
data <- h5dapply(# calling variants pairwise in bins of size 5kb

filename = tallyFile,
group = group,
blocksize = 10000,
FUN = callVariantsPaired,
sampledata = sampleData,
cl = vcConfParams(

returnDataPoints = TRUE,
annotateWithBackground = TRUE
),

names = c("Coverages", "Counts", "Reference"),
range = c(startpos, endpos),
verbose = TRUE

)

Processing Block #1: 115200000:115209999
Processing Block #2: 115210000:115219999
Processing Block #3: 115220000:115229999
Processing Block #4: 115230000:115239999
Processing Block #5: 115240000:115249999
Processing Block #6: 115250000:115259999
Processing Block #7: 115260000:115269999
Processing Block #8: 115270000:115279999
Processing Block #9: 115280000:115289999
Processing Block #10: 115290000:115299999

data <- do.call(rbind, data)
rownames(data) <- NULL
head(data)

Chrom Start End Sample altAllele refAllele caseCountFwd
1 1 115256529 115256529 Sample.28.rh C T 9
2 1 115269674 115269674 Sample.30.rh A C 2
caseCountRev caseCoverageFwd caseCoverageRev controlCountFwd
1 22 55 83 0
2 2 108 114 0
controlCountRev controlCoverageFwd controlCoverageRev
1 0 50 85
2 0 101 103
backgroundFrequencyFwd backgroundFrequencyRev pValueFwd pValueRev
1 0.0000000 0 0.000000 0
2 0.0007692 0 0.003239 0

22

It’s behaviour is controlled through the parameter cl which is a simple list of configuration parameters.
The function vcConfParams is the default constructor for that list and a look at it’s parameters reveals the
underlying concepts in the variant calling function.

vcConfParams()

$minStrandCov
[1] 5
##
$maxStrandCov
[1] 200
##
$minStrandAltSupport
[1] 2
##
$maxStrandAltSupportControl
[1] 0
##
$minStrandDelSupport
[1] 2
##
$maxStrandDelSupportControl
[1] 0
##
$minStrandCovControl
[1] 5
##
$maxStrandCovControl
[1] 200
##
$bases
[1] 5 6 7 8
##
$returnDataPoints
[1] FALSE
##
$annotateWithBackground
[1] FALSE
##
$mergeCalls
[1] FALSE
##
$mergeAggregator
function (x, ...)
UseMethod("mean")
<bytecode: 0x7f89e0e18790>
<environment: namespace:base>
##
$pValueAggregator
function (..., na.rm = FALSE) .Primitive("max")

For a detailed description see ?vcConfParams. It should be noted that the callVariantsPaired function is
really just an example of how I go about calling variants. If you have your own ideas for how to call variants,
you can implement those easily in a similar function to myVariantCaller or callVariantsPaired.

23

Let’s plot the variants we have detected with the comparative variant calling approach. Here we also make
use of the fact that mismatchPlot returns a ggplot plot object which can be further manipulated by addition
of layers or themes (the usage of ggplot2 will not be part of this tutorial; have a look at ?theme for an
overview of how to style the plots according to your wishes, e.g. have a look at what happens when you add
theme(panel.background = element_rect(color = "red")) to the plot object p).

Question: After runnign the following code you will find the object p in your R environment.
Look at ?theme as well as ?element_rect and ?element_text to find out about some of the
ways in which you can modify the plot by changing font sizes, angles and colours.

windowsize = 50
plots = list()
for(idx in seq(length=nrow(data))){

varpos <- data$Start[idx]
sample <- data$Sample[idx]
selectedSamples <- subset(

sampleData,
Patient == sampleData$Patient[sampleData$Sample == data$Sample[idx]]
)$Sample

sampleDataSubset <- subset(sampleData, Sample %in% selectedSamples)
sampleDataSubset$Column <- rank(sampleDataSubset$Column)
plotData <- h5readBlock(

filename = tallyFile,
group = group,
samples = selectedSamples,
range = c(varpos - windowsize, varpos + windowsize)

)
p <- mismatchPlot(

data = plotData,
sampledata = sampleDataSubset,
position = varpos,
windowsize = windowsize)

plots[[idx]] <- p
print(p + theme(strip.text.y = element_text(family="serif", angle = 0, size = 12)))

}

24

−90
−80
−70
−60
−50
−40
−30
−20
−10

0
10
20
30
40
50
60
70
80

−90
−80
−70
−60
−50
−40
−30
−20
−10

0
10
20
30
40
50
60
70
80

0

Sample.27.rh

Sample.28.rh

Ref
−50 −40 −30 −20 −10 115256529 10 20 30 40 50

R
ea

d
D

ep
th

Base

A

A_lq

C

C_lq

Del

G

G_lq

T

T_lq

−130
−120
−110
−100

−90
−80
−70
−60
−50
−40
−30
−20
−10

0
10
20
30
40
50
60
70
80
90

100
110
120

−130
−120
−110
−100

−90
−80
−70
−60
−50
−40
−30
−20
−10

0
10
20
30
40
50
60
70
80
90

100
110
120

0

Sample.29.rh

Sample.30.rh

Ref
−50 −40 −30 −20 −10 115269674 10 20 30 40 50

R
ea

d
D

ep
th

Base

A

A_lq

C

C_lq

Del

G

G_lq

T

T_lq

We have found two variants and we can see that while the first looks promising, the second is actually present
at a very low frequency. This doesn’t make it any less interesting, just more likely to be a clonal variant
present in a small fraction of the cell population that was sequenced. We can see this also by looking at the
variant call table again.

data$Support <- data$caseCountFwd + data$caseCountRev
data$Coverage <- data$caseCoverageFwd + data$caseCoverageRev
data$AllelicFrequency <- data$Support / data$Coverage

25

data

Chrom Start End Sample altAllele refAllele caseCountFwd
1 1 115256529 115256529 Sample.28.rh C T 9
2 1 115269674 115269674 Sample.30.rh A C 2
caseCountRev caseCoverageFwd caseCoverageRev controlCountFwd
1 22 55 83 0
2 2 108 114 0
controlCountRev controlCoverageFwd controlCoverageRev
1 0 50 85
2 0 101 103
backgroundFrequencyFwd backgroundFrequencyRev pValueFwd pValueRev
1 0.0000000 0 0.000000 0
2 0.0007692 0 0.003239 0
Support Coverage AllelicFrequency
1 31 138 0.22464
2 4 222 0.01802

Question: Think about how you could annotate genomic regions with an estimate of their
local density of mismatches per sample using a list of positions (e.g. some variant calls) and
the h5readBlock function to retrieve data located at and around those positions. Hint: A
combination of matrix operations on the data can help you get an idea of how many mismatches
are present in the blocks in each of the samples.

Creating variant reports

Using ReportingTools we can create beautiful interactive HTML reports that contain our list of variant
calls and links to usefull other information (e.g. ENSEMBL gene entries, mismatchPlots, etc.). An example
is given below.

library(ReportingTools)

Loading required package: knitr
Loading required package: DBI
Loading required package: AnnotationDbi
Loading required package: Biobase
Welcome to Bioconductor
##
Vignettes contain introductory material; view with
'browseVignettes()'. To cite Bioconductor, see
'citation("Biobase")', and for packages 'citation("pkgname")'.
##
##
Attaching package: 'AnnotationDbi'
##
The following object is masked from 'package:BSgenome':
##
species
##
##
##
##

26

Attaching package: 'ReportingTools'
##
The following object is masked from 'package:Rsamtools':
##
path

library(hwriter)

for(idx in seq_len(length(plots))){
png(paste("Var", idx, "png", sep="."), 1200, 800)
print(plots[[idx]])
dev.off()

}

reportData <- data
reportData$mismatchPlot <- paste0(

"<a target=\"_blank\" href=\"Var.",
seq(length=nrow(data)),
".png\">Link") # add a link to the variant plot files

htmlRep <- HTMLReport(shortName = "VariantReport", baseDirectory = getwd())
publish(reportData, htmlRep) # publish the data.frame to the HTML reports
finish(htmlRep)

[1] "./VariantReport.html"

Question: Open the VariantReport.html file in a web browser and have a look around the report.

Creating custom plots

We can generate our own plots using the geom_h5vc function to add layers to a ggplot2 plot object. In
the following example we use the example file provided by the h5vcData package to plot overviews of total
number of mismatches.

tallyFile <- system.file("extdata", "example.tally.hfs5", package = "h5vcData")
sampleData <- getSampleData(tallyFile, "/ExampleStudy/16")
position <- 29979629
windowsize <- 30
samples <- sampleData$Sample[sampleData$Patient == "Patient8"]
data <- h5readBlock(

filename = tallyFile,
group = "/ExampleStudy/16",
names = c("Coverages", "Counts"),
range = c(position - windowsize, position + windowsize)

)
Summing up all mismatches irrespective of the alternative allele
data$CountsAggregate = colSums(data$Counts)
Simple overview plot showing number of mismatches per position
p <- ggplot() +
geom_h5vc(data=data,

sampledata=sampleData,
windowsize = 35, position = 500,
dataset = "Coverages", fill = "gray") +

27

geom_h5vc(data=data,
sampledata=sampleData,
windowsize = 35, position = 500,
dataset = "CountsAggregate", fill = "#A535C0") +

facet_wrap(~ Sample, ncol = 2)
print(p)

PT5ControlDNA PT5PrimaryDNA

PT5RelapseDNA PT8ControlDNA

PT8EarlyStageDNA PT8PrimaryDNA

−20

0

20

−20

0

20

−20

0

20

−20 0 20 −20 0 20

Summary

In this tutorial we have learned how to read and write from HDF5 files, create nucleotide tallies from .bam
files and write them to a tally file. We introduced the concept of sample meta-data and how to retrieve,
modify and store it in a nucleotide tally file and explored ways of fetching data from nucleotide tally files
and applying functions to the data in blocks along the genome. You should be able to use variant calling
functions and indeed be able to implement such functions yourself, using whichever calling aproach you are
interested in. Ww also covered the visualisation features that allow us to create overview plots of genomic
regions of interest, e.g. the regions around variant calls.

Question: If you still have time and motivation, go ahead and have a look at the example data in
different ways, to see what you can find. You could start with running the callVariantsSingle
and callDeletionsPaired function of the region to see how the different samples behave.

Question: You can also work through the simgle genome browser vignette (from the h5vc
package), adapting it to use the NRAS.tally.hfs5 tally file that we created with this tutorial.

28

	Introduction
	Motivation
	Nucleotide Tally Definition
	Intorduction to HDF5
	Getting Started: Loading example data
	Writing to the HDF5 tally file
	Did we save some space?

	Interacting with the tally file
	Reading blocks of data

	Calling variants
	Creating variant reports
	Creating custom plots
	Summary

