Visualisation and assessment of ChIP-seq quality

Thomas Carroll

Head of Bioinformatics, MRC Clinical Sciences Centre, Imperial College London

BioC 2014

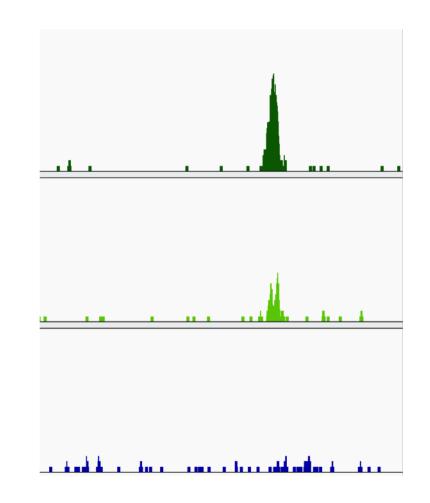
ChIP-seq is noisy

- ChIP-seq/ChiP-exo/DNA-seq/MNase-seq is noisy.
- Experimental biases:
 - Fragmentation/digestion.
 - IP strength/efficiency and specificity.
 - PCR Bias (Overamplification from low starting material)
- Highly variable patterns of enrichment between ChIPs.
 - Transcription factors may show sharp/narrow peaks.
 - Polymerase II will show mix of sharp/narrow and dispersed/broad peaks

Always visualise your data

- Coverage graphs.
 - Wigs (Okay)
 - bedGraphs (Okay)
 - BigWigs (Great)
- Allows for quick assessment of data...

...but dependent on user's interpretation/experience.



High-thoughput ChIP-seq quality control with ChIPQC

 Need methods to quantify informative characteristics about your ChIP-seq data.

• ChIPQC – Tom Carroll and Rory Stark (Diffbind).

• ChIPQC provides workflow to generate metrics per sample/experiment.

ChIP-seq metrics

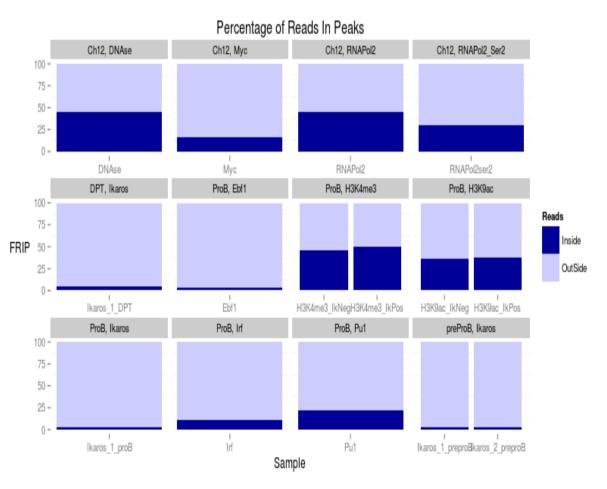
- Distribution of Signal
- Clustering of Watson/Crick reads.
- Duplication Rate.

Distribution of Signal

- Within enriched regions
- Within/across expected annotation
- Across the genome
- Within known artefact regions

Signal in Peaks (FRIP)

- The simplest assessment of enrichment.
 - Call enriched regions over input
 - Measure fraction of reads in peaks (FRIP)
 - Good quality TF > 5%
 - Good quality Pol-II> 30%



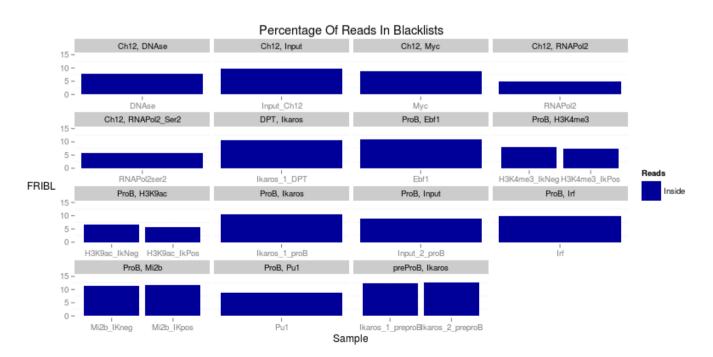
Relative Enrichment in Genomic Intervals (REGI).

• Expected enrichment in genomic regions

 Plot relative enrichment of reads in annotated regions.

Signal in Blacklists (FRIBL)

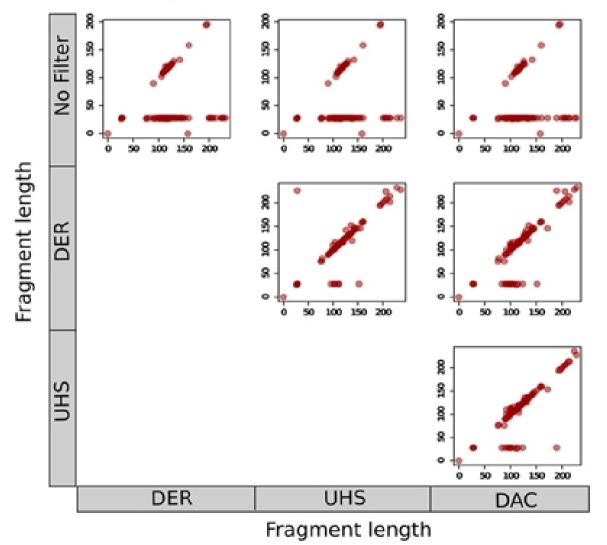
- Work from Encode (Kudaje A) has produced curated list of conserved high signal artefact regions.
- Available for many species including human, mouse and drosophila genomes.
- Represent around 0.5% of genome.
- Can account for high proportion of total signal (> 10%).



Why worry about blacklists?

- Can affect -
 - Normalisation between samples.
 - Fragment length estimation.
 - Quality metrics for ChIP-seq.

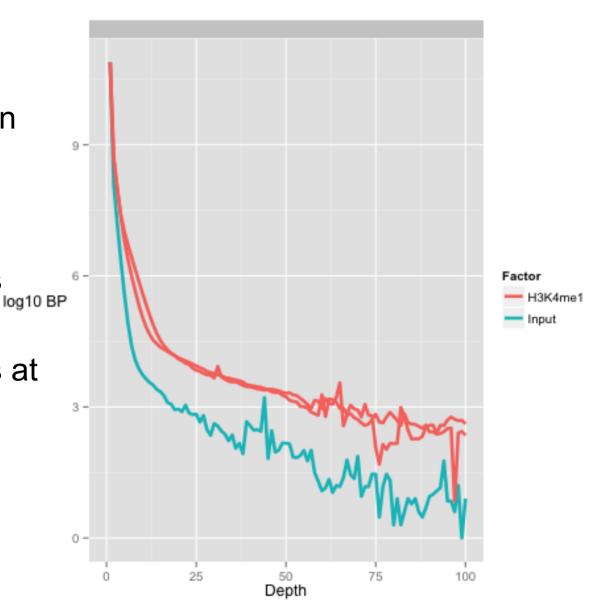
Predicted fragment length before and after blacklisting



Carroll et al 2014

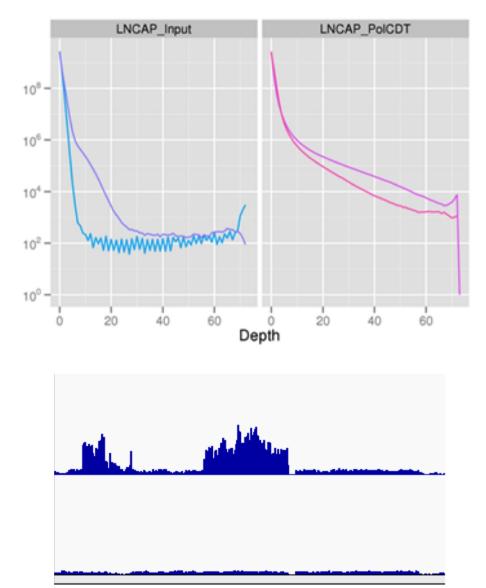
Global signal profile

- A simple method to review global distribution is as histograms.
- More enriched samples show higher number of bases at greater depths
- Input samples show higher number of bases at low depths



Global Signal Profile

- Presence of stretch of high signal depth
- Identify anomalous signal region as candidate for blacklisting.

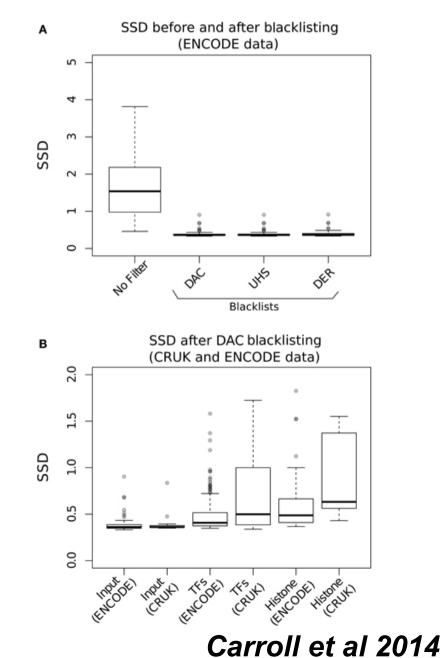


Metric of Global Signal Profile -SSD

- SSD developed in htseqtools package.
- Normalised standard deviation of coverage.
- Provides measure of pile-up across genome
 - Sample with regions of high signal (High SSD score)
 - Sample with low signal across genome (Low SSD score)
- Provides no measure of signal structure.

SSD and Blacklists

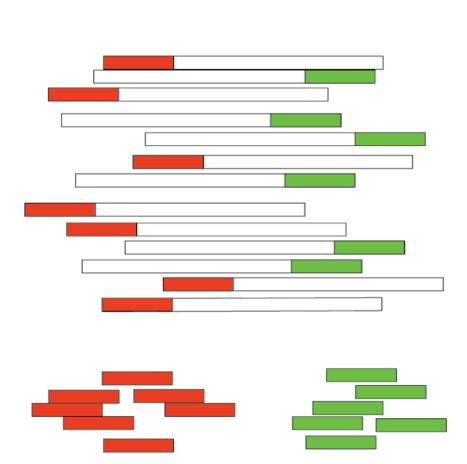
- SSD is very sensitive high signal artefact regions.
- Input SSD scores reduced after Blacklisting
- Sample SSD scores remain higher.



Clustering of Watson/Crick reads.

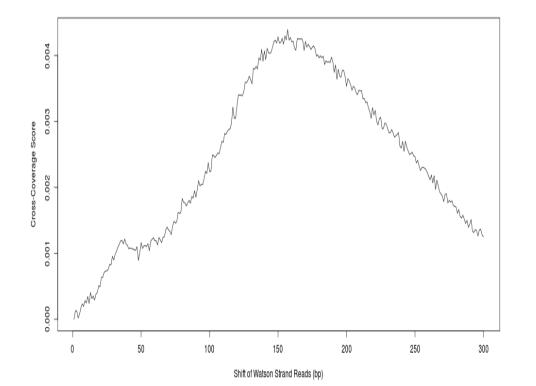
Watson and Crick reads cluster around epigenetic marks

- ChIP-seq is typically single ended.
- ChIP-seq watson and crick reads cluster around binding events.
- For transcription factors the extent of this clustering related to ChIP-seq quality.



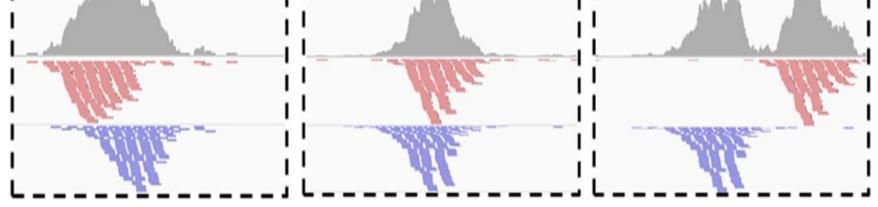
Assessing W/C read clustering

- Convert total coverage to cross-coverage scores to allow for comparison between samples (and regions)
 - Cross-Coverage Score =(Coverage Coverage)/Coverage



• Frag_CC = Crosscoverage score at fragment length.

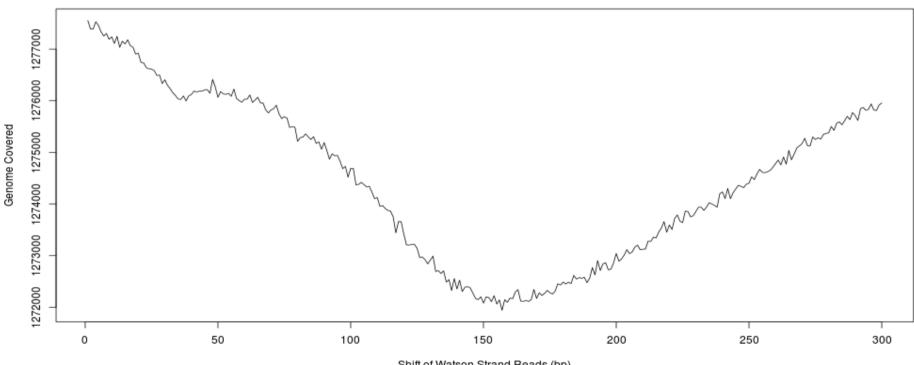
Assessing W/C read clustering



- Slide Watson reads along binding site (5' to 3').
- Total area covered by signal will reduce after shifting Watson reads by fragment length

Assessing W/C read clustering

- Applied across genome.
- Expect reduction at fragment length.



Shift of Watson Strand Reads (bp)

Read-length cross-coverage peak

 Blacklisted regions strongly contribute to read length cross-coverage peak

CTCF Filtering steps: 0.20 No Filter DAC Filter Dup Filter DAC & Dup Filter 0.15 0.10 0.05 0.0 0 28 100 200 300 400 Shift ER Read types: 0.4 Peaks Duplicates DAC blacklist 0.3 0.2 0.1 0.0 0 28 50 100 150 200 250 300 Shift

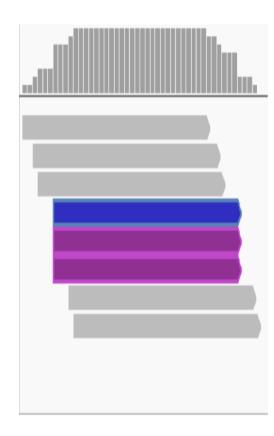
 Rel_CC = Frag_CC/ read length crosscoverage score.

Carroll et al 2014

Duplication Rate

Duplicate FAQ

- Typically ChIP-seq is single end sequenced
 - Reads with same start position considered duplicates
- Removing duplicates saturates dynamic range of signal.
 - Maximum signal at base is 2*read length



Why worry about duplicates

- "Read duplicates arise from experimental artefacts"
 - Is true
- "All read duplicates arise from experimental artefacts"
 - Is false.
- So we need to consider that duplicates may be enriched for artefacts..
- ..but contribute to genuine ChIP-signal

Duplicates (the bad kind)

- Low starting material.
 - If initial starting material is low this can lead to overamplification of this material.
 - Biases in PCR will compound this problem.
 - Can lead to artificially enriched regions.

Duplicates (bad kind 2)

- Blacklists with ultra high signal are high in duplicates.
- Masking blacklisted regions prior to analysis removes this problem

Duplicates (The Good and Misunderstood)

- Duplicates will also exist within highly efficient (or even inefficient ChIP) when deeply sequenced ChIP.
- Removal of duplicates can lead to a saturation and so underestimation of ChIPsignal!

Duplicates

- Consider enrichment efficiency and sequencing depth.
- Remove duplicates prior to peak calling.
- Retain duplicates for differential binding analysis.

Practical.

- All data is /data/ChIPQC/
- Handout and R code in /data/ChIPQC/ or on Bioc2014 materials page.
- We will work through first examples.
- Few questions using what we learnt.