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Overview	  of	  this	  lecture	  

–  Some	  defini-ons	  

–  Molecular	  basis:	  DNA	  methyla-on,	  histone	  variants	  and	  post-‐transla-onal	  
modifica-ons,	  RNA	  	  

–  Some	  compelling	  examples:	  agou-	  mice,	  Dutch	  “hunger	  winter”,	  etc.	  

–  GWAS	  to	  EWAS	  

–  Epigene-cs	  and	  disease	  (cancer,	  diabetes)	  

–  Epigene-c	  drugs	  
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B Y  H E I D I  L E D F O R D

When Constellation Pharmaceuticals 
first called to recruit venture capi-
talist Mark Goldsmith to be its chief 

executive in 2009, he was sceptical. Although 
Goldsmith was looking to change careers, he 
worried that the young biopharmaceutical com-
pany was heading into murky waters. The firm 
in Cambridge, Massachusetts, was focusing on 
epigenetics — the study of heritable changes 
in gene expression that are not due to changes 

in DNA sequence. It planned to create cancer 
treatments that correct the abnormal patterns of 
epigenetic DNA modifications seen in tumours. 
“I took some convincing,” he says. “This was 
not an easy class of targets to go after; they were 
all unprecedented targets with incompletely 
understood biology.”

Despite his qualms, Goldsmith took the helm 
and, nearly three years later, epigenetics has 
become a hot topic in oncology drug discov-
ery. In January, biotechnology giant Genentech 
in South San Francisco, California, added its 

own vote of confidence to the field by invest-
ing US$95 million in a partnership with Con-
stellation, which is now hoping to add another 
10 scientists to its current roster of 70. 

Epigenetics, and cancer epigenetics in partic-
ular, is a bright spot in an otherwise stark bio-
medical-research funding and jobs landscape. 
Those with the right skills and background 
— computational and bioinformatics training, 
familiarity with and interest in translational 
research, and an intimate knowledge of molec-
ular biology and cancer research techniques 
— have plenty of opportunities from which to 
choose. In particular, computational skills are 
so sought after that they alone could be a bridge 
to the sub-discipline. “It’s a really hot field,” says 
Benjamin Garcia, a chemist at Princeton Uni-
versity in New Jersey. “I wouldn’t be surprised 
if in five to ten years, you’re going to see a lot 
of universities with epigenetics departments.”

COMING OF AGE
Genetic mutations are not the only way to alter 
gene expression and protein function. Methyl 
groups added to DNA can silence a gene, as 
can chemical changes made to proteins called 
histones, which package the DNA in chromo-
somes. The modifications are exquisitely com-
plex: the effect of one epigenetic change can be 
shaped by other modifications found nearby, 
and the epigenetic state of a cell will vary 
depending on the cell’s identity and maturity. 

By the 1990s, researchers knew that the 
epigenetic state of a cancer cell was often in 
disarray. DNA methylation, for example, was 
markedly reduced in some tumours, unleashing 
gene-expression programs that were normally 
kept under lock and key. “The cancer genome 
was grossly different,” says Susan Clark, an epi-
geneticist at the University of New South Wales 
in Australia. “It was an amazing discovery.” 

But many in the field needed further convinc-
ing before accepting that this epigenetic ‘chaos’ 
promoted changes in gene expression and, ulti-
mately, led to cancer. That scepticism was not 
limited to industry; academics also worried 
that a career in the field would bring funding 
struggles and rejections from high-impact jour-
nals. “Clearly it was a risk, even ten years ago, to 
somebody’s career to dedicate themselves to an 
area that seemed to have a lot of hand-waving,” 
says Clark. “Now that’s changed; it is certainly a 
growth area for young scientists.”

As mounting evidence pointed to the 
importance of epigenetic changes in cancer, 
government funders began making significant 
investments in the field. The US National 
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Marked for 
success
The growing field of cancer epigenetics demands 
computational expertise and translational research 
experience. Qualified practitioners are in high demand. 

Computer reconstruction of a cancer cell on a DNA autoradiogram.

PA
SI
EK

A/
SP

L

2 9  M A R C H  2 0 1 2  |  V O L  4 8 3  |  N A T U R E  |  6 3 7

CAREERS

© 2012 Macmillan Publishers Limited. All rights reserved

in which Epizyme could ultimately receive as 
much as $630 million. “GSK’s group is partner-
ing with us and is also competing with us on 
other programmes,” says Epizyme’s chief scien-
tific officer, Robert Copeland. “It makes for an 
interesting dynamic.” 

With so much excitement, competition in 
the field can be fierce. Data from large govern-
ment projects can be a boon to smaller labs, says 
Clark, but individual investigators and those 
new to the field need to carve their own niche. 
“In the face of those big initiatives, smaller labs 
have the challenge of asking smaller and more 
unique questions as to the basic mechanisms 
underlying these epigenetic changes,” she says. 
Christopher Vakoc, an epigenetics researcher 
at Cold Spring Harbor Laboratory in New 
York, notes that the “tiny” lab he started in 2008 
directly competed with several big pharmaceu-
tical companies to discover a role for Brd4 — a 
‘reader’ protein that binds to certain modified 
histones and modulates gene expression — in 
acute myeloid leukaemia (J. Zuber et al. Nature 
478, 524–528; 2011). After his team’s paper was 
published, Vakoc heard rumours that ten com-
panies were racing to capitalize on the results. 

There is also an intense demand for talent. 
In particular, epigenetics companies and indi-
vidual labs need  bioinformaticians as sequenc-
ing projects continue to dump terabytes of data 
into public databases (see Nature 482, 263–265; 
2012). Although this is an opportunity for job 
hunters with computational training, it creates 
challenges for those opening labs for the first 
time, says Jun Song, a computational biologist 
who opened his lab at the University of Califor-
nia, San Francisco, in 2009. Song has struggled 
to compete with bigger labs to recruit gradu-
ate students and postdoctoral researchers, who 
often prefer the proven track-record and exten-
sive connections offered by a well-established 
principal investigator. “We battle to get a tal-
ented bioinformatician,” says Clark. “Everybody 
wants their own.”

Ultimately, Song looked outside biology to 
recruit three postdocs, two of whom he lured 
away from high-energy particle physics and 
the third from applied mathematics. Song 
himself was trained as a physicist, and says that 
epigenetics and epigenomics offer a range of 
challenging computational questions that can 
entice researchers from other fields. “It would be 
great to have someone already trained in both 
biology and computation,” he says. “But as biol-
ogy becomes more quantitative as a field, I also 
believe that it’s important to bring in new com-
putational scientists and train them in biology.” 

The opportunity for cross-disciplinary train-
ing in epigenetics can be an advantage for bio-
informaticians and molecular biologists alike, 
says Garcia. “It makes you a more well-rounded 
scientist,” he says. “And that’s what you need 
these days to compete in the job market.” ■

Heidi Ledford writes for Nature from 
Cambridge, Massachusetts.

It was 4:00 a.m., and I was sure I was getting 
close to the top. The wind had pelted my 
face with snow and ice for the past three 

hours. Every few steps, the train of people 
stopped. Below me, hundreds of specks of 
light from climbers’ lamps clung to the moun-
tainside in a zigzag pattern. At each pause, I 
shut my eyes. 

When I opened them again, I was looking 
down at the half-metre between my feet and 
the heels of my former college roommate. The 
short respite hardly counteracted the fact that 
each breath contained less than half of the oxy-
gen I am used to back at home. I looked at my 
altimeter — I still had a couple of hours to go. 

Last February, I decided to climb Mount 
Kilimanjaro in Tanzania, which stands 5,895 
metres above sea level. I embarked on the 
3-week trip to challenge myself to embrace 
a different culture. But I found that it takes 
more than a change of scenery to challenge 
one’s perceptions.

I wanted to broaden my landscape, test my 
own conventions and walk away feeling as if I 
had pushed myself physically and mentally. I 
wanted to create an unconventional forum for 
discussion, as different as possible from that of 
the engineering department at Stanford Uni-
versity, California. I invited my closest friends 
who had gone on to pursue different areas of 
study or practice from my own. In academia, 
we often interact with the same people, hear 
and speak the same language, and attend the 
same presentations. We surround ourselves 
with people just like ourselves. I assumed that 
an unfamiliar location and culture would chal-
lenge my ideas and opinions. 

But researchers such as Miller McPherson, 
a sociologist at Duke University in Durham, 
North Carolina, have shown that similarity 
breeds connection — the homophily princi-
ple (M. McPherson et al. Annu. Rev. Sociol. 
27, 415–444; 2001). Individuals’ relation-
ships tend towards homogeneity. In other 
words, we develop contacts with greater 
frequency among individuals who have 
sociodemographic and behavioural charac-
teristics and attitudes similar to our own. 

Despite the fact that my friends have pur-
sued careers in other fields, they are still more 
like me than are other people. We are all males 
and are mostly white, Stanford alumni, from 
middle-upper-class families, in our late 20s 
who share similar political views. Perhaps 

forming the group was, by my own subcon-
scious design, a way to avoid the unfamiliar in 
a trying and scary environment, and perhaps 
the research is correct. 

The experience has made me realize that 
homophily is also a tough mountain to over-
come. I found that by stepping outside my 
comfort zone physically — braving the cold, 
harsh conditions of Kilimanjaro — I had clung 
to the familiar opinions of my close friends. 

As much of the research in this area shows, 
homophily has serious implications for the 
development of new ideas. If you surround 
yourself with people who share your opin-
ions, attitudes, beliefs and even experiences, 
how can you learn anything new? Who will 
challenge your ideas?

I aim to keep looking for that interdiscipli-
nary environment. The first step is engaging 
with people with whom I do not always agree 
— embracing the conflict and uncomfortable 
nature of working with those with starkly dif-
ferent opinions. I believe that all scientists, 
especially those with interdisciplinary 
aspirations, should strive to break away 
from the familiar in search of the unfamiliar. 
Doing so may uncover a new approach to an 
old problem. 

Creating these situations requires an active 
effort to push through the discomfort of dif-
ference. And, despite what the research sug-
gests, it does not always have to be the case that 
‘birds of a feather flock together’. ■

Andrew Peterman is a doctoral candidate 
in civil engineering at Stanford University in 
California.

COLUMN
A tough climb
Challenging your own ideas and opinions takes more 
than just a change of scenery, says Andrew Peterman.
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Gene>cs	  and	  Epigene>cs	  

Gene-cs	  can	  explain	  differences	  between	  individuals.	  

	  

	  

	  

	  

	  

Epigene-cs	  can	  explain	  difference	  both	  between	  and	  within	  individuals.	  

Each	  cell	  type	  has	  the	  same	  DNA	  sequence,	  but	  very	  different	  epigene-c	  state.	  
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Epigene>cs	  defini>on	  

Epi	  -‐	  "on	  top	  of"	  or	  "in	  addi-on	  to"	  

	  

“Epigene-cs”:	  

•  heritable	  altera>ons	  in	  gene	  expression	  caused	  by	  mechanisms	  
other	  than	  changes	  in	  DNA	  sequence.	  

•  the	  study	  of	  the	  mechanisms	  of	  temporal	  and	  spa-al	  control	  of	  
gene	  ac-vity	  during	  the	  development	  of	  complex	  organisms	  

•  "epigene-c	  code"	  has	  been	  used	  to	  describe	  the	  set	  of	  epigene-c	  
features	  that	  create	  different	  phenotypes	  in	  different	  cells	  
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Molecular	  basis	  of	  epigene>cs	  
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Epigene>c	  analogies	  

Computer:	  Two	  computers	  have	  the	  same	  specifica-ons	  and	  soRware	  packages	  installed	  
(“iden-cal	  twins”).	  	  One	  user	  is	  doing	  word	  processing	  and	  email,	  the	  other	  is	  doing	  email	  
and	  image	  processing.	  	  That	  is,	  the	  underlying	  instruc-ons	  are	  common,	  but	  are	  being	  
used	  (“expressed”)	  differently.	  

Music:	  Gene-cs	  is	  the	  music,	  epigene-cs	  is	  the	  musician’s	  interpreta-on	  of	  the	  notes,	  
rhythm,	  etc.	  

Television:	  You	  can	  fine	  tune	  the	  hue,	  brightness,	  contrast,	  etc.,	  but	  you	  cannot	  change	  
the	  original	  broadcast.	  

Recipe:	  The	  recipe	  (“genes”)	  represent	  the	  set	  of	  instruc-ons	  for	  baking	  something;	  
depending	  on	  the	  person	  baking,	  there	  may	  be	  a	  different	  result	  

Script*:	  The	  Romeo	  and	  Juliet	  script	  is	  a	  fixed	  document	  (“genes”),	  but	  the	  director’s	  
interpreta-on	  (“epigene-cs”)	  can	  vary	  dras-cally	  (e.g.	  Baz	  Luhrmann	  1996	  Hollywood	  vs.	  
Shakespeare).	  
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*From The Epigenetics Revolution by Nessa Carey 
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Some	  compelling	  examples	  of	  epigene>cs	  

1.  X-‐inac-va-on	  (coat	  colour	  in	  cats)	  

2.  agou-	  mice	  (maternal	  diet	  affects	  coat	  colour)	  

3.  Dutch	  “hunger	  winter”	  (children	  conceived/born	  
during	  famine)	  
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Example	  1:	  X-‐inac>va>on	  

Females	  have	  2	  X-‐chromosomes,	  but	  one	  of	  them	  
is	  (mostly)	  silenced.	  	  In	  early	  embryogenesis,	  
either	  the	  maternal	  or	  paternal	  allele	  is	  silenced	  at	  
random,	  but	  any	  subsequent	  cell	  divisions	  will	  
maintain	  the	  silenced	  X.	  	  For	  example,	  calico	  coat	  
colour	  is	  determined	  by	  an	  X-‐inac-va-on	  outcome	  
(gene	  is	  on	  the	  X-‐chromosome).	  
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X-‐inac>va>on	  

Two	  cells	  (from	  a	  female),	  each	  with	  2	  X-‐chromosomes	  
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X-‐inac>va>on	  

One	  of	  the	  X	  chromosomes	  is	  randomly	  silenced.	  
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X-‐inac>va>on	  

Cells	  divide,	  but	  preserve	  the	  inac-vated	  X.	  

06.07.12 Epigenomics, Mark D. Robinson 
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X-‐inac>va>on	  

Result:	  patchy	  coat	  colours	  in	  female	  calico	  cats.	  
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http://www.youtube.com/watch?v=n330FzHpI90 
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X-‐inac>va>on	  (randomly	  ini>ated)	  
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Genetically identically, epigenetically distinct 
(Genetic Savings and Clone) 

Rainbow                   Copy cat (cloned) 
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Example	  2:	  Agou>	  mice	  

Observa-on:	  coat	  colour	  
in	  offspring	  is	  strongly	  
affected	  by	  mother’s	  
diet.	  

Molecularly,	  what	  is	  
driving	  this?	  
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Yellow          Mottled        Pseudo-agouti 
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Agou>	  mice	  

Observa-ons:	  

1.	  Methyla-on	  level	  (at	  
promoter	  upstream	  of	  
agou-	  gene)	  is	  strongly	  
associated	  with	  coat	  colour.	  

2.	  Diet	  affects	  methyla-on	  
level	  (in	  several	  -ssues).	  
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Agou>	  mice	  
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Maternal nutrient supplementation counteracts
bisphenol A-induced DNA hypomethylation
in early development
Dana C. Dolinoy*†‡, Dale Huang*, and Randy L. Jirtle*†‡§

*Department of Radiation Oncology and ‡University Program in Genetics and Genomics, Duke University, Durham, NC 27710; and
†Integrated Toxicology and Environmental Health Program, Duke University, Durham, NC 27708

Edited by R. Michael Roberts, University of Missouri, Columbia, MO, and approved June 25, 2007 (received for review April 23, 2007)

The hypothesis of fetal origins of adult disease posits that early
developmental exposures involve epigenetic modifications,
such as DNA methylation, that influence adult disease suscep-
tibility. In utero or neonatal exposure to bisphenol A (BPA), a
high-production-volume chemical used in the manufacture of poly-
carbonate plastic, is associated with higher body weight, increased
breast and prostate cancer, and altered reproductive function. This
study shows that maternal exposure to this endocrine-active com-
pound shifted the coat color distribution of viable yellow agouti
(Avy) mouse offspring toward yellow by decreasing CpG (cytosine-
guanine dinucleotide) methylation in an intracisternal A particle
retrotransposon upstream of the Agouti gene. CpG methylation
also was decreased at another metastable locus, the CDK5
activator-binding protein (CabpIAP). DNA methylation at the Avy

locus was similar in tissues from the three germ layers, providing
evidence that epigenetic patterning during early stem cell devel-
opment is sensitive to BPA exposure. Moreover, maternal dietary
supplementation, with either methyl donors like folic acid or the
phytoestrogen genistein, negated the DNA hypomethylating ef-
fect of BPA. Thus, we present compelling evidence that early
developmental exposure to BPA can change offspring phenotype
by stably altering the epigenome, an effect that can be counter-
acted by maternal dietary supplements.

DNA methylation ! environmental epigenomics ! viable yellow agouti !
fetal origins of adult disease

There is now significant evidence that the risk of many chronic
adult diseases and disorders results from exposure to envi-

ronmental factors early in development (1, 2). Moreover, it
seems that there is a link between what we are exposed to in utero
and disease formation in adulthood that involves epigenetic
modifications such as DNA methylation of transposable ele-
ments and cis-acting, imprinting regulatory elements (3). Many
xenobiotics, ubiquitously present in the environment, have es-
trogenic properties and function as endocrine disruptors; how-
ever, their potential to modify the epigenome remains largely
unexplored (4). The epigenome is particularly susceptible to
dysregulation during gestation, neonatal development, puberty,
and old age. Nevertheless, it is most vulnerable to environmental
exposures during embryogenesis because the elaborate DNA
methylation and chromatin patterning required for normal tissue
development is programmed during early development.

Most regions of the mammalian genome exhibit little vari-
ability among individuals in tissue-specific DNA methylation
levels. In contrast, DNA methylation is determined stochasti-
cally at some transposable element insertion sites. This poten-
tially can affect the expression of neighboring genes, resulting in
the formation of loci with metastable epialleles (3). Cellular
epigenetic mosaicism and individual phenotypic variability then
can occur even in genetically identical individuals. These sites are
also particularly vulnerable to environmentally induced epige-
netic alterations (5–7).

The Agouti gene in the viable yellow agouti (Avy) mouse (8) is
the most extensively studied metastable epiallele, an allele that
is expressed variably in genetically identical individuals because
of epigenetic modifications established during early develop-
ment (9). The wild-type murine Agouti gene encodes a paracrine
signaling molecule that produces either black eumelanin (a) or
yellow phaeomelanin (A). Both A and a transcripts are initiated
from a hair cycle-specific promoter in exon 2. Transient A
expression in hair follicles during a specific stage of hair growth
results in a subapical yellow band on each black hair shaft,
causing the brown (agouti) coat color of wild-type mice (8). The
Avy allele resulted from the insertion of a murine intracisternal
A particle (IAP) retrotransposon into the 5! end of the Agouti
gene (6, 8). A cryptic promoter in the proximal end of the Avy

IAP promotes constitutive ectopic Agouti transcription, leading
to yellow fur, obesity, diabetes, and tumorigenesis (10, 11).
Methylation of cytosines in cytosine-guanine (CpG) dinucle-
otide sites in and near the Avy IAP correlates inversely with
ectopic Agouti expression and varies dramatically among indi-
vidual isogenic Avy/a mice. This results in a wide variation in coat
color, ranging from yellow (unmethylated) to pseudoagouti
(methylated).

The present study uses this model to evaluate how the fetal
epigenome is affected by maternal exposure to the estrogenic
xenobiotic chemical bisphenol A (BPA). BPA is a high produc-
tion volume chemical used in the manufacture of polycarbonate
plastic and epoxy resins. It is present in many commonly used
products including food and beverage containers, baby bottles,
and dental composites. The detection of BPA in 95% of human
urine samples (12) clearly attests to the widespread use of BPA
and widespread human exposure to BPA. Rodent studies have
associated pre- or perinatal BPA exposure with higher body
weight, increased breast and prostate cancer, altered reproduc-
tive function, and other chronic health effects (reviewed in ref.
13). BPA also enters the placenta and accumulates in fetuses
after rodent maternal oral exposure (14). Herein, we report the
effect of maternal BPA exposure alone or in combination with
nutritional supplements on the epigenome of the offspring.

Results
To evaluate the effects of maternal BPA exposure on the fetal
epigenome, female a/a mice received a phytoestrogen-free AIN-
93G diet (n " 16 litters, 120 total offspring, 60 Avy/a offspring)

Author contributions: D.C.D. and R.L.J. designed the research; D.C.D. and D.H. performed
the research; D.C.D. and R.L.J. analyzed data; and D.C.D. and R.L.J. wrote the paper.

The authors declare no conflict of interest.

This article is a PNAS Direct Submission.

Abbreviations: Avy, viable yellow agouti; BPA, bisphenol A; IAP, intracisternal A particle;
Cabp, CDK5 activator-binding protein.
§To whom correspondence should be addressed at: Box 3433, Duke University Medical
Center, Durham, NC 27710. E-mail: jirtle@radonc.duke.edu.
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Example	  3:	  Dutch	  “hunger	  winter”	  
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-- Food shortage in the Netherlands 
near the end of World War II 
 
“… children of the women who were 
pregnant during the famine were 
smaller, as expected. However, 
surprisingly, when these children 
grew up and had children those 
children were also smaller than 
average.” 
 
http://en.wikipedia.org/wiki/Dutch_famine_of_1944 
 
(Also brought about evidence in the 
discovery of Coeliac disease) 
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Example	  3:	  Dutch	  “hunger	  winter”	  
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famine period and were the same for every individual. The
average daily rations were 667 kcal (SD, 151) (Fig. 1A), and there
was little variation in the percentage of calories from proteins
(!12%, of which 4% of animal origin), fat (19%), and carbo-
hydrates (69%) (14).

As a technical validation, IGF2 DMR methylation was remea-
sured in 46 of 60 periconceptionally exposed individuals and
their same-sex siblings, repeating the whole procedure from
bisulfite treatment to quantification. A similarly lower 5.6%
IGF2 DMR methylation was observed (P " 2.1 # 10$3),
confirming our initial findings.

Late Gestational Exposure. To further investigate the influence of
timing, we selected the 62 individuals who were exposed to
famine late in gestation for at least 10 weeks, so that they were
born in or shortly after the famine. We found no difference in
IGF2 DMR methylation between the exposed individuals and
their unexposed siblings (Table 2; Fig. 1B).

To formally test whether the association with lower IGF2
DMR methylation depended on the timing of exposure, we
analyzed the periconceptional and late exposure groups together
with all 122 controls in a single model (Table 3). Periconcep-
tional exposure was associated with lower methylation (P "
1.5 # 10$5), whereas late exposure was not (P " 0.69). Further-
more, there was statistically significant evidence for an interac-
tion between timing and exposure (Pinteraction " 4.7 # 10$3),
indicating that the association was timing-specific.

Birth Weight. The mean birth weight of the 62 individuals exposed
late in gestation was 3126 g (SD, 408), which is 296 g lower (95%
confidence interval [CI], $420 to $170 g) than the mean (3422

g; SD, 464) of 324 reference births in 1943 at the same institu-
tions (P " 4 # 10$6) (15). The lower birth weight underscores
the impact of the famine during the Hunger Winter notwith-
standing the absence of an association with IGF2 DMR methyl-
ation. The mean birth weight of the 60 individuals who were
exposed periconceptionally was 3612 g (SD, 648), not lower that
that of the reference births (95% CI, %15 to % 365 g; P " 0.03).
IGF2 DMR methylation was not associated with birth weight
(P " 0.39).

Age Association. To put the association of periconceptional
famine exposure with a 5.2% lower IGF2 DMR methylation into
perspective, we assessed the relationship between age and IGF2
DMR methylation in the 122 control individuals. Within the age
range studied (43–70 years), a 10-year-older age was associated
with a 3.6% lower methylation (P " .015).

Discussion
Here we report that periconceptional exposure to famine during
the Dutch Hunger Winter is associated with lower methylation
of the IGF2 DMR 6 decades later. The hypomethylation that we
observed is highly comparable to that found for the Nr3c1 and
Ppara genes in offspring of female rats fed an isocaloric protein-
deficient diet starting before pregnancy ($8.2% and $10.2% vs
$5.2% in our human study) (16), although greater effects for the
Agtr1b gene have been found in a similar rat model (17). These
data from animal models are consistent with the interpretation
that famine underlies the IGF2 hypomethylation that we ob-
served and may be related to a deficiency in methyl donors, such
as the amino acid methionine (3). An additional contribution of
other stressors, such as cold and emotional stress (8), cannot be

Fig. 1. Difference in IGF2 DMR methylation between individuals prenatally exposed to famine and their same-sex sibling. (A) Periconceptional exposure:
Difference in methylation according to the mother’s last menstrual period (a common estimate of conception) before conception of the famine-exposed
individual. (B) Exposure late in gestation: Difference in methylation according to the date of birth of the famine-exposed individual. To describe the difference
in methylation according to estimated conception and birth dates, a lowess curve (red or blue) is drawn. The average distributed rations (in kcal/day) between
December 1944 and June 1945 are depicted in green.

Table 1. IGF2 DMR methylation among individuals periconceptionally exposed to famine and their unexposed,
same-sex siblings

IGF2 DMR
methylation

Mean methylation fraction (SD)
Relative change

exposed
Difference

in SDs PExposed (n " 60) Controls (n " 60)

Average 0.488 (0.047) 0.515 (0.055) $5.2% $0.48 5.9 # 10$5

CpG 1 0.436 (0.037) 0.470 (0.041) $6.9% $0.78 1.5 # 10$4

CpG 2 and 3 0.451 (0.033) 0.473 (0.055) $4.7% $0.41 8.1 # 10$3

CpG 4 0.577 (0.114) 0.591 (0.112) $2.3% $0.12 .41
CpG 5 0.491 (0.061) 0.529 (0.068) $7.2% $0.56 1.4 # 10$3

P values were obtained using a linear mixed model and adjusted for age.

Heijmans et al. PNAS ! November 4, 2008 ! vol. 105 ! no. 44 ! 17047
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famine period and were the same for every individual. The
average daily rations were 667 kcal (SD, 151) (Fig. 1A), and there
was little variation in the percentage of calories from proteins
(!12%, of which 4% of animal origin), fat (19%), and carbo-
hydrates (69%) (14).

As a technical validation, IGF2 DMR methylation was remea-
sured in 46 of 60 periconceptionally exposed individuals and
their same-sex siblings, repeating the whole procedure from
bisulfite treatment to quantification. A similarly lower 5.6%
IGF2 DMR methylation was observed (P " 2.1 # 10$3),
confirming our initial findings.

Late Gestational Exposure. To further investigate the influence of
timing, we selected the 62 individuals who were exposed to
famine late in gestation for at least 10 weeks, so that they were
born in or shortly after the famine. We found no difference in
IGF2 DMR methylation between the exposed individuals and
their unexposed siblings (Table 2; Fig. 1B).

To formally test whether the association with lower IGF2
DMR methylation depended on the timing of exposure, we
analyzed the periconceptional and late exposure groups together
with all 122 controls in a single model (Table 3). Periconcep-
tional exposure was associated with lower methylation (P "
1.5 # 10$5), whereas late exposure was not (P " 0.69). Further-
more, there was statistically significant evidence for an interac-
tion between timing and exposure (Pinteraction " 4.7 # 10$3),
indicating that the association was timing-specific.

Birth Weight. The mean birth weight of the 62 individuals exposed
late in gestation was 3126 g (SD, 408), which is 296 g lower (95%
confidence interval [CI], $420 to $170 g) than the mean (3422

g; SD, 464) of 324 reference births in 1943 at the same institu-
tions (P " 4 # 10$6) (15). The lower birth weight underscores
the impact of the famine during the Hunger Winter notwith-
standing the absence of an association with IGF2 DMR methyl-
ation. The mean birth weight of the 60 individuals who were
exposed periconceptionally was 3612 g (SD, 648), not lower that
that of the reference births (95% CI, %15 to % 365 g; P " 0.03).
IGF2 DMR methylation was not associated with birth weight
(P " 0.39).

Age Association. To put the association of periconceptional
famine exposure with a 5.2% lower IGF2 DMR methylation into
perspective, we assessed the relationship between age and IGF2
DMR methylation in the 122 control individuals. Within the age
range studied (43–70 years), a 10-year-older age was associated
with a 3.6% lower methylation (P " .015).

Discussion
Here we report that periconceptional exposure to famine during
the Dutch Hunger Winter is associated with lower methylation
of the IGF2 DMR 6 decades later. The hypomethylation that we
observed is highly comparable to that found for the Nr3c1 and
Ppara genes in offspring of female rats fed an isocaloric protein-
deficient diet starting before pregnancy ($8.2% and $10.2% vs
$5.2% in our human study) (16), although greater effects for the
Agtr1b gene have been found in a similar rat model (17). These
data from animal models are consistent with the interpretation
that famine underlies the IGF2 hypomethylation that we ob-
served and may be related to a deficiency in methyl donors, such
as the amino acid methionine (3). An additional contribution of
other stressors, such as cold and emotional stress (8), cannot be

Fig. 1. Difference in IGF2 DMR methylation between individuals prenatally exposed to famine and their same-sex sibling. (A) Periconceptional exposure:
Difference in methylation according to the mother’s last menstrual period (a common estimate of conception) before conception of the famine-exposed
individual. (B) Exposure late in gestation: Difference in methylation according to the date of birth of the famine-exposed individual. To describe the difference
in methylation according to estimated conception and birth dates, a lowess curve (red or blue) is drawn. The average distributed rations (in kcal/day) between
December 1944 and June 1945 are depicted in green.

Table 1. IGF2 DMR methylation among individuals periconceptionally exposed to famine and their unexposed,
same-sex siblings

IGF2 DMR
methylation

Mean methylation fraction (SD)
Relative change

exposed
Difference

in SDs PExposed (n " 60) Controls (n " 60)

Average 0.488 (0.047) 0.515 (0.055) $5.2% $0.48 5.9 # 10$5

CpG 1 0.436 (0.037) 0.470 (0.041) $6.9% $0.78 1.5 # 10$4

CpG 2 and 3 0.451 (0.033) 0.473 (0.055) $4.7% $0.41 8.1 # 10$3

CpG 4 0.577 (0.114) 0.591 (0.112) $2.3% $0.12 .41
CpG 5 0.491 (0.061) 0.529 (0.068) $7.2% $0.56 1.4 # 10$3

P values were obtained using a linear mixed model and adjusted for age.
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“…	  suggests	  that	  epigene-c	  players	  such	  as	  
histone	  modifica-ons,	  DNA	  methyla-on,	  the	  
altera-on	  of	  chroma-n	  structure	  due	  to	  
chroma-n	  remodeling,	  and	  non-‐coding	  RNAs	  
represent	  another	  crucial	  mechanism,	  besides	  
the	  transcrip-onal	  factor	  network,	  which	  is	  
designed	  by	  nature	  for	  the	  regula-on	  of	  gene	  
expression	  and	  cellular	  differen-a-on.	  
Elucida-ng	  epigene-c	  mechanisms	  promise	  to	  
have	  important	  implica-ons	  for	  advances	  in	  
stem	  cell	  research	  and	  nuclear	  reprogramming	  
and	  may	  offer	  novel	  targets	  to	  combat	  human	  
disease	  poten>ally	  leading	  to	  new	  diagnos-c	  
and	  therapeu-c	  avenues	  in	  medicine.”	  
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DNA Methylation Arrays: Methods and Analysis 175

(transcriptionally activating) and methylation (transcriptionally repressive). It remains unclear 
whether DNA methylation is a consequence or a cause of histone modi! cation [2,11]. As there 
are known mechanisms for maintenance of methylated DNA during replication, it is plausible that 
histone methylation is maintained secondarily to DNA methylation [2].

Another generally accepted notion of DNA methylation is that it will spread locally [12,13] 
that is, once a region starts to become methylated, all CpGs within the region will become meth-
ylated (Figure 13.2a). This is consistent with the concept of a CpG island with boundaries de! ned 
by some signal in the DNA sequence. Using this principle, regions where a minority of CpGs are 
methylated would be called unmethylated since the region’s methylation status is judged as a 
whole (see Figure 13.2b). Despite this, it is possible that small blocks of methylated (or unmethy-
lated) regions may exist within a given CpG island. Furthermore, it is believed that certain CpGs 
within a region may be more important than others (i.e., some CpGs may be held under tighter 
evolutionary control [4]). Indeed, because mutational repair of methylated CpGs is harder than 
for nonmethylated CpGs, CpGs would tend to be lost through selection. This perhaps explains the 
lower than expected number of CpGs found throughout the mammalian genome.

Methylation of CpG islands within the promoters and body of a gene can lead to transcriptional 
silencing, while a lack of methylation may permit active transcription of the associated gene [14]. 
This regulation of gene expression is thought to occur as a result of conformational changes in the 
chromatin structure, altered binding capacity of transcription factors to methylated motifs in the 
promoter, and other effects altering regulatory elements such as enhancer and  repressor sites [15].

A historical role for epigenetics has been in cancer research, especially in the search for abnor-
mally hypomethylated oncogenes or hypermethylated tumor suppressor genes (i.e., genes  promoting 
cancer that have become activated through hypomethylation, and genes suppressing cancer that 
have been deactivated through hypermethylation) [11,16,17]. Most CpG islands are usually 
 unmethylated but, in cancer, promoter-associated CpG islands of certain genes can be hypermethy-
lated [19]. Many of these hypermethylated genes are speci! c to certain cancers, suggesting that their 
aberrant methylation may be important [11,18]. Consequently, understanding the epigenome will 

FIGURE 13.1 Illustration of (a) a methylated CpG dinucleotide. The cytosine and guanine bases are joined 
by a phosphodiester bond and a methyl group has been added to the cytosine. (b) gives a detailed illustration 
of double-stranded DNA with methylated CpGs in positive and negative strands.

(b)

Methylated CpG dinucleotide(a)

Methyl group

Phosphodiester
bond

G

G

C

C

Mammalian CpG methylation

C G C T C A G C G T

ACGCTGAGCG

!""#$%&'($)*+,,---(./!""#$%&'($)*+,,---(./ ((0"01''#---#2"!2"#-34((0"01''#---#2"!2"#-34

Covalent addition of methyl 
group (CH3) to cytosine (almost 
exclusively at CpG sites in 
mammals); binary status at 
individual sites 
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CpG	  islands	  

•  CG	  dinucleo-des	  are	  under-‐represented	  in	  the	  genome,	  but	  oRen	  
occur	  in	  “clusters”	  called	  CpG	  islands	  (CGIs);	  various	  CGI	  defini-ons	  
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Histone	  variants	  and	  post-‐transla>on	  modifica>ons	  
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Two of each of 
H2A, H2B, H3 and 
H4 form a 
“nucleosome”, 
which 147bp of 
DNA can wrap 
around 
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Histone	  variants	  and	  post-‐
transla>on	  modifica>ons	  
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Genome/Epigenome	  Wide	  Associa>on	  Studies	  (GWAS/EWAS)	  

GWAS	  –	  associa-ng	  genotype	  to	  phenotype	  

EWAS	  –	  associa-on	  “epitype”	  to	  phenotype	  

	  

Gene-cs	  does	  not	  explain	  a	  high	  amount	  of	  
causality	  in	  common	  diseases	  

Challenge	  is	  far	  greater	  –	  there	  is	  1	  genome,	  but	  
1000s	  of	  epigenomes	  (100s	  of	  cell	  types,	  10s-‐100s	  
of	  epigenome	  dimensions)	  
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Elucidating the genetic and non-genetic determinants 
of human complex diseases represents one of the prin-
cipal challenges of biomedical research. In recent years, 
genome-wide association studies (GWASs) have uncov-
ered >800 SNP associations for more than 150 diseases 
and other traits1. Although the complete genetic basis 
is not yet known for any human complex disease, rese-
quencing of exomes — and ultimately whole genomes 
— holds promise for identifying most of the causal 
genetic variations. However, there is now increas-
ing interest in exploring how non-genetic variation, 
including epigenetic factors, could influence complex 
disease aetiology2–4.

The epigenome of a cell is highly dynamic, being 
governed by a complex interplay of genetic and envi-
ronmental factors5. Normal cellular function relies on 
the maintenance of epigenomic homeostasis, which 
is further highlighted by numerous reported associa-
tions between epigenomic perturbations and human 
diseases, notably cancer4. However, most studies of 
such associations to date have been performed either 
with inadequate genome coverage (for example, tens to 
hundreds of loci) but adequate sample size, or with cov-
erage that is closer to being genome-wide (thousands 
of loci) but inadequate sample size. Consequently, for 
any human complex disease, we remain unaware of the 
proportion of phenotypic variation that is attributable 
to inter-individual epigenomic variation. This prob-
lem can only be elucidated by large-scale, systematic 
epigenomic equivalents of GWASs — epigenome-wide 

association studies (EWASs), as first proposed in 2008 
(REF. 6). At least for DNA methylation (DNAm), tech-
nology is now available that is directly comparable in 
resolution and throughput to the highly successful 
GWAS chips that allow genotyping of around 500,000 
(500K) SNPs.

But how does one conduct an EWAS? In addition to 
considerations that are common to both GWASs and 
EWASs (for example, adequate technology and sam-
ple size), the design of EWASs has specific considera-
tions with respect to sample selection. DNAm patterns 
are specific to tissues and developmental stages, and 
they also change over time. Furthermore, EWAS asso-
ciations can be causal as well as consequential for the 
phenotype in question — a difference from GWASs 
that presents considerable challenges. Here, we dis-
cuss these considerations in the context of designing 
and analysing an effective EWAS, keeping in mind that 
EWASs are likely to evolve, much like GWASs did, as 
information and experience accumulate.

!"#$%&%'#()*+,#+'#-&)+&.)(-/"0%1).#2%+2%
Types of epigenetic information. Epigenetic informa-
tion in mammals can be transmitted in multiple forms5, 

including mitotically stable DNAm, post-translational 
modifications of histone proteins and non-coding 
RNAs (ncRNAs). For DNAm, the predominant form 
is methylation of cytosines in the context of cytosine–
guanine dinucleotides (CpGs). However, recent results 
suggest that CpH methylation (where H = C/A/T) 
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Epigene>cs	  and	  cancer	  

Most	  is	  known	  about	  DNA	  methyla-on.	  	  Cancers	  typically	  exhibit	  (of	  
varying	  degrees	  associated	  with	  severity):	  

•  Global	  DNA	  hypomethyla-on	  

•  Region-‐specific	  hypermethyla-on,	  typically	  at	  CpG-‐island-‐
associated	  promoters	  

	  

Recent	  evidence	  highlights	  interrup-ons	  of	  epigene-c	  machinery	  from	  
gene-c	  muta-ons	  in	  cancer	  
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Dalgliesh et al. (2010) Nature. 

Morin et al. (2010) Nature Genetics. 

Stratton (2011) Science. 
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The past decade has seen a remarkable 
acceleration in the validation of the concept 
that cancer is a disease of epigenetic, as 
well as genetic, abnormalities. Exploration 
of these connections constitutes one of the 
most exciting areas in basic cancer biology 
— with rich potential for clinical translation. 
Cancer research in epigenetics in the 1990s 
was dominated by a focus on understanding 
and extending the discoveries in the 1980s 
of DNA methylation abnormalities1. During 
the past 10 years, this focus has merged with 
an explosion of knowledge about the role of 
chromatin covalent modifications and organ-
ization and their relevance to gene expres-
sion2–6, resulting in an emerging view of what 
may now be called ‘the cancer epigenome’, 
which harbours myriad abnormalities that 
are based on somatically heritable alterations 
that are not due to primary DNA sequence 
changes7,8 (TIMELINE). Each year, new surprises 
arise regarding how interactions between 
epigenetic and genetic changes help to drive 
the initiation and progression of cancer. This 
knowledge fosters new potential cancer bio-
marker strategies and therapeutic opportuni-
ties. We highlight examples of these recent 
advances and what the future holds for them.

!"#$%&'#()*'+,(#&-(%&'#*'.*%/0*,0#'10
Few would have predicted how our view of 
the human epigenome has expanded over the 
past 10 years. Next-generation sequencing 
techniques, as applied to mapping chromatin 
and DNA methylation in normal, cancer and 
induced pluripotent stem cells (iPSs), have 

revolutionized our knowledge of chromatin 
states, nucleosome positioning and how alter-
ations in these contribute to disease3,9–12. The 
architecture of gene expression states is being 
clarified. Nucleosome positions are dynamic 
and change during cell replication and with 
gene expression changes11. Active gene pro-
moters, particularly those that are CpG-rich 
and that normally lack DNA methy lation, 
have nucleosome-depleted regions (NDRs) 
just upstream of their transcription start sites 
(TSSs). The nucleosomes that flank these 
NDRs are marked by the histone modification 
H3 trimethylated on lysine 4 (H3K4me3), 
have extensive lysine acetylation and harbour 
the histone variant H2A.Z, which may desta-
bilize nucleosomes to facilitate transcriptional 
initiation (FIG. 1). The transcribed regions or 
gene bodies of active genes also show enrich-
ment of specific covalent marks, including 
H3K36me3, which may facilitate transcrip-
tional elongation13. These regions normally 
have dense cytosine methylation, even in 
downstream CpG islands14, which might also 
promote transcription elongation rather than 
repress transcription initiation — as methyla-
tion does in promoter regions14. Importantly, 
structural features of enhancers are being 
defined (FIG. 1), including deoxyribonuclease 1 
(DNase1) sensitivity, nucleosome deple-
tion, and the presence of H3K4me1 and H3 
acetylated on lysine 27 (H3K27ac) in the 
active state15. By contrast, DNA methylation 
stabilizes epigenetic gene silencing in promot-
ers that lack H2A.Z, that have nucleosomes 
positioned over the TSS and that harbour 

repressive histone modifications, such as 
H3K9me2 or H3K9me3 marks16. Long-term 
silencing of genes with promoter CpG islands 
by DNA methylation is normally only associ-
ated with inactive X-linked genes, imprinted 
genes and germ cell-specific genes, but it is 
also common in many abnormally silenced 
genes in cancer7,8.

One exciting recent advance in our 
understanding has been that it is the balance 
between transcriptionally permissive and 
transcriptionally repressive chromatin modi-
fications that maintains genome-wide gene 
expression states17,18. In contrast to the strong 
localization of active marks to TSSs, the 
H3K27me3 inhibitory mark applied by  
the Polycomb group proteins (PcGs) can 
extend over many nucleosomes around 
genes that typically lack DNA methylation 
but that have a DNase1-insensitive state 
owing to the presence of nucleosomes at the 
TSS19. The unexpected finding is that PcG 
occupancy can also coexist around the TSS 
with the active mark, H3K4me3, to form 
what has been termed a bivalent state3,17,18,20,21 
for key developmental and lineage-specific 
genes in embryonic stem cells (ESCs). This 
bivalency may allow regulatory flexibility by 
keeping these genes quiescent to maintain 
ESC pluripotency but allowing for their 
rapid activation when needed during dif-
ferentiation3,17,18. Intriguingly, as discussed 
below, these gene promoters are prone to 
undergoing an epigenetic switch22,23 and 
become de novo DNA methylated in cancer 
and pre-cancerous cells24–26.

There has also been an explosion of 
knowledge regarding the molecular determi-
nants of global-scale chromatin architecture. 
Insulator proteins such as CCCTC-binding 
factor (CTCF) and others27, together with 
PcG occupancy19, organize DNA into loops 
of transcriptionally repressive heterochro-
matin or into active euchromatin, which 
facilitates blocks or which connects distal 
enhancers and proximal promoters. As 
addressed below, the accessibility of CTCF to 
DNA is linked to the DNA methylation status 
of target regions. A dizzying array of enzymes 
is now known to not only catalyse the addi-
tion of transcriptionally activating and 
repressing histone marks, but also to remove 
them28–30. The discovery of the demethylases 
that can remove lysine methylation marks 
on histones is a particularly exciting advance 
that is proving to be pivotal for understand-
ing the normal epigenome and several key 
aspects of cancer biology30–34. Similarly, we 
are refining our view of how DNA methyla-
tion patterns are established. For example, 
an elegant tetrameric complex has been 

*

A decade of exploring the cancer 
epigenome — biological and 
translational implications
Stephen B. Baylin and Peter A. Jones
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Translational advances: 
 
Biomarkers (e.g. GSTP1 in 
prostate cancer) 
 
Therapeutics (e.g. azacitidine and 
decitabine have FDA approval for 
myelodisplastic syndrome, which 
can lead to leukemia) 
 
FDA approval of vorinostat and 
romidepsin for cutaneous 
T cell lymphoma 
 
HDAC inhibitors in clinical trials. 
 
…. 
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Direct                                                       Oxford Nanopore 
sequencing                                              Pacific Biosciences 

                      etc. 
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MspI – cuts at CCGG or 
CCGG sites 
 
HpaII – cuts only at 
CCGG 
 
 
CG - unmethylated 
CG - methylated 
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http://www.diagenode.com/en/applications/bisulfite-conversion.php 

Sodium bisulphite converts methylated 
Cytosine into Uracil, which can be read 
as Thymine after PCR 
 
In combination with sequencing (Sanger 
or NGS), can achieve methylation 
mapping at single base resolution 
 
Can be nicely combined with genotyping 
arrays (e.g. Illumina HumanMethylation 
450k) 
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interrogating a select subset of the ge-
nome. However, the enzymatic cleavage
in the RRBS and Methyl-seq methods
results in a bias toward regions that have
a high CpG density such as CpG islands,
at the expense of covering low CpG
density regions. Combined with the re-
stricted coverage inherent in RRBS, this
bias potentially leads to selection against
genomic regions of biological impor-
tance that may be affected by DNA
methylation, such as enhancers.

Several other sequence selection
techniques that may be used prior to BS
sequencing (Fig. 2; Garber 2008) include
capture of specific sequences by hybrid-
ization to DNA molecules on arrays
(Albert et al. 2007; Hodges et al. 2007;
Okou et al. 2007) or bound to beads in
solution (Bashiardes et al. 2005), with
padlock or molecular inversion probes
(Nilsson et al. 1994; Absalan and Ronaghi
2007; Ball et al. 2009; Deng et al. 2009),
with proteins that bind to methylated
DNA (Zhang et al. 2006), or with an an-
tibody that binds to methylcytosines
(MeDIP/mCIP) (Weber et al. 2005; Keshet
et al. 2006; Zhang et al. 2006; Penterman
et al. 2007; Zilberman et al. 2007). Re-
cently, Down et al. (2008) performed
MeDIP with mammalian male gametes
followed by sequencing of the immuno-
precipitated DNA using the Illumina
Genome Analyzer, in a procedure called
MeDIP-seq. While this procedure was able
to generate a map of the likely methylated
regions of the genome for this cell type,
the lack of BS conversion meant that the
investigators were not able to identify the
sites of DNA methylation within the
immunoprecipitated regions.

While these approaches are cur-
rently pragmatic and offer clear cost
benefits for analysis of many samples and
large genomes, they obviously suffer
from the potential to miss important
changes in DNA methylation that occur
outside of the captured genomic regions.
Furthermore, they require significant
upfront costs and effort in development
of the dedicated sequence capture effec-
tors (e.g., molecular inversion probes or
microarrays), which once synthesized are
applicable to only a limited range of bi-
ological sources. Finally, techniques such
as MeDIP/mCIP display a bias toward
highly methylated regions and may miss
a significant proportion of the genomic
regions that contain DNA methylation
(Cokus et al. 2008; Lister et al. 2008).

Several companies are developing
new instruments that are claimed to de-

Figure 2. Techniques for enrichment of methylated or target regions prior to BS sequencing. Five
approaches that may be used to reduce the complexity of a sample before BS conversion and next-
generation sequencing are depicted, targeting methylated regions or select target sequences. (A)
MeDIP. Methylated fragments of genomic DNA are immunoprecipitated with an anti-5-methylcytosine
antibody. Purified, immunoprecipitated DNA is ligated to double-stranded universal adapter sequences
in which all cytosines are methylated. Sodium bisulfite treatment converts unmethylated cytosines to
thymine, after which library yield enrichment by PCR with primers complementary to the universal
adapter sequences produces the final library that can be sequenced. (B) MBD. Methylated fragments of
genomic DNA are isolated from a complex mix of fragmented genomic DNA with a methyl binding
domain protein, after which adapter ligation, BS conversion, and PCR enrichment are performed as in
A. (C) Microarray capture. Target sequences within a complex mix of fragmented genomic DNA are
captured by hybridization to specific oligonucleotides on the surface of a microarray. Following iso-
lation of the hybridized genomic DNA, adapter ligation, BS conversion, and PCR enrichment are per-
formed as in A. (D) Capture in solution. Specific target regions within a mix of fragmented genomic
DNA are captured by hybridization to specific oligonucleotides attached to beads in solution. Following
isolation of the hybridized genomic DNA, adapter ligation, BS conversion, and PCR enrichment are
performed as in A. (E) Molecular inversion probe capture. Fragmented genomic DNA is BS converted,
after which molecular inversion probes are added that are designed to hybridize to specific target
sequences after conversion. Polymerization primed by the 39 end of the molecular inversion probe
followed by ligation generates a circular molecule that contains the target sequence and is not digested
by subsequent exonuclease treatment. PCR using primers that hybridize to the ends of the molecular
inversion probes allows amplification of the target region, to which double-stranded universal adapter
sequences are ligated to produce a library that is sufficient for next-generation sequencing.

Lister and Ecker
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BS-seq/MethylC-seq generally yields
many reads covering each cytosine, pro-
viding a digital read-out of the frequency
at which that cytosine was methylated in
the sample. Indeed, the frequency of
methylation was found to have a distinct
profile for each different context in A.
thaliana, with CG methylation most
commonly found at 80%–100%, while
CHG was methylated at a wide range of
frequencies and CHH methylated in-
frequently (;30%) (Cokus et al. 2008;
Lister et al. 2008). Similar principles ap-
ply to quantitation of DNA methylation
levels at any particular cytosine by shot-
gun sequencing as they do in classical BS
sequencing of cloned PCR products. Each
nonclonal read can be counted as a lo-
calized assessment of the methylation
state in one copy of the genome, and the
granularity of the measurement is thus
determined by sequence coverage. This
measurement of methylation level from
the shotgun BS sequencing agrees closely
with conventional BS sequencing (Cokus
et al. 2008). Of course, the cost to achieve
a given coverage, and thus resolution of
methylation level, depends on the size of
a genome. It should be noted that the
methylation state of a given stretch of
genomic DNA, and thus the base com-
position after BS conversion, may have
an impact upon the efficiency of PCR
amplification during the sequencing li-
brary preparative and cluster amplifica-
tion prior to sequencing. This may affect
the relative representation of sequences
that originate from the same genomic
region but that possess different methyl-
ation states, which may be problematic
for unbiased quantification of the level of
DNA methylation at any given locus.
However, quantitation of the methyla-
tion level in a tissue provides only the
overall sum methylation state of the
pooled genomes, yet in the context of
a single cell the methylation state of
a particular cytosine is binary. Advances
in cell sorting, tissue microdissection,
and sequencing from very low quantities
of biological material will hopefully en-
able the focus to be shifted away from
assessing average levels of methylation
within a tissue to interrogating the
changes that take place within few, or
even single, cells.

We also used MethylC-seq, at high
read coverage (average of ;63 for each
BS-converted strand of the genome), to
investigate and quantify the changes in
the DNA methylome in a range of DNA
methyltransferase mutants, identifying

Figure 1. Techniques for genome-wide sequencing of cytosine methylation sites. Three techniques
used recently to generate bisulfite (BS) sequencing libraries compatible with next-generation se-
quencing are depicted. (A) MethylC-seq (Lister et al. 2008). Double-stranded universal adapter
sequences in which all cytosines are methylated are ligated to fragmented genomic DNA. Sodium
bisulfite treatment converts unmethylated cytosines to thymine, after which library yield enrichment by
PCR with primers complementary to the universal adapter sequences produces the final library that can
be sequenced. (B) BS-seq (Cokus et al. 2008). Ligation of a first set of double-stranded adaptors that
contained methylated adenine bases within DpnI restriction sites close to the site of ligation with ge-
nomic DNA. After BS conversion, PCR is performed using primers complementary to the converted
adapter sequences, yielding double-stranded DNA that is digested with DpnI to remove only the first
adapter set. Sequencing adapters are subsequently ligated to the double-stranded BS-converted ge-
nomic DNA fragments, and PCR with primers complementary to the adapters performed to yield
a sequencing library. (C) Reduced representation BS sequencing (RRBS) (Meissner et al. 2008). Ge-
nomic DNA is first digested by the methylation-insensitive MspI restriction enzyme, which cleaves the
phosphodiester bond upstream of the CpG dinuclotide in its CCGG recognition element. Digested
DNA is then separated by gel electrophoresis, and one or more specific size fractions are selected. The
size-selected DNA is then end repaired, ligated to double-strandedmethylated sequencing adapters (as
described above for MethylC-seq), BS converted, and amplified by PCR with primers complementary to
the adapter sequences.

Lister and Ecker
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with mean dwell times two to three times longer than the other
nucleotides (Fig. 4). Long binding events are desirable for accurate
base calling as they allow a better estimate of the residual pore
current. However, longer toff values decrease the overall rate of
sequencing. The dwell time of an individual nucleotide also provides
additional information for base calling. The long mean dwell time of
dTMP may be due to the interaction of the methyl group at the 50

position of the thymine base with the adapter. Accordingly, a
long dwell-time is also seen with 5-methyl-20-deoxycytidine 50-
monophosphate (Me-dCMP) which exhibited a toff of 15.5 ms,
compared to 8.9 ms for dCMP under similar conditions (see below).

For DNA sequencing applications, it is preferable that a nucleotide
exit the nanopore to the trans side of the bilayer to remove any
possibility of the nucleotide being reread. The variation in the off
rate constant, koff (1/toff ), of a dNMP with the applied potential
can be used to determine whether the molecule is exiting the nano-
pore at the cis or trans side of the membrane25,27. There are two
voltage regimes. In the first regime, at low potentials, the nucleotide
returns to the cis chamber. A greater applied potential promotes
binding of the charged dNMP to the adapter for a longer period
of time, resulting in a decrease in koff with increasing potential. In
the second regime, at high potentials, the dNMP is ‘pushed’
through the cyclodextrin and translocated into the trans chamber.
In this case, an increase in the applied potential reduces the time
that a dNMP resides in the adapter, causing koff to increase at
higher potentials. In some cases, both mechanisms may occur,
leading to a minimum in koff versus the applied potential25,27.
During translocation, the dNMP and cyclodextrin most probably
undergo conformational changes to facilitate the movement of the
nucleotide through the pore.

The voltage dependence of koff was examined for dGMP, dTMP,
dAMP and dCMP (Fig. 4b). An increase in koff at higher potentials
was seen for dGMP and dAMP, indicating that these nucleotides
cross the membrane to the trans chamber. For dCMP, koff appeared
relatively invariant, suggesting that koff is not limited by the electri-
cal potential. A clearer picture was seen for dTMP which exhibited a
minimum in koff versus applied potential, suggesting that at low
potentials dTMP returns to the cis chamber (,120 mV), and at
higher potentials (.120 mV) dTMP exits to the trans chamber.
The optimal base discrimination was recorded at þ180 mV, where
it is expected that a very high proportion of dNMPs translocate
through the nanopore.

DNA methylation, manifested as 5-methylcytosine (m5C), is a
critical factor in epigenetics. Up to 5% of cytosines in mammalian
genomes are methylated, which results in long-term transcriptional
silencing28–30. The current method for mapping methylation sites
involves treatment of the DNA with bisulphite and then base,

which converts C to U while sparing m5C, followed by sequence
analysis31. We set out to determine the presence of 5-methyl-20-
deoxycytidine 50-monophosphate (Me-dCMP) directly, by using
our preferred protein construct WT-(M113R/N139Q)6(M113R/
N139Q/L135C)1-am6amDP1bCD. Me-dCMP alone gave a distinct
peak of binding events in an amplitude histogram, producing a
current block larger than that of dCMP and similar to dTMP
(data not shown). At a high transmembrane potential, in the pre-
sence of dGMP, dAMP, dTMP and dCMP, all five nucleotides
could be distinguished (Fig. 5).

Nucleotide detection from ssDNA. To use aHL for exonuclease
sequencing, enzymatic cleavage of nucleotides from a DNA strand
in close proximity to the mouth of the nanopore is required.
Therefore, the physical conditions for base discrimination must be
compatible with exonuclease activity. To achieve this, we used
asymmetric salt conditions. The salt concentration on the cis side
of the bilayer was reduced to 200 mM KCl to promote enzyme
activity, while the salt concentration in the trans chamber was
increased to 500 mM KCl to maintain a high ionic conductance
through the nanopore and thereby maintain base discrimination.
Good dNMP separation was achieved; the percentages of single-
molecule events that could be unambiguously assigned to a
particular base were 99.4, 90.3, 90.9 and 99.99% for dGMP, dTMP,
dAMP and dCMP, respectively (200/500 mM KCl, 25 mM Tris
HCl, pH 7.5,þ180 mV, room temperature; see Supplementary Fig. 2).

The protein nanopore construct was used to identify dNMPs
produced in solution from ssDNA and ExoI from E. coli (Fig. 6).
Two different DNAs were used: one contained only G, A and C
bases (85mer), and a second only G, T and C bases (76mer). A sol-
ution containing ExoI and a ssDNA template was added to the cis
chamber. The dNMPs produced by the exonuclease were observed
as binding events and plotted in a residual current histogram. As
expected, the ssDNA lacking the T base showed three peaks corre-
sponding to dGMP, dAMP and dCMP (Fig. 6b). The second DNA,
lacking the A base, produced a different distribution of three peaks
corresponding to dGMP, dTMP and dCMP (Fig. 6c). This exper-
iment demonstrates the ability of the nanopore to detect nucleotides
released from a DNA strand under physical conditions compatible
with exonuclease activity.

Conclusions
We have engineered a nanopore with a covalently attached adapter
that is capable of continuous nucleoside monophosphate detection
without the need for labelling. The nanopore shows accurate
discrimination of the four standard dNMPs, reading raw bases
with over 99% confidence under optimal operating conditions.
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Figure 5 | Detection of methyl-dCMP. a, Residual current histograms for the WT-(M113R/N139Q)6(M113R/N139Q/L135C)1-am6amDP1bCD pore in the
presence of a mixture of dGMP, dTMP, dAMP and dCMP. b, Histogram from the same nanopore following the addition of Me-dCMP. Data were acquired in
400 mM KCl, 25 mM Tris HCl, pH 7.5, at þ200 mV after reaction with 5mM am6amPDP1bCD, and in the presence of 5mM dGMP, 5mM dTMP, 5mM
dAMP, 5mM dCMP and 5mM Me-dCMP.
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Other	  remarks	  into	  DNA	  methyla>on	  data	  

•  Whole	  genome	  bisulphite	  sequencing	  is	  the	  most	  
accurate,	  but	  expensive	  and	  somewhat	  inefficient	  

•  Performance	  of	  affinity	  capture	  can	  vary	  
dras-cally	  according	  to	  exact	  specifica-ons	  of	  the	  
protocol	  

•  Difficult	  to	  compare	  methods	  since	  plakorms	  have	  
different	  coverage,	  different	  resolu-on	  	  
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Lister et al. 2009, Nature 

Notes re: WGSBS: 

1.  Mapping is done on BS-
converted reads/genome (i.e.3 
bases), requires mapping 
separately to each strand – 
need longer (paired) reads and 
high coverage 

2.  Of the 1.18B reads, 
approximately 670M (56%) do 
NOT overlap a CpG site 

3.  There may be a fair amount of 
regions that are completely 
unmethylated 

Whole	  genome	  BS	  sequencing	  can	  be	  inefficient	  
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Chroma>n	  immunoprecipita>on	  
for	  protein-‐DNA	  interac>ons	  
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Techniques:	  DNaseI,	  RNA-‐seq	  
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Higher-‐order	  chroma>n	  structure	  
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Assaying	  combina>ons	  of	  epigene>c	  factors	  

•  Chroma-n	  immunoprecipita-on	  +	  bisulphite	  treatment	  
==	  ChIP-‐BS-‐seq	  

•  Nucleosome	  Occupancy	  +	  Methyla-on	  ==	  NOME-‐seq	  

•  Varia-ons	  on	  RNA	  
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A few tricks on the technical side to 
facilitate this. 
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NOME-‐seq	  
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M.CviPI enzyme is used to methylate 
GpC sites not bound by nucleosomes 
 
Both GpC methylation and CpG 
methylation can be readout (on the 
same clone) after bisulphite treatment 
 
 
Pink: nucleosome-bound (not 
methylated by M.CviPI) 
Green: accessible 
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Remarks:	  Allele-‐specific	  epigene>cs,	  cell	  popula>ons	  

•  A	  couple	  key	  points	  to	  recognize:	  

•  Typically,	  MBD-‐seq/ChIP-‐seq/etc.	  are	  analyzing	  popula-ons	  of	  cells	  (e.g.	  
pa-ent	  tumours	  that	  may	  contain	  normal	  cell	  types	  as	  well)	  –	  so	  we	  are	  
really	  studying	  the	  popula-on	  average!	  

•  In	  some	  instances,	  we	  may	  be	  able	  to	  combine	  the	  informa-on	  we	  get	  from	  
genome	  sequencing	  (e.g.	  SNPs)	  to	  par--on	  transcrip-on	  and	  epigene-c	  
factors	  by	  allele	  
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Technical	  limita>on	  in	  
the	  amount	  of	  DNA	  
need	  to	  create	  library	  
and	  sequence	  

•  We	  oRen	  want	  to	  know	  about	  
several	  factors	  on	  a	  single	  
popula-on	  of	  cells	  –	  requires	  a	  
lot	  of	  DNA/RNA	  

•  New	  technologies	  are	  trying	  to	  
address	  this	  

•  Pa-ent	  (e.g.	  tumour	  sample)	  
cell	  popula-on	  purity?	  
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of the antibody and the amount of the tar-
geted protein.

Adli et al. overcame these challenges by 
optimizing each step of the ChIP proto-
col and efficiently performed ChIP with 
10,000 cells as judged by quantitative PCR2. 
However, the amount of the precipitated 
DNA was miniscule (~10–50 picograms), 
requiring multiple rounds of PCR ampli-
fication with modified random primers. 
Although this led to some artifacts such as 
higher error rates and misrepresentation 
of certain regions, the authors found that 
the histone H3 Lys4 trimethyl (H3K4me3) 
profiles of 1  106 and 1  104 embryonic 
stem cells (ESCs) using standard and small-
scale ChIP-seq, respectively, correlated 
fairly well. Specifically, there was a 93% 
overlap between H3K4me3-enriched pro-
moters detected by the two methods, and 
small-scale ChIP-seq had ~80% sensitivity 
and ~90% specificity using standard ChIP-
seq as reference. Furthermore, H3K4me3, 
H3K27me3 and H3K36me3 profiles of lin-
eage–, Sca-1+ and c-kit+ (LSK) hematopoi-
etic stem cells correlated as expected with 
gene expression patterns. However, they did 
not analyze the correlation between stan-
dard and small-scale ChIP-seq results for 
H3K27me3 and H3K36me3, which would 

to LQ-DGE, assuming that a single mam-
malian cell has 10–30 picograms of RNA. 
However, LQ-DGE still requires separate 
steps of RNA isolation, cDNA synthesis 
and tailing, each of which can lead to bias 
and sample loss. Furthermore, the direct 
anchoring of poly(A)+ RNA on the flow-
cell surface during LQ-DGE allows repeat-
ed sequencing of the same template lead-
ing to improved read depths. Although 
the authors did not fully explore this 
possibility, they provided proof of prin-
ciple by generating second-pass sequence 
reads. Optimization of this resequencing 
step may make LQ-DGE applicable to 
even smaller cell numbers than used in 
the current study1.

Bernstein’s team describes the applica-
tion of chromatin immunoprecipitation 
combined with high-throughput sequenc-
ing (ChIP-seq) from limited numbers 
of mouse hematopoietic progenitors2. 
Applying ChIP to small numbers of cells 
is even more challenging than character-
izing transcription profiles, as the rate-
limiting step is the immunoprecipitation 
of the desired protein (for example, spe-
cific histones or transcription factors), 
which cannot be amplified; in addition the 
process is very dependent on the quality  

is a daunting task as each organ is com-
posed of different cell types, many present 
only in very small numbers.

Ozsolak and colleagues developed 
low-quantity digital gene expression 
(LQ-DGE), which allows the character-
ization of mRNA profiles of as few as 250 
cells without an amplification step1. They 
modified the Helicos DGE method7 by 
capturing poly(A)+ mRNA on poly(dT)-
coated flow cells and performed cDNA 
synthesis directly on the surface in the 
sequencing machine, minimizing sample 
manipulation and consequently increas-
ing sensitivity. Comparison of the expres-
sion patterns of 1  103 and 4  106 cells 
from the same cell line demonstrated high 
reproducibility and excellent agreement 
between large- and small-scale methods.

To demonstrate that their method is 
suitable for the comparison of related cell 
populations and to answer biologically 
relevant questions, the authors analyzed 
the gene expression profiles of KrasG12D 
mutant premalignant (SM25) and malig-
nant (490) pancreatic cell lines. They iden-
tified over 2,000 differentially expressed 
transcripts and validated several of these 
by quantitative reverse-transcription 
PCR, confirming the power of LQ-DGE 
for identifying subtle differences between 
closely related cells.

Although LQ-DGE is a substantial 
improvement over conventional DGE, 
it does not provide complete transcrip-
tome coverage as it only detects ~8,500 
transcripts above background, and it still 
suffers from problems associated with 
sequencing double-stranded cDNA such 
as loss of strandedness and inefficient rep-
resentation owing to inefficient reverse 
transcription. These issues limit the use 
of LQ-DGE for the definition of global 
transcriptomes, as sense and antisense 
transcripts cannot be differentiated with 
high confidence.

Several recently described methods, 
including flowcell surface sequencing 
(FRT-seq)8 and direct RNA sequenc-
ing9,10, overcome these limitations by 
directly sequencing the first strand of the 
cDNA. FRT-seq was only tested using 250 
nanograms of poly(A)+ RNA; thus, its 
potential applicability to smaller cell num-
bers is unclear. Notably, the low-quantity 
direct RNA sequencing (LQ-RNAseq) 
method10 has been shown to be appli-
cable for 250 picograms of total RNA, 
which appears to be superior in sensitivity 

Liver
stem cells

Hematopoietic
stem cells

Specific
neurons

Poly(A)+

RNA
Genomic

DNA
Chromatin

Gene expression
profiles

DNA methylation
profiles

Genome-wide integrated
molecular view

Histone modification
profiles

cDNA Restriction enzyme cut–
bisulfite treatment

Massively parallel sequencing

ChIP
(H3K4me3,
H3K27me3)

Figure 1 | Schematic flow chart of experimental design. Rare cell types are isolated from specific organs 
and used for RNA and DNA preparation, and ChIP. Combining gene expression, DNA methylation and 
histone modification profiles gives an integrated view of the epigenome.
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Allele-‐specific	  methyla>on	  

•  Biologically,	  what	  affect	  does	  this	  
have?	  

•  How	  prominent	  is	  this?	  
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Summary	  

Many	  approaches	  for	  DNA	  methyla-on	  

Chroma-n	  immunoprecipita-ons	  for	  protein-‐DNA	  

Higher	  order	  structures	  
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