Microarray Analysis

Chao-Jen Wong Fred Hutchinson Cancer Research Center

9-10 December, 2010

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Basics

Moderated *t*-tests

Using limma

p-value Correction

Resources

Introduction

- Identify differentially expressed genes associated with biological or experimental conditions.
- Primarily concerned with two-class problems.
- Data with *n* samples and *p* probes (p >> n).

А	А	А	А	А	В	В	В	В	В
						<i>x</i> _{1,7}			
<i>x</i> _{2,1}	<i>x</i> _{2,2}	<i>x</i> _{2,3}	<i>x</i> _{2,4}	<i>x</i> _{2,5}	<i>x</i> _{2,6}	<i>x</i> _{2,7}	<i>x</i> _{2,8}	<i>x</i> _{2,9}	<i>x</i> _{2,10}
÷	÷	÷	÷	÷	:	÷	÷	÷	÷
$x_{p,1}$	$x_{p,2}$	<i>х</i> _{р,3}	<i>x</i> _{p,4}	<i>x</i> _{<i>p</i>,5}	<i>х_{р,6}</i>	<i>x</i> _{p,7}	<i>х</i> _{р,8}	<i>х</i> _{р,9}	$x_{p,10}$

Approaches

- Gene-by-gene hypothesis testing
 - Treating each gene independently of others.
 - Goal: find statistically significant associations of biological conditions.
 - Genes are deemed to be interesting if the *p*-value is small.

- Method: t-tests, moderated t-tests, ROC, F-test.
- Machine learning

t-tests

$$t_g = \frac{\mu_x - \mu_y}{\sqrt{\sigma_x^2 - \sigma_y^2}}$$

Drawback:

- Parametric assumptions hard to justify with few arrays.
- The variance in small samples might be noisy.
- Genes with small fold-change might be significant from statistical, not biological point of view.

Moderated *t*-statistics

 Rather than estimating within-group variability for each gene, pool the global information from all other genes.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

 Advantage: eliminate occurrence of accidentally large t-statistics due to accidentally small within-group variance.

Moderated *t*-statistics

Using empirical Bayesian approach to estimate:

- Overall estimate variation s_0^2 .
- Per-gene deviation variation s_g^2 .
- Shrinkage variation

$$\tilde{s}_g^2 = \frac{d_0 s_0^2 + d_g s_g^2}{d_0 + d_g}$$

- ► Contrast estimator $\hat{\beta}_g$ the difference in means between two classes.
- Moderated t-statistics:

$$ilde{t_g} = rac{\hat{eta}_g}{ ilde{s}_g \sqrt{
u_g}}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Using limma

 Define a design matrix to establish parameters of linear model model.matrix.

- Fit a linear model for each gene based on the given design matrix (and a contrast matrix): lmFit().
- 3. Use function eBayes to get moderated *t*-statistics and relevant statistics.

Deriving linear models

Suppose we define a design matrix as the following:

sample <i>i</i>	(intercept)	mol.biolNEG
NEG	1	1
BCR/ABL	1	0
NEG	1	1
	:	:

Each gene Y_j for all sample *i*, the expression level can be expressed by

$$\begin{bmatrix} Y_{\mathsf{NEG}_i,j} \\ Y_{\mathsf{BCR}/\mathsf{ABL}_i,j} \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} \beta_{\mathsf{intercept}} \\ \beta_{\mathsf{mol}.\mathsf{biolNEG}} \end{bmatrix} + \epsilon$$

$$\Rightarrow \beta_{mol.biolNEG} = Y_{BCR/ABL_i,j} - Y_{NEG_i,j} + \epsilon$$
$$y_j = \beta_{intercept} + \beta_{mol.biolNEG}a_{ij} + \epsilon$$
$$\Rightarrow y_i = \beta_0 + \beta_1 a_{ij} + \epsilon$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Using limma

Step 1:

Code: define design matrix and contrast model

```
> library(limma)
> design <- model.matrix( ~mol.biol, ALLfilt_bcrneg)
>
```

Step 2:

```
Code: linear models and eBayes
```

Deriving linear models

Suppose we define a design matrix as the following:

	sample i	mol.biolBCR	mol.biolNEG	
·	BCR/ABL	1	0	
	BCR/ABL	1	0	
	BCR/ABL	1	0	
	:	÷	÷	
	NEG	0	1	
	NEG	0	1	
	NEG	0	1	
	:	÷	÷	

 $y_i = \beta_1 a_{ij} + \beta_2 b_{ij} + \varepsilon_i$

Using limma

Step 1:

Code: define design matrix and contrast model

```
> library(limma)
> design <- model.matrix( ~0+mol.biol, ALLfilt_bcrneg)
> colnames(design) <- c("BCR_ABL", "NEG")
> contr <- makeContrasts(BCR_ABL-NEG, levels=designs)
> # contr <- c(1, -1)</pre>
```

Step 2:

Code: linear models and eBayes

> fit <- lmFit(exprs(ALLfilt_bcrneg), design)</pre>

- > fit1 <- contrasts.fit(fit, contr)</pre>
- > fit2 <- eBayes(fit1)</pre>
- > topTable(fit2, adjust.method="BH", number=5)

t-tests vs. moderated *t*-tests

- In larger sample size, there is not big difference between the ordinary and the moderated tests.
- For smaller sample size the difference will be larger.

The empirical Bayes moderation is more useful in cases with fewer replicates.

t-tests vs. moderated *t*-tests

79 samples

t-tests vs. moderated *t*-tests

6 0 t from moderated t-test (limma) 4 2 0 --2 0 _4 -10 10 15 0 5 -5

6 samples -- 3 for each group

t-statisitcs from two-sample t-test □ > < @ > < ≥ > < ≥ > =

p-value corrections

- Basic idea: reduce critical value used to reject.
- Trade-off between sensitivity and specificity.
- Approaches implemented in the *multtest* package:
 - criteria for error rate control include family-wise error rate (FWER) and false discovery rate (FDR).

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Permutation-based maxT methods.

Lab activity

- Chapter 6 and 7 in Bioconductor Case Studies.
- ► Goals: get familiar with functions provided by *Bioconductor* packages to perform differential expression analysis.

Resources

- G.K. Smyth, Linear models and empirical Bayes methods for assessing differential expression in microarray experiments, *Statistical Applications in Genetics and Molecular Biology*, 3(1), 2004.
- G. K. Smyth, *limma: Linear Models for Microarray Data*, Bioconductor package vignette, 2005.
- Florian Hahne et. al., *Bioconductor Case Studies*, Springer, 2007.