Microarray Analysis

Chao-Jen Wong
Fred Hutchinson Cancer Research Center

9-10 December, 2010

Basics

Moderated t-tests

Using limma
p-value Correction

Resources

Introduction

- Identify differentially expressed genes associated with biological or experimental conditions.
- Primarily concerned with two-class problems.
- Data with n samples and p probes $(p \gg n)$.

A	A	A	A	A	B	B	B	B	B
$x_{1,1}$	$x_{1,2}$	$x_{1,3}$	$x_{1,4}$	$x_{1,5}$	$x_{1,6}$	$x_{1,7}$	$x_{1,8}$	$x_{1,9}$	$x_{1,10}$
$x_{2,1}$	$x_{2,2}$	$x_{2,3}$	$x_{2,4}$	$x_{2,5}$	$x_{2,6}$	$x_{2,7}$	$x_{2,8}$	$x_{2,9}$	$x_{2,10}$
\vdots									
$x_{p, 1}$	$x_{p, 2}$	$x_{p, 3}$	$x_{p, 4}$	$x_{p, 5}$	$x_{p, 6}$	$x_{p, 7}$	$x_{p, 8}$	$x_{p, 9}$	$x_{p, 10}$

Approaches

- Gene-by-gene hypothesis testing
- Treating each gene independently of others.
- Goal: find statistically significant associations of biological conditions.
- Genes are deemed to be interesting if the p-value is small.
- Method: t-tests, moderated t-tests, ROC, F-test.
- Machine learning

t-tests

$$
\operatorname{tg}_{g}=\frac{\mu_{x}-\mu_{y}}{\sqrt{\sigma_{x}^{2}-\sigma_{y}^{2}}}
$$

Drawback:

- Parametric assumptions hard to justify with few arrays.
- The variance in small samples might be noisy.
- Genes with small fold-change might be significant from statistical, not biological point of view.

Moderated t-statistics

- Rather than estimating within-group variability for each gene, pool the global information from all other genes.
- Advantage: eliminate occurrence of accidentally large t-statistics due to accidentally small within-group variance.

Moderated t-statistics

Using empirical Bayesian approach to estimate:

- Overall estimate variation s_{0}^{2}.
- Per-gene deviation variation s_{g}^{2}.
- Shrinkage variation

$$
\tilde{s}_{g}^{2}=\frac{d_{0} s_{0}^{2}+d_{g} s_{g}^{2}}{d_{0}+d_{g}}
$$

- Contrast estimator $\hat{\beta}_{g}$ - the difference in means between two classes.
- Moderated t-statistics:

$$
\tilde{t}_{g}=\frac{\hat{\beta}_{g}}{\tilde{s}_{g} \sqrt{\nu_{g}}}
$$

Using limma

1. Define a design matrix to establish parameters of linear model model.matrix.
2. Fit a linear model for each gene based on the given design matrix (and a contrast matrix): lmFit().
3. Use function eBayes to get moderated t-statistics and relevant statistics.

Deriving linear models

Suppose we define a design matrix as the following:

sample i	(intercept)	mol.biolNEG
NEG	1	1
BCR/ABL	1	0
NEG	1	1
\vdots	\vdots	\vdots

Each gene Y_{j} for all sample i, the expression level can be expressed by

$$
\begin{gathered}
{\left[\begin{array}{c}
Y_{N E G_{i}, j} \\
Y_{B C R / A B L_{i}, j}
\end{array}\right]=\left[\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right]\left[\begin{array}{c}
\beta_{\text {intercept }} \\
\beta_{\text {mol.biolNEG }}
\end{array}\right]+\epsilon} \\
\Rightarrow \beta_{\text {mol.biolNEG }}=Y_{B C R / A B L_{i}, j}-Y_{N E G_{i}, j}+\epsilon \\
y_{j}=\beta_{\text {intercept }}+\beta_{\text {mol.biolNEG }} a_{i j}+\epsilon \\
\Rightarrow y_{j}=\beta_{0}+\beta_{1} a_{i j}+\epsilon
\end{gathered}
$$

Using limma

Step 1:
Code: define design matrix and contrast model
> library(limma)
> design <- model.matrix (~mol.biol, ALLfilt_bcrneg) $>$

Step 2:
Code: linear models and eBayes
> fit1 <- lmFit(exprs(ALLfilt_bcrneg), design)
> fit2 <- eBayes(fit1)
> topTable(fit2, coef=2, adjust.method="BH",
$+\quad$ number=5)

Deriving linear models

Suppose we define a design matrix as the following:

sample i	mol.biolBCR	mol.biolNEG
BCR/ABL	1	0
BCR/ABL	1	0
BCR/ABL	1	0
\vdots	\vdots	\vdots
NEG	0	1
NEG	0	1
NEG	0	1
\vdots	\vdots	\vdots
$y_{i}=\beta_{1} a_{i j}+\beta_{2} b_{i j}+\varepsilon_{i}$		

Using limma

Step 1:
Code: define design matrix and contrast model
> library (limma)
> design <- model.matrix(~O+mol.biol, ALLfilt_bcrneg)
> colnames(design) <- c("BCR_ABL", "NEG")
> contr <- makeContrasts(BCR_ABL-NEG, levels=designs)
> \# contr <- c $(1,-1)$
Step 2:
Code: linear models and eBayes
> fit <- lmFit(exprs(ALLfilt_bcrneg), design)
> fit1 <- contrasts.fit(fit, contr)
> fit2 <- eBayes(fit1)
> topTable(fit2, adjust.method="BH", number=5)

t-tests vs. moderated t-tests

- In larger sample size, there is not big difference between the ordinary and the moderated tests.
- For smaller sample size the difference will be larger.

The empirical Bayes moderation is more useful in cases with fewer replicates.

t-tests vs. moderated t-tests

79 samples

t-tests vs. moderated t-tests

6 samples -- 3 for each group

p-value corrections

- Basic idea: reduce critical value used to reject.
- Trade-off between sensitivity and specificity.
- Approaches implemented in the multtest package:
- criteria for error rate control include family-wise error rate (FWER) and false discovery rate (FDR).
- Permutation-based maxT methods.

Lab activity

- Chapter 6 and 7 in Bioconductor Case Studies.
- Goals: get familiar with functions provided by Bioconductor packages to perform differential expression analysis.

Resources

- G.K. Smyth, Linear models and empirical Bayes methods for assessing differential expression in microarray experiments, Statistical Applications in Genetics and Molecular Biology, 3(1), 2004.
- G. K. Smyth, limma: Linear Models for Microarray Data, Bioconductor package vignette, 2005.
- Florian Hahne et. al., Bioconductor Case Studies, Springer, 2007.

