
Introduction to R

Nishant Gopalakrishnan, Martin Morgan

Fred Hutchinson Cancer Research Center

9-10 December, 2010

Getting Started

Atomic Data structures
Creating vectors
Subsetting vectors

Factors

Matrices and arrarys

Lists
Subsetting a list

Environments

Data frames

Control flow
apply

Functions

Visualizing data

Getting help in R

I help and ?: help("data.frame") or ? data.frame

I help.search("slice"), apropos("mean")

I browseVignettes("Biobase")

I RSiteSearch (requires internet connection)

I R/Bioconductor mailing lists (sessionInfo())

Data structures in R

R has a rich set of self-describing data structures.

I vector - array of the same type

I factor - categorical

I list - can contain objects of different types

I data.frame - table-like

I matrix

I environment - hash table

I class - arbitrary record type

I function

Creating vectors
There are two symbols that can be used for assignment: <- and =.

> v <- 123

[1] 123

> s <- "a string"

[1] "a string"

> t <- TRUE

[1] TRUE

> letters # 'letters' is a built-in variable

[1] "a" "b" "c" "d" "e" "f" "g" "h" "i"

[10] "j" "k" "l" "m" "n" "o" "p" "q" "r"

[19] "s" "t" "u" "v" "w" "x" "y" "z"

> length(letters) # 'length' is a function

[1] 26

Functions for Creating vectors

I c - concatenate

I : - integer sequence, seq - general sequence

I rep - repetitive patterns

I vector - vector of given length with default value

> seq(1, 3)

[1] 1 2 3

> 1:3

[1] 1 2 3

> rep(1:2, 3)

[1] 1 2 1 2 1 2

> vector(mode="character", length=5)

[1] "" "" "" "" ""

Naming vectors

The elements of a vector can be named

I at creation time

I using names, dimnames, rownames, colnames

> x <- c(a=0, b=2)

> x

a b

0 2

> names(x) <- c("Australia", "Brazil")

> x

Australia Brazil

0 2

Subsetting

I One of the most powerful features of R is its ability to
manipulate subsets of vectors and arrays.

I Subsetting is indicated by [,].

I Note that [is actually a function (try get("[")). x[2, 3] is
equivalent to "["(x, 2, 3). Its behavior can be customized
for particular classes of objects.

I The number of indices supplied to [must be either the
dimension of x or 1.

Subsetting with positive indices

I A subscript consisting of a vector of positive integer values is
taken to indicate a set of indices to be extracted.

> x <- 1:10

> x[2]

[1] 2

> x[1:3]

[1] 1 2 3

I A subscript which is larger than the length of the vector being
subset produces an NA in the returned value.

> x[9:11]

[1] 9 10 NA

Subsetting with positive indices (continued)

I Subscripts which are zero are ignored and produce no
corresponding values in the result.

> x[0:1]

[1] 1

> x[c(0, 0, 0)]

integer(0)

I Subscripts which are NA produce an NA in the result.

> x[c(10, 2, NA)]

[1] 10 2 NA

Assignments with positive indices

I Subset expressions can appear on the left side of an
assignment. In this case the given subset is assigned the
values on the right (recycling the values if necessary).

> x[2] <- 200

> x[8:10] <- 10

> x

[1] 1 200 3 4 5 6 7 10 10

[10] 10

I If a zero or NA occurs as a subscript in this situation, it is
ignored.

Subsetting with negative indices

I A subscript consisting of a vector of negative integer values is
taken to indicate the indices which are not to be extracted.

> x[-(1:3)]

[1] 4 5 6 7 10 10 10

I Subscripts which are zero are ignored and produce no
corresponding values in the result.

I NA subscripts are not allowed.

I Positive and negative subscripts cannot be mixed.

Assignments with negative indices

I Negative subscripts can appear on the left side of an
assignment. In this case the given subset is assigned the
values on the right (recycling the values if necessary).

> x = 1:10

> x[-(8:10)] = 10

> x

[1] 10 10 10 10 10 10 10 8 9 10

I Zero subscripts are ignored.

I NA subscripts are not permitted.

Subsetting by Logical Predicates

I Vector subsets can also be specified by a logical vector of
TRUEs and FALSEs.

> x = 1:10

> x > 5

[1] FALSE FALSE FALSE FALSE FALSE TRUE

[7] TRUE TRUE TRUE TRUE

> x[x > 5]

[1] 6 7 8 9 10

I NA values used as logical subscripts produce NA values in the
output.

I The subscript vector can be shorter than the vector being
subsetted. The subscripts are recycled in this case.

I The subscript vector can be longer than the vector being
subsetted. Values selected beyond the end of the vector
produce NAs.

Subsetting by name

I If a vector has named elements, it is possible to extract
subsets by specifying the names of the desired elements.

> x <- c(a=1, b=2, c=3)

> x[c("c", "a", "foo")]

c a <NA>

3 1 NA

>

I If several elements have the same name, only the first of them
will be returned.

I Specifying a non-existent name produces an NA in the result.

Vectorized arithmetic

I Most arithmetic operations in the R language are vectorized.
That means that the operation is applied element-wise.

> 1:3 + 10:12

[1] 11 13 15

I When one operand is shorter than the other, the short operand
is recycled until it is the same length as the longer operand.

> 1 + 1:5

[1] 2 3 4 5 6

> paste(1:5, "A", sep="")

[1] "1A" "2A" "3A" "4A" "5A"

I Many operations which need to have explicit loops in other
languages do not need them with R. You should vectorize any
functions you write.

Factors

I A special type of vector with grouping information about its
components

I A vector with its components grouped with distinct levels

I > col <- c("red", "green", "red", "yellow", "red")

> factor(col)

[1] red green red yellow red

Levels: green red yellow

Matrices and n-Dimensional Arrays

I Can be created using matrix and array.

I Are represented as a vector with a dimension attribute.

I left most index is fastest (like Fortran or Matlab)

Matrix examples

> x <- matrix(1:10, nrow=2)

> dim(x)

[1] 2 5

> x

[,1] [,2] [,3] [,4] [,5]

[1,] 1 3 5 7 9

[2,] 2 4 6 8 10

> as.vector(x)

[1] 1 2 3 4 5 6 7 8 9 10

Naming dimensions of matrix

> x <- matrix(c(4, 8, 5, 6, 4, 2, 1, 5, 7), nrow=3)

> dimnames(x) <- list(

+ year = c("2005", "2006", "2007"),

+ "mode of transport" = c("plane", "bus", "boat"))

> x

mode of transport

year plane bus boat

2005 4 6 1

2006 8 4 5

2007 5 2 7

Subsetting matrices

I When subsetting a matrix, missing subscripts are treated as if
all elements are named; so x[1,] corresponds to the first row
and x[,3] to the third column.

I For arrays, the treatment is similar, for example y[,1,].

I These can also be used for assignment, x[1,]=20

Subsetting arrays

I Rectangular subsets of arrays obey similar rules to those which
apply to vectors.

I One point to note is that arrays can also be treated as
vectors. This can be quite useful.

> x = matrix(1:9, ncol=3)

> x[x > 6]

[1] 7 8 9

> x[row(x) > col(x)] = 0

> x

[,1] [,2] [,3]

[1,] 1 4 7

[2,] 0 5 8

[3,] 0 0 9

>

Lists

I A list is an ordered set of elements that can be arbitrary R
objects (vectors, other lists, functions, . . .). In contrast to
atomic vectors, which are homogeneous, lists and
environments can be heterogeneous.

> lst = list(a=1:3, b = "ciao", c = sqrt)

> lst

$a

[1] 1 2 3

$b

[1] "ciao"

$c

function (x) .Primitive("sqrt")

> lst$c(81)

[1] 9

Subsetting and lists

I Lists are useful as containers for grouping related thing
together (many R functions return lists as their values).

I Because lists are a recursive structure it is useful to have two
ways of extracting subsets.

I The [] form of subsetting produces a sub-list of the list
being subsetted.

I The [[]] form of subsetting can be used to extract a single
element from a list.

Subsetting and lists

I Lists are useful as containers for grouping related thing
together (many R functions return lists as their values).

I Because lists are a recursive structure it is useful to have two
ways of extracting subsets.

I The [] form of subsetting produces a sub-list of the list
being subsetted.

I The [[]] form of subsetting can be used to extract a single
element from a list.

Subsetting lists

I Using the [] operator to extract a sublist.

> lst[1]

$a

[1] 1 2 3

I Using the [[]] operator to extract a list element.

> lst[[1]]

[1] 1 2 3

I As with vectors, indexing using logical expressions and names
is also possible.

Subsetting by name

I The dollar operator provides a short-hand way of accessing list
elements by name. This operator is different from all other
operators in R, it does not evaluate its second operand (the
string).

> lst$a

[1] 1 2 3

> lst[["a"]]

[1] 1 2 3

I For $ partial matching is used, for [[it is not by default, but
can be turned on.

Environments

I One difference between lists and environments is that there is
no concept of ordering in an environment. All objects are
stored and retrieved by name.

> e1 = new.env()

> e1[["a"]] <- 1:3

> assign("b", "ciao", e1)

> ls(e1)

[1] "a" "b"

I Names must match exactly (for lists, partial matching is used
for the $ operator).

Accesssing elements in an environment

I Access to elements in environments can be through, get,
assign, mget.

> mget(c("a", "b"), e1)

$a

[1] 1 2 3

$b

[1] "ciao"

I You can also use the dollar operator and the [[]] operator,
with character arguments only. No partial matching is done.

> e1$a

[1] 1 2 3

> e1[["b"]]

[1] "ciao"

Assigning values to lists and environments

I Items in lists and environments can be (re)placed in much the
same way as items in vectors are replaced.

> lst[[1]] = list(2,3)

> lst[[1]]

[[1]]

[1] 2

[[2]]

[1] 3

> e1$b = 1:10

> e1$b

[1] 1 2 3 4 5 6 7 8 9 10

Data frames

I Data frames are a special R structure used to hold a set of
spreadsheet like table. In a data.frame, the observations are
the rows and the covariates are the columns.

I Data frames can be treated like matrices and be indexed with
two subscripts. The first subscript refers to the observation,
the second to the variable.

I Data frames are really lists, and list subsetting can also be
used on them.

Create a data frame

> df <- data.frame(type=rep(c("case", "control"), c(2, 3)),

+ time=rexp(5))

> df

type time

1 case 1.1745712

2 case 1.1691266

3 control 0.8227643

4 control 0.1301390

5 control 1.0581316

> df$time

[1] 1.1745712 1.1691266 0.8227643

[4] 0.1301390 1.0581316

Update row names

> names(df)

[1] "type" "time"

> rn <- paste("id", 1:5, sep="")

> rownames(df) <- rn

> df[1:2,]

type time

id1 case 1.174571

id2 case 1.169127

Control Flow

R has a standard set of control flow functions:

I Looping: for, while and repeat.

I Conditional evaluation: if and switch.

apply family of functions

I A natural programming construct in R is to apply the same
function to elements of a list, of a vector, rows of a matrix, or
elements of an environment.

I The members of this family of functions are different with
regard to the data structures they work on and how the
answers are dealt with.

I Some examples, apply, sapply, lapply, mapply, eapply.

apply

I apply applies a function over the margins of an array.

I For example,
> apply(x, 2, mean)

computes the column means of a matrix x, while
> apply(x, 1, median)

computes the row medians.

apply

apply is usually not faster than a for loop. But it is more elegant.

> a = matrix(runif(1e6), ncol=10)

> ## 'apply'
> s1 = apply(a, 1, sum)

> ## 'for', pre-allocating for efficiency

> s2 = numeric(nrow(a))

> for(i in 1:nrow(a))

+ s2[i] = sum(a[i,])

> ## purpose-built function (much faster!)

> s3 = rowSums(a)

Writing functions

I Writing R functions provides a means of adding new
functionality to the language.

I Functions that a user writes have the same status as those
which are provided with R.

I Reading the functions provided with the R system is a good
way to learn how to write functions.

Functions

I Here is a function that computes the square of its argument.

> square = function(x){

+ x*x

+ }

> square(10)

[1] 100

I Because the function body is vectorized, so is this new
function.

> square(1:4)

[1] 1 4 9 16

Composition of functions

I Once a function is defined, it is possible to call it from other
functions.

> sumsq = function(x) sum(square(x))

> sumsq(1:10)

[1] 385

Returning values

I Any single R object can be returned as the value of a
function; including a function.

I If you want to return more than one object, you should put
them in a list (usually with names), or an S4 object (discussed
later), and return that.

I The value returned by a function is either the value of the last
statement executed, or the value of an explicit call to return.

I return takes a single argument, and can be called from any
where in a function.

Visualizing data in R

Basic plots

I plot: x-y plotting

I boxplot: box-whisker plot

I hist: histogram

I barplot: bar plot

Basic scatter plot

> df <- data.frame("y" = 1:10, "x" = rnorm(10))

> plot(dfx, dfy, col = "red")

Trellis graphics

Lattice package

I xyplot: scatter plot

I bwplot: box-whisker plot

I histogram: histogram

I densityplot: kernel density plot

Lattice plots

> xyplot(y ~ x | c, data , groups = g)

I lattice function
I formula

I primary variables
I conditioning variable

I grouping variable

I data

Reading/writing data from/to files

I read.delim("file"), read.table("file")

I write.table, write

I load, save

Packages

I In R the primary mechanism for distributing software is via
packages.

I The most reliable way to install Bioconductor packages (and
their dependencies) is to use biocLite.

> source("http://bioconductor.org/biocLite.R")

> biocLite("Biobase")

I During an R session, use library to load a package in order
to obtain access to its functionality.

> library(Biobase)

Selected references

I Software for Data Analysis: Programming with R by J.
Chambers.

I R Programming for Bioinformatics by R. Gentleman.

I Lattice: Multivariate Data Visualization with R by D. Sarkar.

I Introductory Statistics with R by P. Dalgaard.

I Modern Applied Statistics, S Programming by W. N.
Venables and B. D. Ripley.

Course resource

I Bioconductor Case Studies by F. Hahne, W. Huber, R.
Gentleman, and S. Falcon.

	Getting Started
	Atomic Data structures
	Creating vectors
	Subsetting vectors

	Factors
	Matrices and arrarys
	Lists
	Subsetting a list

	Environments
	Data frames
	Control flow
	apply

	Functions
	Visualizing data

