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Microarray data

• Clustering
– Are there patient groups with similar

expression profiles ?

– Are there groups of genes behaving similarly ?

• Classification
– Given known cancer type profiles
– Which cancer type has a patient given his

expression profile ?
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Microarray data

• Clustering
– Are there patient groups with similar

expression profiles ?

– Are there groups of genes behaving similarly ?

• Classification
– Given known cancer type profiles
– Which cancer type has a patient given his

expression profile ?
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Cell phenotypes

• Clustering
– Are there similar cell groups ?

• Classification
– Given known cell types
– What is this cell type ?
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• Clustering
– Are there similar cell groups ?
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Clustering versus classification

• Clustering
– Unknown class labels

– Given a measure of similarity between objects
– Identification of similar subgroups
– Ill-defined problem

• Classification
– Known class labels
– Prediction/classification/regression of class labels
– Well-defined
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Clustering
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Clustering

• Identification of similar subgroups within data
• Using a similarity measure between objects
• Ill-defined problem ⇒ many algorithms exist

• Non-parametric clustering
– Agglomerative: Hierarchical clustering

– Partitive: K-means
– Partitive: Partitioning Around Medioids (PAM)
– Other: Self-organising maps

• Parametric clustering
– Gaussian mixture estimation
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Similarity

• n objects (here, patients)
• p parameters (here, genes)
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Many similarity measures
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Dissimilarity measures

• L2 distance (Euclidean distance) • L1 distance (Manhattan distance)



16

Dissimilarity measures

• Weighted L2 distance • 1 - Pearson correlation
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Dissimilarity measures

• Lp family
– L1  type: d(x, y) = Σi |xi - yi|
– L2 type: d(x, y) = sqrt( Σi (xi - yi)2 )

– More generally, Lp type: d(x, y) = ( Σi |xi - yi|p )1/p

– Metrics: positive, symmetric, triangle inequality

• Transformations
– Transformation of covariates with f and computation of d(f(x), f(y))

– f could be a log, a normalization method, a weighting function
– Example, weighted Euclidean: d(x, y) = sqrt( Σi wi(xi - yi)2 )
– Example, Mahalanobis distance: d(x, y)2 = (x-y)tA(x-y), with A = Σ-1
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Which dissimilarity measure ?

• No universal solutions: it all depends on the objects
• L1 distance is less sensitive to outliers
• L2 distance is more sensitive
• If the object parameters have similar distributions

– Ex: gene expression after normalization
– Correlation distance is a popular choice

• If not, object parameters have to be transformed
– Ex: heterogeneous parameters (cellular phenotypes)

– Cell A: (size=120, ecc=0.3, x.position=134)
– Cell B: (size=90, ecc=0.5, x.position=76)
– Cell C: (size= 140, ecc=0.4, x.position=344)

– Ex: un-normalized gene expression sets
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Clustering

• " Identification of similar subgroups within data "
• Ill-defined problem ⇒ many algorithms exist

– Tradeoffs between agglomerative properties, sensitivity, robustness, speed
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Clustering

• " Identification of similar subgroups within data "
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Hierarchical clustering

• Iterative agglomerative method
• Initialisation: each data point is

assigned to an unique cluster
• At each step: join most similar

clusters, using between cluster
dissimilarity measure

• Iterate until there is only one
cluster

• Several linkage variants
• In R, function hclust

i = 0
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Hierarchical clustering

• Iterative agglomerative method
• Initialisation: each data point is

assigned to an unique cluster
• At each step: join most similar

clusters, using between cluster
dissimilarity measure

• Iterate until there is only one
cluster

• Several linkage variants
• In R, function hclust

i = 3
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Hierarchical clustering

• Clustering data dendrogram

i = 3
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Examples

• Gene expression time series
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Examples

• Gene expression time series
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Examples

• Gene expression time series
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Golub et al. leukemia dataset

• Gene expression data of
– 25 acute myeloid leukemia

– 47 acute lymphoblastic leukemia
– Using 400 most differentiated genes

• Perfect separation
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k-means

• Iterative partitioning method
• Initialisation: k random clusters
• Assignment: each point is assigned

to its closest cluster center
• Update: cluster centers are

updated with the new members
• Iterate through convergence

• In R, function kmeans
• Known number of clusters
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Gaussian mixture estimation

• Well-defined estimation problem
– Data is believed to come from a

mixture of k Gaussian distributions
– X ~ ωN(µ1, Σ1) ⊕ (1-ω)N(µ2, Σ2)

• EM algorithm
– Expectation: Given parameter

estimates, compute class
membership probability

– Maximization: Given class
membership, estimate parameters
by maximum likelihood

– Iterate through convergence

• Works well if n >> p
– Package mclust
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Clustering

• Ill-defined problem ⇒ many algorithms exist

• Most important: a relevant dissimilarity measure
• Requires cautious interpretation
• Still useful tool for data exploration
• Prior knowledge (model, dissimilarity measure) should be used, if available
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Experimental setup

• Human cervix carcinoma HeLa cells
• Genome-wide RNAi screen, testing 22839 genes
• Cells are incubated for 48 h and fixed
• Staining using DNA (DAPI), Tubulin (Alexa), Actin (TRITC)

• Readout: microscopy images

CD3EAP
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Phenotypic profile

• Phenotype expressed by a population of cells
• Phenotypic profile, vector of p = 13 parameters

– Number of cells
– Statistics on cell features (size, eccentricity, …)

– Cell types distribution (normal, metaphase, condensed, protruded…)

CD3EAP

n
ext
ecc
Next
Nint
a2i
Next2
AF %
BC %
C %
M %
LA %
P %

289
34.33118
0.472934
2857.356
485.2710
0.828876
0.098647
0.049594
0.081746
0.158817
0.179339
0.009249
0.219697

x =
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Transformation of phenotypic descriptors

• Let x be a phenotypic profile in Rp

• Transformation into a phenoprint, vector of [0,1] scores
– For each descriptor k, f(xk) = 1 / (1 + exp( -αk(x - βk))

• Phenotypic distance = L1 distance between phenoprints
• 20 parameters (α, β)k to be determined

! 

f
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Distance metric learning
• Perturbation of related genes lead more likely to similar phenotypes

than random ones

• EMBL STRING database
– About 6,000,000 related protein pairs
– Physical interaction, regulation, literature co-citation
– Rich but noisy

• We design our distance to be lower in average on related gene pairs
than random ones
– Parameters (α, β)k are fitted by minimization of a criterion

– Similar to PAM matrices to compute protein alignment scores
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Phenotypic hits

• 1820 perturbations show non-null phenoprints
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Phenotypic map
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Phenotypic map
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Elongated phenotype

ELMO2

SH2B2
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NUF2

CEP164

Mitotic phenotype
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Giant cells with large nucleus

RRM1

CLSPN
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Validation

• 22839 siRNA perturbations
• 1820 non-null phenoprints
• 604 perturbations were retested

– 310 reproduced the phenotypes with an independent siRNA library
– Among them, 280 reproduced the phenotypes on U2OS cells
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Functional inference

• "Giant cells with large nucleus" phenotypic cluster
– 50 genes

– RRM1, CLSPN, PRIM2 and SETD8
– Mediators of the DNA damage response

• Secondary assays
– Cell cycle progression upon depletion

– Protein subcellular localization
– Monitoring γH2AX foci formation upon depletion

– Monitoring pChk1 response after gamma irradiation
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Subcellular localization

• DONSON localizes to the centrosomes
• Centrosomes are linked to DNA damage repair
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Monitoring DDR response

• Depletion of DONSON, SON, CD3EAP and CADM1
• Induction of γH2AX foci formation, an early DDR marker

• Inhibition of CHEK1 phosphorylation response upon gamma irradiation
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Conclusion

• Automated phenotyping method from microscopy images
• Prediction of gene function by loss-of-function phenotype similarity
• Association of DONSON, SON, CD3EAP and CADM1 to DDR
• Data available at http://www.cellmorph.org
• Bioconductor/R package: EBImage, imageHTS
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Classification
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Cancer prediction

• Known patient gene expression profiles

Acute myeloid
leukemia

Healthy

Healthy

?
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Automatic cell annotation

Training set

Inter Pro Prometa Meta Ana1 Ana2 Telo
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Prediction of mitotic state

• Based on nucleus size

• None of the two features is a good predictor of mitotic state
• Combining them ?

Prophase Metaphase
Prophase Metaphase

• Based on nucleus intensity
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Classification

• Given objects with known labels, predict the label of an unknown object
• Well-defined but hard problem
• Optimal answers

– Denote Y the outcome and X the data
– Bayes formalism: P(Y|X) = P(X|Y) * p(Y) / p(X)
– But P(X|Y) is unknown and has to be estimated or modelled
– Regression problem: Argminf ||Y - f(X)||2 ⇒ f(x) = E(Y|X=x)

– But E(Y|X=x) has to be estimated

• Algorithms
– Linear regression
– k-nearest neighbors
– Support vector machines

– Kernel methods

• Validation, cross-validation and overfitting
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Linear classifier

• Denote by X the matrix of features: n samples, p features
• Denote by Y the vector of outcomes
• Find β that minimize ||Y - Xβ||2

• In R, using lm

nucleus intensity
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prometaphase

metaphase
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k-nearest neighbors

• Each point is assigned to the dominant label among its k-nearest neighbors
– f(x) = Avg k in neighb(x)(yk) approximates E(Y|X=x)

• In R, using knn

prometaphase

metaphase

nucleus intensity
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Which decision boundary ?

Which decision boundary has
the lowest

prediction error?

High bias
Low variance

Low bias
High variance

high model complexity
(needs hundreds of parameter to 
describe the decision boundary)

low model complexity
(needs 2 parameters to
describe the decision boundary)
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Bias-variance dilemma
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Cross-validation

• Simple method to estimate the prediction error

• Method
– Split the data in K approximately equally sized subsets

– Train the classifier on (K-1) subsets
– Test the classifier on the remaining subset. The prediction error is estimated by

comparing the predicted class label with the true class labels.
– Repeat the last two steps K times

• Take the classifier that have the lowest prediction error

Training Test
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• Find the hyperplane that best separates two sets of points
• Well-defined minimization problem, tolerant for misclassifications

– Find β that minimize ||w||2 + C|

• In R, using svm from the package e1071

Support vector machine
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Non-linear case
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Basis expansion & the kernel trick

• Increase the dimension space if data cannot be linearly separated
– Use X2, X3… e. g.  || Y - [X;X2;X3]β ||2

– Use splines or model-based separation curves

• Kernel trick
– Scalar product xty can be generalized by kernel functions K(x, y)
– Kernel functions: K(x, y) = xty ; K(x, y) = exp(-||x - y||/γ)

– SVM ⇒ kernel SVM ; LDA ⇒ kernel LDA ; PCA ⇒ kernel PCA
– Complex separation in low-dimension ⇒ linear separation in high-dimension
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SVM + radial kernel
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Influence of the kernel parameter

! 

" = 0.001

! 
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Curse of dimensionality

• Low number of parameters
– Low complexity

– Low variance
– High bias

• High number of parameters
– High complexity

– High variance
– Low bias
– Space is too sparse; estimation is not reliable

• Trade-off must be found by prediction error estimation
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Conclusion

• Clustering
– Ill-defined problem ⇒ many algorithms around

– Most important: a relevant dissimilarity measure
– Requires cautious interpretation
– Still useful tool for data exploration

• Classification
– Well-defined problem
– Kernel SVM is a fast and versatile algorithm suitable to many problems

– Most important: prediction error estimation using cross-validation

• Feature selection
– Supervised feature selection
– Regular penalized methods (e.g. Lasso) are key techniques
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Going further

The Elements of Statistical Learning
Hastie, Tibshirani and Friedman

• Statistical learning
• Machine learning
• Features selection
• Classification
• Unsupervised clustering
• Kernel methods
• Neural networks
• Boosting
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