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Basic dogma of  data analysis

Can always increase sensitivity 
on the cost of  specificity, or vice 
versa, the art is to 

- optimize both, then

- find the best trade-off.
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Problem: detecting apples from other fruit



Sensitivity: 
Probability that 
a detected 
object is really 
an apple. Can 
be estimated by 
TP / P.

 P

 N

theoretical densities empirical results

Specificity: 
Probability that a 
non-detected object 
is really not an 
apple. Estimated by 
TN / N.

apples other fruit

1 - Specificity
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The apple detection assay and 

the receiver operating characteristic curve
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ROC curves for method comparison



Empirical estimation of  ROC curves



Empirical estimation of  ROC curves

This assumes that 
we know the 

“ground truth”. 
Can we still do it if  

we don’t?



Example: identification of  transcription factor binding sites

True positives?
Small numbers of  known sites for most factors.
Even the real sites are not active under all conditions.

True negatives?
Non-canonical / unexpected locations can hold real sites.



True ROC curve

Test statistic Set Distribution 
function

X1,…,Xm F
Y1,…,Yn G



“Pseudo-ROC” curve

If  κ = 0 and λ = 1, test data are correctly 
classified.

Test statistic Set Distribution 
function

X1,…,Xm F
Y1,…,Yn G

...

...



Correctly classified test data



Contaminated test data



Linear transform



The transformation depends on the contamination 
fractions only, not F1 and G1, or F2 and G2.

Assuming κ < λ, the linear transform preserves the 
ordering of  curves and of  the area under them (AUC).
The area between (and under) the curves is 
compressed — more severely as            or            . 

Assumption! With classification variable                 , X is 
independent of  CX, and Y, of  CY.

Comparing two methods



Summary
If, for both procedures being compared, 

• correctly and incorrectly classified true positives have 
the same statistical properties, and
• correctly and incorrectly classified true negatives have 
the same statistical properties, then

the pseudo-ROC and true ROC select the same procedure 
as superior.



Multiple testing
Many data analysis approaches in genomics rely on item-

by-item (i.e. multiple) testing:

Microarray or RNA-Seq expression profiles of  “normal” vs 
“perturbed” samples: gene-by-gene

ChIP-chip: locus-by-locus
RNAi and chemical compound screens
Genome-wide association studies: marker-by-marker
QTL analysis: marker-by-marker and trait-by-trait



Diagnostic plot: the histogram of  p-values
88 F. Hahne, W. Huber
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Figure 6.2. Histograms of p-values. Right: after nonspecific filtering. Left: filtered

nonspecific probe sets only.

> table(ALLsfilt$mol.biol)
BCR/ABL NEG

37 42
> tt = rowttests(ALLsfilt, "mol.biol")
> names(tt)
[1] "statistic" "dm" "p.value"

Take a look at the histogram of the resulting p-values in the left panel
of Figure 6.2.

> hist(tt$p.value, breaks=50, col=lcol1)

We see a number of probe sets with very low p-values (which correspond
to differentially expressed genes) and a whole range of insignificant p-values.
This is more or less what we would expect. The expression of the majority
of genes is not significantly shifted by the BCR/ABL mutation. To make
sure that the nonspecific filtering did not throw away an undue amount of
promising candidates, let us take a look at the p-values for those probe sets
that we filtered out before. We can compute t-statistics for them as well
and plot the histogram of p-values (right panel of Figure 6.2):

> ALLsrest = ALL_bcrneg[sds<sh, ]
> ttrest = rowttests(ALLsrest, "mol.biol")
> hist(ttrest$p.value, breaks=50, col=lcol2)

Exercise 6.1
Comment on the plot; do you think that the nonspecific filtering was
appropriate?

Observed p-values are a mix of  
samples from 
• a uniform distribution (from true 
nulls) and 
• from distributions concentrated 
at 0 (from true alternatives)

Depletion of  small p can 
indicate the presence of  
confounding hidden variables 
(“batch effect”)



Batch effects or “latent variables”

n = 10000
m = 20
x = matrix(rnorm(n*m), nrow=n, ncol=m)
fac = factor(c(rep(0, 10), rep(1, 10)))
rt1 = rowttests(x, fac)

x[, 6:15] = x[, 6:15]+1
rt2 = rowttests(x, fac)

Histogram of rt1$p.value
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sva package; Leek JT, Storey JD. 
Capturing heterogeneity in gene 
expression studies by surrogate 
variable analysis. PLoS Genet. 2007 

Stegle O, Parts L, Durbin R, Winn J. 
A Bayesian framework to account for 
complex non-genetic factors in gene 
expression levels greatly increases 
power in eQTL studies. PLoS Comput 
Biol. 2010.
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Multiple testing

Classical hypothesis test:
 null hypothesis H0, alternative H1

 test statistic X ↦ t(X) ∈ R

 α = P( t(X) ∈ Γrej | H0) type I error (false positive)

 β = P( t(X) ∉ Γrej | H1) type II error (false negative)

When n tests are performed, what is the extent of  type I 
errors, and how can it be controlled?

E.g.: 20,000 tests at α=0.05, all with H0 true: expect 1,000 
false positives



Experiment-wide type I error rates

Slide 4

Family-wise error rate: P(V > 0), the probability of  one or 
more false positives. For large m0, this is difficult to keep 
small.

False discovery rate: E[ V / max{R,1} ], the expected 
fraction of  false positives among all discoveries. 

Not 
rejected Rejected Total

True null 
hypotheses

U V m0

False null 
hypotheses

T S m1

Total m – R R m0







Benjamini Hochberg multiple testing adjustment

slope: alpha / #genes



Benjamini Hochberg multiple testing adjustment

         rawp Bonferroni    BH
[1,] 9.67e-06      0.215 0.215
[2,] 2.94e-05      0.655 0.242
[3,] 3.25e-05      0.725 0.242
[4,] 7.28e-05      1.000 0.261
[5,] 8.01e-05      1.000 0.261
[6,] 8.90e-05      1.000 0.261



Schweder and Spjøtvoll p-value plot

For a series of  
hypothesis tests 
H1, . . . , Hm with p-
values pi, plot

(1−pi, N(pi)) 
        for i ∈ 1, ..., m

where N(p) is the 
number of  p-values 
greater than p.
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Schweder T, Spjøtvoll E (1982) 
Plots of P-values to evaluate 
many tests simultaneously. 
Biometrika 69:493–502.



Some philosophy

The purpose of  (multiple-testing corrected) p-values is 
rarely to be taken as probabilities at face value.

They often serve as an intermediate analytical step, to 
justify reporting to others, or of  follow-up work using 
independent assays.

They provide a scale that is comparable between different 
experiments and assays. 



Example: differential expression testing
Acute lymphocytic leukemia (ALL) data, 

Chiaretti et al., Clinical Cancer 
Research 11:7209, 2005

Immunophenotypic analysis of  cell 
surface markers identified

– T-cell derivation in 33,
– B-cell derivation in 95 samples

Affymetrix HG-U95Av2 3’ transcript 
detection arrays with ~13,000 probe 
sets

Chiaretti et al. selected probesets with 
“sufficient levels of  expression and 
variation across groups” and among 
these identified 792 differentially 
expressed genes.

Clustered expression data for all 128 
subjects, and a subset of 475 genes 

showing evidence of differential 
expression between groups



Independent filtering
From the set of  13,000 probesets, 
first filter out those that seem to report negligible signal (say, 

40%),
then formally test for differential expression on the rest.

Conditions under which we expect negligible signal :
1.  Target gene is absent in both samples. (Probes will 

still report noise and cross-hybridization.)
2.  Probe set fails to detect the target.

Literature: von Heydebreck et al. (2004)
McClintick and Edenberg (BMC Bioinf. 2006) and references therein
Hackstadt and Hess (BMC Bioinf. 2009)

 Many others.

Slide 7



Increased detection rates
Stage 1 filter: compute variance, across samples, for each probeset, 
and remove the fraction θ  that are  smallest
Stage 2: standard two-sample t-test



Slide 9

Increased power?
Increased detection rate implies increased power 

only if  we are still controlling type I errors at the same 
level as before.
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Increased power?
Increased detection rate implies increased power 

only if  we are still controlling type I errors at the same 
level as before.

Concerns: 
• Have we thrown away good genes?
• Use a data-driven criterion in stage 1, but 
do type I error consideration only on 
number of  genes in stage 2

Informal justification:
Filter does not use covariate information 
(T-/B-cell type)



What do we need for type I error control?

I. For each individual (per gene) test statistic, we need to 
know its correct null distribution

II. If  and as much as the multiple testing procedure relies 
on certain (in)dependence structure between the 
different test statistics, our test statistics need to 
comply. 

I.: one (though not the only) solution is to make sure that 
by filtering, the null distribution is not affected - that it is 
the same before and after filtering

II.: See later



Result: independence of  stage 1 and stage 2 
statistics under the null hypothesis

For genes for which the null hypothesis is true (X1 ,..., Xn 
exchangeable), f  and g are statistically independent in 
both of  the following cases: 

• Normally distributed data:
 f  (stage 1): overall variance (or mean)
 g (stage 2): the standard two-sample t-statistic, or any 

test statistic which is scale and location invariant.

• Non-parametrically:
 f: any function that does not depend on the

 order of  the arguments. E.g. overall variance, IQR.
 g: the Wilcoxon rank sum test statistic.

Both can be extended to the multi-class context: ANOVA 
and Kruskal-Wallis.

Slide 11



Derivation

Non-parametric case:
Straightforward decomposition of  the joint probability 
into product of  probabilities using the assumptions.

Normal case:
Use the spherical symmetry of  the joint distribution, p-
dimensional N(0, 1σ2), and of  the overall variance; 
and the scale and location invariance of  t. 

This case is also implied by Basu's theorem 

(V complete sufficient for family of  probability 
measures P,  T ancillary  ⇒  T,  V independent)



What do we need for type I error control?

✓
I. For each individual (per gene) test statistic, we need to 

know its correct null distribution
II. If  and as much as the multiple testing procedure relies 

on certain (in)dependence structure between the 
different test statistics, our test statistics need to 
comply. 

I.: one (though not the only) solution is to make sure that 
by filtering, the null distribution is not affected - that it is 
the same before and after filtering

II.: See later



Multiple testing procedures and dependence

1. Methods that work on the p-values only and allow general 
dependence structure: Bonferroni, Bonferroni-Holm 
(FWER), Benjamini-Yekutieli (FDR)

2. Those that work on the data matrix itself, and use 
permutations to estimate null distributions of  relevant 
quantities (using the empirical correlation structure): 
Westfall-Young (FWER) 

3. Those that work on the p-values only, and make 
dependence-related assumptions: Benjamini-Hochberg 
(FDR), q-value (FDR)



Now we are confident about type I error, but 
does it do any good? (power)



Diagnostics



θ



Variance filtering and fold change



Results summary
If  done improperly, "filtering" invalidates type-I error 

control.

One way to do it properly is to make sure that stage-one 
(filter) and stage-two (differential expression) statistics 
are marginally independent:

1. (Normal distributed data): overall variance or mean, 
followed by t-test

2. Any permutation invariant statistic, followed by 
Wilcoxon rank sum test

Marginal independence is sufficient to maintain control of  
FWER at nominal level.

Control of  FDR is usually also maintained.  
It could in principle be affected by filter-induced changes to 
correlation structure of  the data. Check your data for indications of  
that. We have never seen it to be a problem in practice.



Conclusion

Correct use of  this two-stage approach can substantially 
increase power at same type I error.
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Derivation (non-parametric case)

exchangeability

A, B: measureable sets
f: stage 1, g: stage 2

f's permutation invariance

distribution of  g generated 

by permutations



Positive Regression Dependency

On the subset of  true null hypotheses:

If  the test statistics are X = (X1,X2,…,Xm):
For any increasing set D (the product of  rays, each 
infinite on the right), and H0i true, require that 
Prob( X in D | Xi = s ) is increasing in s, for all i.

Important Examples 

Multivariate Normal with positive correlation

Absolute Studentized independent normal

       


