
Efficient R Programming

Martin Morgan

Fred Hutchinson Cancer Research Center
Seattle, WA, USA

July 30 2010

1 Pitfalls

These brief exercises are meant to illustrate some common obstacles to efficient
R programming. The idea is that you’ll follow along with the text, evaluating
the instructions in your own R session.

The basic scenario is a genome-wide association study. There are 1000 in-
dividuals. Case versus control status, gender, and age were recorded for each,
along with genotype at 10000 SNPs. The data is entirely synthetic.

A suggestion from the lectures is to investigate packages that might already
efficiently implement the calculations you are trying to perform. Check out the
snpMatrix package after doing these exercises. How much of the following does
this package make unnecessary? Hint: almost all of it!

1.1 Getting going

To begin:

1. Start an R session

2. Load the package for this conference.

> library(EfficientR)

3. Read several pre-defined functions in to the R session

> fl <- system.file("script", "pitfalls.R",

+ package="EfficientR")

> source(fl)

1

http://bioconductor.org/packages/release/bioc/html/snpMatrix.html

1.2 Basic performance measurement and data I/O

The first activities are meant to illustrate the use of system.time to evaluate
performance, object.size to investigate how much memory an object uses, and
identical and all.equal to compare objects. We also look at how to more
effectively read data in to R.

First, let’s take a look at fname0, a file path to the GWAS data set, and the
function f0. The code below defines fname; f0 is defined in the pitfalls.R file.
Here are the definitions, and the result assigned to the variable gwas1

> fname0 <- system.file("extdata", "gwas_2.csv",

+ package="EfficientR")

> f0

function(fileName) {
read.csv(fileName, row.names=1)

}

> gwas1 <- f0(fname0)

This function simply reads in the file. Let’s use system.time to evaluate how
long this takes

> system.time(gwas0 <- f0(fname0))

user system elapsed
7.519 0.145 7.856

> dim(gwas0)

[1] 1000 10003

Note the way in which the <- assignment to variable gwas0 occurs in system.time.
See the help page ?system.time to understand the output; we’re usually inter-
ested in the user.time.

The function f0 does its job, but perhaps we can improve on it. For instance,
suppose we were interested in a preliminary investigation, and in particular
reading just the case/control status, sex, and age of the samples. The following
shows two different functions that allow us to read in just the information we’re
interested in

> f1

function(fileName) {
colClasses <- c("character", "factor", "factor", "integer",

rep("NULL", 10000))
read.csv(fileName, row.names=1, colClasses=colClasses)

}

> f2

2

function(fileName) {
what <- c(list(id=character(),

CaseControl=character(),
Sex=character(),
Age=integer()),

rep(list(NULL), 10000))
input <- scan(fileName, what=what, sep=",", skip=1)
as.data.frame(input[2:4], row.names=input[[1]])

}

Compare these functions with each other and f0, and with the relevant help
pages ?read.csv, scan to identify the key steps for efficient data input. Now
let’s see how they perform in terms of evaluation time:

> system.time(gwas1 <- f1(fname0))

user system elapsed
4.084 0.066 4.165

> system.time(gwas2 <- f2(fname0))

user system elapsed
2.210 0.059 2.281

Since we’ve read in just the data we’re interested in, we should have saved quite
a bit of space

> object.size(gwas0)

43661544 bytes

> object.size(gwas1)

49064 bytes

The functions f1 and f2 are meant to return the same result, just implemented
in slightly different ways. We can verify this with identical

> identical(gwas1, gwas2)

[1] TRUE

Having read in the data, we might be interested in summarizing the phenotypes
we have, e.g.,

> xtabs(~CaseControl + Sex, gwas2)

Sex
CaseControl F M

Case 248 252
Control 266 234

3

1.3 Character manipulation

Here we’ll look at one aspect of R that can sometimes have a surprising perfor-
mance penalty and sometimes tricky semantics: character manipulation. We’ll
learn some additional techniques for monitoring performance, as well as gain an
appreciation for the benefits of appropriate function choice.

Let’s look at the genotypic data only, by dropping the first three columns
from the data frame; we’ll take a peak at the first six rows (head) of the first
five columns of the genotype information. (Pay no attention to the names<- call;
it makes the column names more distinct and is useful later).

> gtype <- gwas0[,-(1:3)]

> names(gtype) <- paste("snp", names(gtype), sep="_")

> head(gtype[,1:4])

snp_X1 snp_X2 snp_X3 snp_X4
id_1 AA AB AA AB
id_2 AA AA AA AA
id_3 AA AA AA AA
id_4 AB AA AB AA
id_5 AB AA AA AA
id_6 AB AB AA AA

Note that the rows have names (e.g., id_1).
A function shuffle0 might come in handy if one were wanting to randomize

genotypes, and to return the randomized genotypes as a matrix.

> shuffle0

function(genotypes, seed=123L) {
set.seed(seed)
samp <- sample(genotypes)
g <- unlist(samp)
matrix(g, ncol=ncol(genotypes))

}

We use seed to make the results reproducible across invocations. sample(genotypes)

permutes the columns of the gtype data frame. The unlist and matrix com-
mands are meant as a first attempt at creating a matrix from our permuted
data frame – we ‘collapse’ the sampled genotypes into a vector, and then shape
the vector into a matrix. Let’s measure how long this takes:

> system.time(s0 <- shuffle0(gtype))

user system elapsed
42.705 1.045 44.514

Wow, that seems like a fairly long time for a relatively simple set of operations.
I wonder what’s going on?

4

> profFile <- tempfile()

> Rprof(profFile) # start gathering profile information

> s0 <- shuffle0(gtype)

> Rprof() # stop

> head(summaryRprof(profFile)$by.self)

self.time self.pct
"unlist" 9.72 67.1
"structure" 1.40 9.7
"unclass" 0.72 5.0
"as.vector" 0.62 4.3
"levels" 0.58 4.0
"match" 0.52 3.6

total.time total.pct
"unlist" 13.40 92.5
"structure" 1.52 10.5
"unclass" 0.72 5.0
"as.vector" 0.62 4.3
"levels" 0.62 4.3
"match" 0.52 3.6

A large fraction of the time is spent on the unlist function. A little experimen-
tation suggests what the problem might be:

> gsubset <- gtype[1:2, 1:3]

> unlist(gsubset)

snp_X11 snp_X12 snp_X21 snp_X22 snp_X31
AA AA AB AA AA

snp_X32
AA

Levels: AA AB BB

Notice that the value of unlist is a vector with names, and that the names have
been constructed to be unique. We can reference the help page ?unlist, and
arrive at a better solution shuffle1 that avoids creating names.

> shuffle1

function(genotypes, seed=123L) {
set.seed(seed)
samp <- sample(genotypes)
g <- unlist(samp, use.names=FALSE)
matrix(g, ncol=ncol(genotypes))

}

This almost trivial change has a big influence on performance, without changing
the result:

5

> system.time(s1 <- shuffle1(gtype))

user system elapsed
1.749 0.452 2.214

> identical(s0, s1)

[1] TRUE

Finally, in R it is common to be able to ‘cast’ from one data structure to another.
shuffle2 does this

> shuffle2

function(genotypes, seed=123L) {
set.seed(seed)
as.matrix(sample(genotypes))

}

> system.time(s2 <- shuffle2(gtype))

user system elapsed
1.686 0.090 1.783

Note that the performance of as.matrix is comparable to our shuffle1. Are the
results the same?

> identical(s1, s2)

[1] FALSE

Oh oh! This doesn’t look good. But maybe it’s just that our results s1 do not
have dimnames, whereas s2 might?

> all.equal(s1, s2)

[1] "Attributes: < Length mismatch: comparison on first 1 components >"

> all.equal(s1, s2, check.attributes=FALSE)

[1] TRUE

(The result of the first call to all.equal is fairly cryptic; this is, unfortunately,
typical). The built-in function as.matrix is performing as well as our version,
and is doing a better job of tracking important information (row and column
names) through the analysis.

6

1.4 Preparing for an analysis

To close this first exercise, let’s set up a fairly typical but statistically advanced
GWAS-style analysis. I gloss over the details, but we are doing a regression,
where we try to explain the case versus control classification in terms of sex,
age, and a single SNP. We’d ultimately be interested in SNPs that were most
effective at classifying a sample into case or control. Here’s a function that
might perform the analysis of one SNP:

> snp0

function(i, gwas) {
snp <- gwas[,-c(1:3)]
glm(CaseControl ~ Age + Sex + snp[,i], family=binomial, data=gwas)

}

> snp0(1, gwas0)

Call: glm(formula = CaseControl ~ Age + Sex + snp[, i], family = binomial, data = gwas)

Coefficients:
(Intercept) Age SexM
-0.159373 0.005783 -0.143788
snp[, i]AB snp[, i]BB
-0.004749 -0.020283

Degrees of Freedom: 999 Total (i.e. Null); 995 Residual
Null Deviance: 1386
Residual Deviance: 1385 AIC: 1395

These computations are expensive, especially when we remember that we have
(in real examples) hundreds of thousands of SNPs

> system.time(result <- lapply(1:10, snp0, gwas0))

user system elapsed
4.648 0.308 4.979

We’ll see some approaches to getting better throughput in the next section.

2 Data I/O: Streaming

We continue with the scenario of a genome-wide association study. There are
1000 individuals. Case versus control status, gender, and age were recorded for
each, along with genotype at 10000 SNPs. The data is entirely synthetic.

The following defines a function fapply.csv that (tries to!) stream data from
a file through a function, much like lapply steams elements of a list through a
function.

7

> readScript("fapply.R")

[1] fapply.csv <-
[2] function(fname, FUN, ..., nrows=200L, header=TRUE,
[3] colClasses=NA, col.names, .reduce)
[4] {
[5] conn <- file(fname, open="r")
[6] ## first chunk; special: remember header info
[7] chunk <- read.csv(conn, header=header, ..., nrows=nrows,
[8] colClasses=colClasses)
[9] colClasses <- sapply(chunk, class)
[10] colNames <- c("", names(chunk))
[11] result <- list(); it <- 1
[12] repeat {
[13] result[[it]] <- FUN(chunk, ...)
[14] if (nrow(chunk) != nrows) break
[15] chunk <- read.csv(conn, header=FALSE, ...,
[16] nrows=nrows, colClasses=colClasses,
[17] col.names=colNames)
[18] if (nrow(chunk) == 0L) break
[19] it <- it + 1
[20] }
[21] close(conn)
[22] if (missing(.reduce)) result
[23] else .reduce(result)
[24] }

> fl <- system.file("script", "fapply.R",

+ package="EfficientR")

> source(fl)

By default, the function takes a file name, a function to be applied to each
chunk, and parameters influencing how the chunks are processed. Let’s give it
a whirl, by reading the GWAS file in chunks of 200 rows at a time. For each
chunk, we’ll calculate the fraction of heterozygous loci. Here’s our function

> hetero <- function(chunk, ...) {

+ cat("starting chunk\n")

+ rowSums(chunk[,-(1:3)]=="AB") / (ncol(chunk) - 3)

+ }

A common operation, both in stream processing and in distribution of tasks for
parallel evaluation, is to ‘reduce’ the results from different chunks / tasks into
a single meaningful object. The .reduce argument to fapply.csv is meant to be
a function that performs the reduction. It expects a list, with each element of
the list the result of the function operating on a chunk, e.g., each element being
the result of hetero. As a simple reduce function, we’ll use unlist. The result

8

Stream

Heterozygosity

D
en

si
ty

0

20

40

60

80

100

120

0.170 0.175 0.180 0.185 0.190

Figure 1: Individual heterozygosity, ‘stream’ processing

should be a vector of heterozygosities that we can manipulate or visualize in the
usual way. Let’s give this a go. . .

> res <- fapply.csv(fname0, hetero, row.names=1, .reduce=unlist)

starting chunk
starting chunk
starting chunk
starting chunk
starting chunk

> length(res)

[1] 1000

> library(lattice)

> print(densityplot(res, plot.points=FALSE, xlab="Heterozygosity",

+ main="Stream"))

As exercises:

1. Explore different functions that might usefully be used in a streaming
context. For instance, suppose the goal is to calculate heterozygosities
for each SNP, rather than individual. What might the FUN and .reduce

arguments to fapply.csv look like?

2. As an advanced exercise, download and investigate the biglm package for
fitting linear models in a streaming fashion. When (what types of model
and data) would the biglm package be particularly useful?

3. As another advanced exercise, consider how fapply.csv might be modified
to work in parallel.

9

http://cran.fhcrc.org/web/packages/biglm/index.html
http://cran.fhcrc.org/web/packages/biglm/index.html

3 SQL

Let’s open the GWAS phenotype data from its SQLite data base. . .

> library(RSQLite)

> db0 <- sub("csv$", "sql", fname0) # $

> drv <- dbDriver("SQLite")

> conn <- dbConnect(drv, dbname=db0)

> dbListTables(conn)

[1] "gwasPhenotypes"

. . . and read all data into a data frame

> q <- dbSendQuery(conn, "SELECT * FROM gwasPhenotypes")

> df <- fetch(q, n=-1)

> clear <- dbClearResult(q)

> head(df)

row_names CaseControl Sex Age
1 id_1 Case M 40
2 id_2 Case F 33
3 id_3 Case F 40
4 id_4 Case F 38
5 id_5 Case M 42
6 id_6 Case F 39

1. How does the query result df differ from the original data used to create
the data base? Look carefully at the structure of the data frame, data
values, and the class of columns in the data frame. Does all.equal provide
additional insight into differences or similarities? The original data can
be retrieved with

> gwasPhenotype <- f2(fname0)

2. What’s the role of each of the commands starting with db in the code
above? use the help pages for assistance.

3. Two other ways of processing an entire table are

> df1 <- dbGetQuery(conn, "SELECT * FROM gwasPhenotypes")

> df2 <- dbReadTable(conn, "gwasPhenotypes")

4. SQL allows for more complicated queries. For instance evaluate the fol-
lowing and speculate on the meaning of the SQL components.

> df <- dbGetQuery(conn,

+ "SELECT age FROM gwasPhenotypes

+ WHERE sex = 'F'")

10

5. SQL allows selection of several fields by providing a comma-delimiting
string after ’select’. Can you formulate a SQL query to select the row
names and Age of all females?

6. SQL allows for functions to replace variable names as the ’select’ compo-
nent. Verify (e.g., by comparison with the equivalent R statements on the
entire data set) that the following returns the number of females over 40
in the data set.

> dbGetQuery(conn,

+ "SELECT COUNT(*) FROM gwasPhenotypes

+ WHERE age > 40 AND sex = 'F'")

COUNT(*)
1 233

Don’t forget to tidy up when done!

> ok <- dbDisconnect(conn)

4 NetCDF

Turn now to the NetCDF file.

> ncdf0 <- sub("csv$", "nc", fname0) #$

> library(ncdf)

> nc <- open.ncdf(ncdf0)

> nc

[1] "file /var/folders/3d/3dke84UEF3iPUjKHPimSRU+++TM/-Tmp-//Rinst235580085/EfficientR/extdata/gwas_2.nc has 2 dimensions:"
[1] "Sample Size: 1000"
[1] "SNP Size: 10000"
[1] "------------------------"
[1] "file /var/folders/3d/3dke84UEF3iPUjKHPimSRU+++TM/-Tmp-//Rinst235580085/EfficientR/extdata/gwas_2.nc has 1 variables:"
[1] "int Genotype[Sample,SNP] Longname:Genotype Missval:-1"

The nc object contains useful summary information. It is in a list-like structure.
For instance, we can discover the number of dimensions and their lengths with
commands like

> names(nc)

[1] "id" "ndims"
[3] "natts" "unlimdimid"
[5] "filename" "varid2Rindex"
[7] "writable" "dim"
[9] "nvars" "var"

11

> names(nc[["dim"]])

[1] "Sample" "SNP"

> names(nc[["dim"]][["SNP"]])

[1] "name" "len"
[3] "unlim" "id"
[5] "dimvarid" "units"
[7] "vals" "create_dimvar"

> nSnps <- nc[["dim"]][["SNP"]][["len"]]

1. What information can you ‘discover’ about the Gentoype variable?

2. Get the first 100 individuals and their SNPs with

> g <- get.var.ncdf(nc, "Genotype", start=c(1, 1), count=c(10, nSnps))

3. From the examples on ?get.var.ncdf, is there another way to discover
the dimensions of variables, and an easy way to retrieve all values in a
dimension?

4. How would you retrieve samples 501 to 600, SNPs 1000 to 2000?

5. Would it be possible to retrieve all SNPs from females? What if the
information from the RSQLite data were available? What kind of work-
around might you imagine?

Remember to tidy up when done!

> ok <- close(nc)

5 R on Clusters: Rmpi

These exercises require access to a cluster and so cannot be completed
in this session; they may provide a useful resource. Commands necessary
to run R on a cluster tend to be very particular to each system; the following uses
slurm to manage cluster jobs. A somewhat easier approach is to use multiple
cores on a single machine. The multicore and foreach packages provide one
example of this.

The basic scenario for these exercises is a genome-wide association study.
There are 1000 individuals. Case versus control status, gender, and age were
recorded for each, along with genotype at 10000 SNPs. The data is entirely
synthetic.

We’ve seen how to read in the data, and we’re at the stage where we’d like
to fit generalized linear models to each SNP. We’ll get to the point where we
can evaluate the model in parallel, and leave for an ‘advanced exercise’ steps
necessary to make this actually a computationally feasible endeavor.

12

http://cran.fhcrc.org/web/packages/RSQLite/index.html
http://cran.fhcrc.org/web/packages/Rmpi/index.html
http://cran.fhcrc.org/web/packages/multicore/index.html
http://cran.fhcrc.org/web/packages/foreach/index.html

5.1 Getting going

We start by becoming familiar with submitting batch jobs, and exploring a
common model for parallel evaluation in R.

Let’s start by reviewing and submitting a batch job. Here’s the content of
the file:

> readScript("spawn.R")

[1] # salloc -N 4 orterun -n 1 R -f spawn.R
[2] library(Rmpi)
[3] nWorkers <- mpi.universe.size() - 1L
[4] mpi.spawn.Rslaves(nsl=nWorkers)
[5] mpi.remote.exec(mpi.comm.rank())
[6] mpiRank <- function(i)
[7] c(i=i, rank=mpi.comm.rank())
[8] mpi.parSapply(seq_len(2*nWorkers), mpiRank)
[9] mpi.close.Rslaves()
[10] mpi.quit()
[11]

• Line 1 is a reminder about how we’ll run this job.

• Line 2 loads the Rmpi library. mpi (message passing interface) is a stan-
dard way to write parallel programs; Rmpi is a wrapper around the mpi

libraries.

• Line 3 consults the environment we are running in to find out how many
computer nodes there are available for this process. We’ll use one of
the nodes for the ‘manager’, the others for the ‘workers’ (Rmpi uses the
terminology ‘master’ and ‘slave’).

• Line 4 starts the workers. Each worker starts on a particular machine,
determined when we submit the batch job. The workers are assigned a
rank (0 for the manager, 1, 2, . . . for the workers); we’ll mention comm

latter. The worker starts a regular session of R, consuming just as many
resources and with access to the same facilities as the manager.

• Line 5 is an example of a Rmpi command. It evaluates the expression
mpi.comm.rank() on each of the workers, and returns the result to the R
session. The expression mpi.comm.rank() returns the rank of the machine
on which it is evaluated; we should get one value for each worker.

• Lines 6-7 define a function that takes a single argument, and returns that
argument and the rank of the worker on which the function was evaluated.

• Line 8 introduces a very useful way of using Rmpi: mpi.parSapply is like
sapply, except that the calculation is distributed (as evenly as possible, by
default) across the workers. So this line distributes 1:(2*nWorkers) ‘tasks’

13

http://cran.fhcrc.org/web/packages/Rmpi/index.html
http://cran.fhcrc.org/web/packages/Rmpi/index.html
http://cran.fhcrc.org/web/packages/Rmpi/index.html
http://cran.fhcrc.org/web/packages/Rmpi/index.html
http://cran.fhcrc.org/web/packages/Rmpi/index.html

(i.e., determining mpiRank) across each worker. Other useful high-level
functions include mpi.parLapply and mpi.parReplicate.

• Lines 9 and 10 are ‘nice’ ways to clean up, but are not actually required
in the environment we’re running in.

OK, this is how the job submission might look:

% salloc -N 4 mpirun -n 1 R --quiet -f spawn.R

There are three parts to the job submission. First we use slurm, the ‘job
controller’, to allocate 4 computer nodes for our job. Then we use mpirun to
launch, within the slurm allocation, a single process. The process is R, and we
launch R in such a way that it is quiet (e.g., no start-up message) and takes
its input from the file spawn.R. slurm responds by granting our allocation,
launching mpirun and then R, and then echoing the output back to the screen:

salloc: Granted job allocation 239858
> # salloc -N 4 orterun -n 1 R -f spawn.R
> library(Rmpi)
> nWorkers <- mpi.universe.size() - 1L
> mpi.spawn.Rslaves()

4 slaves are spawned successfully. 0 failed.
master (rank 0, comm 1) of size 5 is running on: hyraxB69
slave1 (rank 1, comm 1) of size 5 is running on: hyraxB69
slave2 (rank 2, comm 1) of size 5 is running on: hyraxB70
slave3 (rank 3, comm 1) of size 5 is running on: hyraxB71
slave4 (rank 4, comm 1) of size 5 is running on: hyraxB72
> mpi.remote.exec(mpi.comm.rank())
X1 X2 X3 X4

1 1 2 3 4
> mpiRank <- function(i)
+ c(i=i, rank=mpi.comm.rank())
> mpi.parSapply(seq_len(2*nWorkers), mpiRank)

[,1] [,2] [,3] [,4] [,5] [,6]
i 1 2 3 4 5 6
rank 1 2 2 3 3 4
> mpi.close.Rslaves()
[1] 1
> mpi.quit()
salloc: Relinquishing job allocation 239858

We might capture the output by running the R script in ‘batch’ mode

% salloc -N 4 mpirun -n 1 R CMD BATCH spawn.R

which would generate a file spawn.Rout in our current directory. Another pos-
sibility is that we use standard Linux redirection and piping to manipulate the
output, e.g.,

14

% salloc -N 4 mpirun -n 1 R --vanilla < spawn.R | wc

As exercises

1. Repeat the above actions in your session.

2. Try changing the number of nodes allocated by salloc (within reason!)

3. Investigate the salloc help page (man salloc, using ‘f’, ‘b’ to page for-
ward or backward, ‘q’ to quit). Can you determine the difference between
the -N and -n options?

4. Look at the scripts random.R and simd.R (use readScript("random.R")

and readScript("simd.R")). Can you tell, from consulting with the class
notes, what these scripts do?

5.2 Catching up

In the first exercise, we set up a statistically advanced GWAS-style analysis.
We are doing a regression, where we try to explain the case versus control
classification in terms of sex, age, and a single SNP, using a generalized linear
model. We can use this on a single node by reading in the data and doing a
number of analyses. Here’s a simple script:

> readScript("snp0.R")

[1] system("hostname")
[2] fname0 <- "/home/mtmorgan/hpc/extdata/gwas_2.csv"
[3] snp0 <- function(i, gwas) {
[4] snps <- gwas[,-(1:3)]
[5] glm(CaseControl ~ Age + Sex + snps[,i], family=binomial,
[6] data=gwas)$coef
[7] }
[8]
[9] gwas <- read.csv(fname0, row.names=1)
[10] result <- lapply(1:20, snp0, gwas)
[11] result[[1]]

We can invoke this on a single node in several ways; here are two

srun R -f snp0.R
salloc -N 1 mpirun -n 1 R -f snp0.R

Now let’s modify this script to support parallel evaluation. Here’s a first pass
at the function:

> readScript("snp2.R")

15

[1] library(Rmpi)
[2] mpi.spawn.Rslaves()
[3]
[4] ## load gwas on each node
[5] mpi.remote.exec({
[6] fname0 <- "/home/mtmorgan/hpc/extdata/gwas_2.csv"
[7] gwas <<- read.csv(fname0, row.names=1)
[8] }, ret=FALSE)
[9]
[10] ## evaluate in parallel
[11] snp0 <- function(i) {
[12] snps <- gwas[,-(1:3)] ## global reference 'gwas'
[13] glm(CaseControl ~ Age + Sex + snps[,i], family=binomial,
[14] data=gwas)$coef
[15] }
[16] system.time(result <- mpi.parLapply(1:200, snp0))
[17]
[18] result[[1]]
[19]
[20] mpi.close.Rslaves()
[21] mpi.quit()

The key features are:

• Lines 1 and 2: load Rmpi and spawn workers.

• Lines 5-8: load the gwas data set on each node, assigning to a global
variable (with -).

• Lines 11-15: define the function for fitting a single SNP, referencing the
global variable. Return only the coefficients, rather than entire model.

• Line 16: perform evaluation in parallel.

Note how we use the shared drives of the cluster to ‘distribute’ the data to each
node, and restrict the amount of data that is returned to the fitted coefficients
(glm returns the original data along with the fit, and so is large). One motivation
for taking these steps is to reduce the amount of explicit communication between
nodes.

We can readily evaluate our script on 2, 5, or 10 nodes as, e.g.,

salloc -N 2 mpirun -n 1 R -f snp2.R
salloc -N 5 mpirun -n 1 R -f snp2.R
salloc -N 10 mpirun -n 1 R -f snp2.R

5.3 Looking forward

The solution in snp2.R shows how to ‘get the job done’, but it is not very
elegant, the code in snp0.R had to be modified fairly extensively, and there are
a number of redundant calculations. As an advanced exercise,

16

http://cran.fhcrc.org/web/packages/Rmpi/index.html

1. The ‘ugliest’ parts of the script are the use of a global variable gwas to
store the SNPs on each node, and the separation of the ‘data distribution’
stage from the analysis stage. These are problems because they make
the script more fragile and difficult to understand. Can you revise this
script to address these issues? What about using a pattern like that in
the simd.R (use readScript("simd.R"))?

2. For those with a strong statistical background.

One of the expensive parts of glm is the construction of a design matrix.
Note that most of the design matrix is constant across SNPs. Use this
observation to construct a design matrix that excludes SNPs once, and
explore how to modify this when a single SNP is added to the model.

The glm algorithm depends on good starting values. Use this and the idea
that the effect of individual SNPs is usually small to calculate starting
values based on just the phenotypic data.

Scanning all SNPs is likely a ‘first pass’ at data analysis – are there any
SNPs that stand out as particularly interesting? glm is an iterative al-
gorithm. What useful information can be obtained if the algorithm is
restricted to just a single iteration?

As an advanced exercise that integrates the data access and parallel portions
of the lab, here’s a script that spawns two MPI nodes to process (e.g., calculate
heterozygosity per sample, nchetero) different components of the data. Can you
identify the ‘reduce’ functionality to transform the results of the separate tasks
into a single object? Can you transform the script below into the ‘SIMD’ style
of MPI introduced last week, including making the code scalable to different
numbers of nodes?

> nSamples <- 1000

> nWorkers <- 2

> ## divide samples between workers; .splitIndices in Rmpi

> library(Rmpi)

> idx <- lapply(.splitIndices(nSamples, nWorkers), range)

> ## calculate individual heterozygosity for samples in idxElt

> nchetero <- function(idxElt, ...)

+ {

+ snpN <- nc[["dim"]][["SNP"]][["len"]]

+ start <- c(idxElt[1], 1)

+ count <- c(diff(idxElt) + 1L, snpN)

+ d <- get.var.ncdf(nc, "Genotype", start=start, count=count)

+ rowSums(d==2) / ncol(d)

+ }

> mpi.spawn.Rslaves(nsl=nWorkers)

> mpi.bcast.cmd(library(ncdf))

> mpi.bcast.Robj2slave(ncdf0)

> mpi.bcast.cmd(nc <- open.ncdf(ncdf0))

17

> res <- mpi.parLapply(idx, nchetero)

> mpi.bcast.cmd(close(nc))

> ok <- mpi.close.Rslaves()

> densityplot(unlist(res), plot.points=FALSE, xlab="Heterozygosity",

+ main="MPI and NetCDF")

Notice that this last example gains two speed-ups: I/O from use of binary
NetCDF files, and distributed computation across nodes.

18

	Pitfalls
	Getting going
	Basic performance measurement and data I/O
	Character manipulation
	Preparing for an analysis

	Data I/O: Streaming
	SQL
	NetCDF
	R on Clusters: Rmpi
	Getting going
	Catching up
	Looking forward

