
Native Interfaces for R: Self-Study Exercises

Seth Falcon

20-21 May, 2010

1 Exercises

The AdvancedR package contains the sources of the nidemo package that demon-
strates how to use R’s native interfaces. The exercises below will take the nidemo
package code as a starting point, so you will want to have the source for this
package at hand. If you have installed the AdvancedR package, you can find the
sources for nidemo as follows:

> system.file("packages", package = "AdvancedR")

[1] "/tmp/Rinst2381276910/AdvancedR/packages"

The nidemo package contains two versions of a function that computes the
occurrence counts of the letters a–z in a text file. The alpha_freq_R function is
written entirely in R and the alpha_freq function performs the letter counting
in a C function accessed via .Call.

Exercise 1
Install the nidemo package and test out both alpha_freq_R and alpha_freq.
On unix-like systems, a good input file to use for testing is the system word
dictionary (possibly in /usr/share/dict/words).

Use system.time to compare the run time for the two versions. You may
not see much of a difference if your input file is small.

The C function nid_alpha_freq in nidemo/src/charfreq.c is not very
robust. In particular, the function does not verify that the argument it receives
is of the type that it expects. When a bad argument is provides, it will crash R.

Exercise 2
Try the following inputs to see the ways in which the function breaks (NOTE:
some or all of these may crash your R session).

• alpha_freq(TRUE)

• alpha_freq("")

• alpha_freq(as.character(NA))

1

• alpha_freq(character(0))

Exercise 3
Modify the nid_alpha_freq function to display a standard R error message
when the argument provided is invalid. Do this in C, not in the R wrapper
function using Rf_error. After your changes, the function should provide an
error message for all of the invalid inputs from Exercise 2. Hint: you can use
Rf_isString to test for a character vector.

Exercise 4
Force the input to be character(1) by making it an error if the input is not of
the right length. Do this in C.

Exercise 5
Use TYPEOF() and Rf_type2char() to provide a more informative error message
when the input is not a character vector.

Exercise 6
The labels for the result table are set in the R wrapper for alpha_freq. Modify
the code to set the names of the result table in C. Outline:

• Create a character vector using Rf_allocVector(STRSXP, 26)

• Use SET_STRING_ELT and mkChar to fill the vector

• Set this as the names attribute of the return SEXP using Rf_setAttrib.
The attribute name is R_NamesSymbol.

Exercise 7
At the top of nid_alpha_freq, an INTSXP is allocated using Rf_allocVector.
This vector is protected a few lines later. Is this safe? Discuss.

Exercise 8
Enhance alpha_freq so that it can be given a length n vector of file names and
return an n × 26 matrix with the alphabet frequency count for each file. Set
the row names of the matrix to be the corresponding file names. There is an
example of returning a matrix from a C function in WRE.

2 R Package Development Setup

2.1 Makevars customization

You can ensure that debugging symbols and compiler warnings are enabled for
all packages that you build from source by creating a Makevars-PLATFORM file in
your home directory (where PLATFORM matches the output of R.version$platform.

2

> dir.create("~/.R", showWarnings = FALSE)

> lines <- "CFLAGS=-g -Wall -pedantic"

> fname <- paste("~/.R/Makevars",

+ R.version[["platform"]],

+ sep = "-")

> writeLines(lines, con = fname)

2.2 Useful items for $HOME/.Rprofile

• Install packages based on the R_LIBS_USER environment variable. This
keeps installed packages separate from the packages that come with R
and also has the advantage of avoiding mixing packages across different
versions of R.

• Set a default CRAN repository

• Source biocLite script for interactive sessions.

• A helper function to reload a package, useful during development.

dir.create(Sys.getenv("R_LIBS_USER"),
recursive = TRUE,
showWarnings = FALSE)

options(repos="http://cran.fhcrc.org")

if (TRUE && interactive()) {
tryCatch({

source("http://bioconductor.org/biocLite.R")
}, error=function(e) invisible(NULL),

warning=function(w) message("Not connected to the net"))
}

reload_pkg <- function(p)
{

detach(paste("package", p, sep = ":"),
unload = TRUE, character.only = TRUE)

library(p, character.only = TRUE)
}

2.3 Windows Setup

For reference, read the Installing R under Windows in the R Installation and
Administration manual.

Download and install the standard R package for Windows.
Download the appropriate version of the Windows tools from http://www.

murdoch-sutherland.com/Rtools/ and install.

3

http://www.murdoch-sutherland.com/Rtools/
http://www.murdoch-sutherland.com/Rtools/

Install a package from source as:

c:\"Program Files\R\R-2.11.0"\bin\R CMD INSTALL nidemo

3 Exploration of External Pointers

R provides the EXTPTRSXP type for managing memory that is external to R.
You can register a finalizer that will run when an external pointers is garbage
collected. See Figure 1.

Figure 1: Conceptual diagram of R’s external pointer type (EXTPTRSXP)

The nidemo package contains an example of using R’s external pointers. The
code is somewhat contrived, but extends the alphabet frequency counter to be
a persistent data structure such that you can create a counter and update it
with the contents of different files and then retrieve the cumulative alphabet
frequency counts.

A user session looks like this:

> x <- make_freq("alice")

> update_freq(x, "some/file.txt")

> update_freq(x, "some/another.txt")

> report_freq(x)

> rm(x)

> gc()

Exercise 9
Read through the implementation of the external pointer based alphabet fre-
quency counter and try out a sample session.

In addition to registering finalizers at the C-level, it is also possible to cre-
ate R-based finalizers using reg.finalizer. One subtlety of finalizers is that
any functions called within a finalizer must satisfy a weak-form of re-entrancy.
Consider the pseudo-code in Figure 2.

4 Calling R from C

You can evaluate R code from C using Rf_eval. This allows package code to
make use of R functions that do not have a C entry point as well as provide a

4

f() {
/* amazing computations */
g() /* this allocates R objects,

can trigger gc */
/* more computations here */

}

finalizer() {
/* clean up */
f() /* danger! */

}

Figure 2: Even though R is single-threaded, a second call to f will occur before
the first call to f is finished. This can cause serious problems if f manipulates
global variables or modifies its arguments in-place.

mechanism for users to specify callback functions in R that will be executed in
the context of package C code.

Exercise 10
Take a few minutes to review the section Evaluating R expressions from C in
the WRE manual.

The most elegant way of calling R functions from C is to build a function
call using a LANGSXP and then evaluate it using Rf_eval. R function calls
are represented in C using the LANGSXP type that provides a linked list data
structure. The first element of the list must be a symbol naming the function
you want to call (SYMSXP). Additional elements in the list are the arguments
to the function.

There are helper functions to construct pairlists of different sizes: lang1,
lang2, lang3, lang4. Below, Rf_lang2 is used to call path.expand at the C
level.

PROTECT(v = Rf_mkString("~/src/somefile.txt"));
PROTECT(fun = Rf_lang2(Rf_install("path.expand"), v));
ans = eval(fun, R_BaseEnv);

Exercise 11
Enhance the nid_alpha_freq function in nidemo/src/charfreq.c so that file
names are expanded. Do this by constructing a call to path.expand at the C
level.

5

	Exercises
	R Package Development Setup
	Makevars customization
	Useful items for $HOME/.Rprofile
	Windows Setup

	Exploration of External Pointers
	Calling R from C

