Lecture: S4 classes and methods

Martin Morgan, Robert Gentleman
Fred Hutchinson Cancer Research Center
Seattle, WA, USA

14 February, 2008

Object oriented programming

class Data encapsulation
method Set / get, show, transformation

inheritance For data and method reuse

Flavors

S3 Convenient, ad hoc, single inheritance, single
dispatch, instance-based.

S4 Formal, multiple inheritance & dispatch.
Introspection.

Benefits

» Abstract data types — interface to data.

» Reuse — data components (e.g., experiment description),
inheritance (e.g., Sequences vs. DNASequences)

Examples: S3

> example (1m)

> class(1m.D90)

(1] "Im"

> head(names (1m.D90), n = 4)

[1] "coefficients" "residuals"
[3] "effects" "rank"

> head(methods ("summary"), n = 4)

[1] "summary.aov" "summary.aovlist"
[3] "summary.connection" "summary.data.frame"

> head(methods(class = "1m"), n = 4)

[1] "addl.1lm" "alias.1lm"
[3] "anova.lm" "case.names.lm"

Examples: S4 |

> library(Biobase)
> data(sample.ExpressionSet)
> class(sample.ExpressionSet)

[1] "ExpressionSet"
attr(,"package")
[1] "Biobase"

Examples: S4 Il

> getClass ("ExpressionSet")

Slots:

Name: assayData phenoData
Class: AssayData AnnotatedDataFrame
Name: featureData experimentData
Class: AnnotatedDataFrame MIAME
Name: annotation .__classVersion__
Class: character Versions
Extends:

Class "eSet", directly
Class "VersionedBiobase", by class "eSet", distance 2
Class "Versioned", by class "eSet", distance 3

Examples: S4 Il

Class introspection
> getClass
» getSlots, slotNames
> extends

Method introspection

> showMethods("exprs"),
showMethods (class="ExpressionSet")

> getMethod("exprs", "ExpressionSet")

Class definition: setClass

> setClass("Sequences",

+ representation=representation(
+ sequences="character"))

> setClass("DNASequences",

+ contains="Sequences",

+ representation=representation(
+ chromosome="character"))

Class d

efinition

> names (formals(setClass))

[1]
(3]
(5]
(7]
(9]

"Class" "representation"
"prototype" "contains"
"validity" "access"

"where" "version"
"sealed" "package"

representation: named list of ‘slots’ and their classes

prototype: named list of slots and default (e.g.,
character(0) values

contains: character vector of contained (inheritted) classes

validity: programatic constraints on object contents; also
setValidity

Validity

> setValidity("DNASequences", function(object) {

+ msg <- NULL

+ atgc <- grep("["atcgl", sequences(object))

+ if (length(atgc)>0)

+ msg <- c(msg, "'sequences' must be a, t, c, or g")
+ if (is.null(msg)) TRUE

+ else msg

+

P

> Implicitly called when object instantiated.

» Explicit usage: validObject(dnaSeq)

Validity

> Impose constraints beyond type

> Argument to setClass, or call to setValidity

» Function returns TRUE or character string describing invalid
aspect(s)

» Automatically called during object creation, or with
validObjecct

» (Advanced) Special dispatch: do not callNextMethod; check
only validity of specific class

Slot access

» Get: @, slot
> Set: @<-, slot<-

Usually, use accessor methods instead
» Goal: separate interface from implementation.
» ‘Getters' for all (publically accessible) slots

> ‘Setters’ for slots intended to be mutable

Get: a simple method

> setGeneric("sequences",

+ function(object) {

+ standardGeneric ("sequences")
+ »

> setMethod ("sequences",

+ signature (object="Sequences"),
+ function(object) {

+ slot (object, "sequences")

+

39

Usage: sequences(dnaSeq)

Set: a replacement method

> setGeneric("sequences<-",

+ function(object, value) {

+ standardGeneric("sequences<-")
+ 39

> setReplaceMethod("sequences",

+ signature (object="Sequences"),
+ function(object, value) {

+ slot (object, "sequences") <-
+ tolower (value)

+ validObject (object)

+ object

+ y9)

Usage: sequences(dnaSeq) <- "aaacccttt"

Defining generics

> names (formals (setGeneric))

[1] "name" "def"

[3] "group" "valueClass"
[5] "where" "package"

[7] "signature" "useAsDefault"

[9] "genericFunction"

name Name of an existing function (to be used as the
default) or a new name.

def Function definition with named argumments and
defintion. def Used for dispatch rather than
evaluation; body usually
standardGeneric(<name>).

signature Character vector of named arugments to be used for
dispatch (some details below).

Defining methods

> names (formals (setMethod))
(1] "f" "signature" '"definition"
[4] "where" "valueClass" "sealed"

f Name of the generic

signature Named character vector matching argument names to
types. Implicit type is ANY, another type is missing

definition function definition, matching generic.

Reuse and inheritance: show

setMethod ("show",

signature=signature (

object="Sequences"),

function(object) {

cat("class:", class(object), "\n")

cat ("sequences:", sequences(object), "\n")

>

+

+

+

+

+

+ »)
> setMethod("show",

+ signature=signature (

+ object="DNASequences"),

+ function(object) {

+ callNextMethod ()

+ cat ("chromosome:", chromosome(object), "\n")
+

P

Instantiation: new

> dnaSeq <- new("DNASequences", sequences = "aatat',
+ chromosome = "X")
> dnaSeq

class: DNASequences
sequences: aatat
chromosome: X

initialize

> setMethod("initialize",

+ signature(.0bject="Sequences"),

+ function(.0Object, ..., sequences=character(0))
+ sequences <- tolower (sequences)

+ callNextMethod(.0Object, ...,

+ sequences=sequences)

+ »

> new("DNASequences", sequences = "AATAT",

+ chromosome = "X")

class: DNASequences
sequences: aatat
chromosome: X

Instantiation

> names (formals (new))

[1] "Class“ n. . .u

» Typically: ... at most one unnamed element (e.g., .Data, used
to initialize super class) and additional named arguments
(names often correspond to slots).

> The class prototype is used as a template, updated by named
arguments

Mutliple inheritance, virtual classes

» Multiple inheritance: several contains classes
» Virtual classes: group related data types

> setClassUnion: establish ‘extends’ relationships between
existing classes

Multiple inheritance and class unions |

> setClass("A",

+ representation = representation(
+ x="numeric"))

[1] "a"

> setClass("B",

+ representation = representation(
+ y="numeric"))

[1] "B"

> setClass("AB",
+ contains=c("A", "B"))

[1] “AB"

Multiple inheritance and class unions Il

> new("AB")

An object of class "AB"
Slot "x":
numeric(0)

Slot "y":
numeric (0)

setClassUnion |

> setClassUnion("AOrB", c("A", "B"))

[1] "AOrB"

> getClass("AOrB")

Extended class definition ("ClassUnionRepresentation")
Virtual Class

No Slots, prototype of class "NULL"

Known Subclasses:

Class "A", directly

Class "B", directly

Class "AB", by class "A", distance 2
Class "AB", by class "B", distance 2

setClassUnion Il

> getClass("A")

Slots:

Name: X
Class: numeric

Extends: "AOrB"
Known Subclasses: "AB"

» A now extends AOrB!

Real example: class union

> getClass("AssayData")

Extended class definition ("ClassUnionRepresentation")
Virtual Class

No Slots, prototype of class "NULL"

Known Subclasses:

Class "list", directly

Class "environment", directly

Class "Versions", by class "list", distance 2
Class "VersionsNull", by class "list", distance 3

Dispatch and inheritance

» Multiple dispatch when more than one argument in signature,
eg n [II

» Dispatch to first matching signature in linearized method list

» ‘Matching’ signature: compare class of supplied object(s) with
classes names in method definition.

> Possibly several signatures match:

» Inheritance (e.g., B extends A; method foo for classes A, B;
argument is instance of B; both foo possible)

» Multiple arugments, some with signature ANY

» Both inheritance and multiple arguments

» Methods ordered in terms of ‘distance’ from suplied
arguments; complex method lists lead to (very) complex
distance calculations

» callNextMethod calls ‘next’ method in linearized method list.

S4 and packages

DESCIPTION

» Depends: methods

» Imports: other package classes and methods
NAMESPACE

» importClassesFrom

» import: usually generics or regular functions

> exportClasses

» export: including generics

> exportMethods: for methods on generics defined in other
packages, e.g., show, initialize

Documentation

» promptClass, promptMethods

new and initialize |

MTM: Implicitly:

» new("Sequences") must work (used during validity
checking).

> new("DNASequences", obj, chromosome="Y") is a copy
constructor, using obj as a template for creating a new
DNASequences object.

» callNextMethod() should work, without special effort, for
derived classes.

Consequently. ..

new and initialize Il

>
+
+
+
+
+
+
+

(1]

setMethod ("initialize",

signature=signature (
.Object="DNASequences"),
function(.0Object, ..., sequences=character(0))
sequences <- toupper (sequences)
callNextMethod(.0Object, ...,
sequences=sequences)

P

"initialize"

Only slot names as argument to initialize methods.

Only include arguments for slots defined in the class for which
initialize is specialized to.

Force arguments to initialize to be named.

Constructors |

MTM: new is a ‘low-level’ function, suitable for class authors but
perhaps not the users.

» Exposes class structure, breaking the abstraction layer.
> Restricts arguments to slot names.
» Provides no hints to user about appropriate arguments.

» Requires class author and user to employ same methods for
object creation.

Constructors Il

Solution

> DNASequences <- function(uri, format = "fasta",
+ o) o

+ sequences <- paste(readlLines(uri)[-1],

+ collaspe = "")

+ new("DNASequences", sequences = sequences,
+ »)

+ }

> initialize does not need to be exported

» Constructor can be a generic, with methods.

Creating accessors programatically

> Getters and setters are very standardized.

> Makes sense to write a function .accessors to create
appropriate generics and methods (see
GSEABase: : : .accessors for an example)

Example: getters and setters created with

> GSEABase: ::.accessors("Sequences")
> GSEABase: : :.accessors ("DNASequences")

	Introduction
	Examples
	S3
	S4

	Working with S4
	Class definition
	Class validity
	Slot access
	Instantiation

	Mutliple inheritance, virtual classes
	Method dispatch
	S4 and packages
	Advanced initialization

