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Experiments

Scientists deal mostly with experiments of the following form:

• A number of alternative conditions / treatments

• one of which is applied to each experimental unit

• an observation (or several observations) then being made on each unit.

The objective is:

• Separate out differences between the conditions / treatments from the
uncontrolled variation that is assumed to be present.

• Take steps towards understanding the phenomena under investigation.
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Statistical thinking

Uncertain

 knowledge

Knowledge of the
extent of

uncertainty in it

Useable

 knowledge
+ =

Measurement model

m = µ + e
m – measurement with error, µ - true but unknown value

What is the mean of e?
What is the variance of e?

Is there dependence between e and µ?
What is the distribution of e (and µ)?

Typically but not always: e ~ N(0,σ²)
Gaussian / Normal measurement model

Decisions on the
experimental design

influence the
measurement model.
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Main requirements for experiments

Once the conditions / treatments, experimental units, and the nature of the observations
have been fixed, the main requirements are:

• Experimental units receiving different treatments should differ in no systematic
way from one another – Assumptions that certain sources of variation are absent
or negligible should, as far as practical, be avoided;

• Random errors of estimation should be suitably small, and this should be achieved
with as few experimental units as possible;

• The conclusions of the experiment should have a wide range of validity;

• The experiment should be simple in design and analysis;

• A proper statistical analysis of the results should be possible without making
artificial assumptions.

Taken from Cox DR (1958) Planning of experiments, Wiley & Sons, New York (page 13)
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Information dilemma: too many or too few?
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Classical situation of a clinical research project:

Statistical methods,
principles of clinical epidemiology and
principles of experimental design
allow to give a confirmatory answer, if results of
the study describe reality or are caused by
random fluctuations.



Working with micro-arrays 6

Information dilemma: too many or too few?
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The use of micro-array technology turns the
classical situation upside down.

There is the need for orientation how to perform
microarray experiments.

A new methodological consciousness is put to
work:

False detection rate
Validation to avoid overfitting
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Biometrical practice

Statistical
methods

Experimental design,
clinical epidemiology

Biological, medical
framework
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Micro-array experiments

Bioinformatics

Technology

Data
collectionsComplex

statistical
methods

Biological, medical
framework

Statistical
methods

Experimental design,
clinical epidemiology
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Example LPS: The setting

Problem:  Differential reaction on LPS stimulation in peripheral blood of stroke
 patients and controls?

Patient
Blood

Blood + LPS

Gene expres.

Gene  expres.
∆Pat

Control

Blood

Blood + LPS

Gene expres.

Gene expres.
∆Kon

Difference ?

Sample size has to be chosen with respect to financial restrictions
Peripheral blood is a special tissue, possible confounder 
 PNAS, 100:1896-1901

Chosen technology: Affymetrix (22283 genes)
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Example LPS: Design - Pooling

Assume a linear model for appropriately transformed gene expression:

yPat,Gen = transformed abundance + confounder effect +
biol. var. + techn. var.

Pat 1

Pat 5
Pool

No LPS

LPS

Gene expres.

Gene expres.
∆Pool

Correction for confounding - if composition of pools is homogeneous over
 possible confounder
Reduction of biological variability: σbiol
No reduction of technological / array specific variability: σtech
Reduction of arrays is determined by Ψ = σtech / σbiol.
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Example LPS: Design - Gene exclusion

Array used codes for ~ 18000 genes

Do we have good rules to reduce the set of interesting genes?
How can we introduce a hierarchy into the gene list without manipulating the
result of our analysis?

Possible solutions:

Bioinformatics: Integration of pathway information into the analysis

Statistics: Use of genes with high inter-array variability - set cut-point

 Meta-genes (West et al.) - predefine # of meta-genes
define cluster strategy
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Example LPS: Design - Gene exclusion

Array used codes for ~ 18000 genes

Do we have good rules to reduce the set of interesting genes?
How can we introduce a hierarchy into the gene list without manipulating the
result of our analysis?

Possible solutions:

Bioinformatics: Integration of pathway information into the analysis

Statistics: Use of genes with high inter-array variability - set cut-point

 Meta-genes (West et al.) - predefine # of meta-genes
define cluster strategy
 

Only possible for small problems

Mostly heuristic procedures / Kropf et al.
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Example LPS: Design - Gene exclusion

Array used codes for ~ 18000 genes

Do we have good rules to reduce the set of interesting genes?
How can we introduce a hierarchy into the gene list without manipulating the
result of our analysis?

Possible solutions:

Bioinformatics: Integration of pathway information into the analysis

Statistics: Use of genes with high inter-array variability - set cut-point

 Meta-genes (West et al.) - predefine # of meta-genes
define cluster strategy
 

Only possible for small problems

Mostly heuristic procedures / Kropf et al.

Not well evaluated
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Control

LPS
stimulated

Patient

FC = 3 FC = 0.125

Differential reaction (DR): log(0.125 / 3) = log(0.125) - log(3) = - 3.18
DR = ∆Pat - ∆Kon

Example LPS: Differential reaction DR

LPS
stimulated
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Example LPS: Data

Pool
(5 subjects)

Group Sex distribution
(Male:Female)

mean age

1 Control 1:4 60.8

2 Control 1:4 65.4

3 Control 2:3 61.6

4 Patient 4:1 64.4

5 Patient 5:0 66.2

6 Patient 3:2 74.4
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Example LPS: Expression Summaries

Quantification of expression

MSA5: Tukey bi-weight signal of PM/MM,
which is log-transformed

RMA: linear additive model for log(PM),
Median polish to aggregate over probes

VSN: arsinh - transformation for PM values
Rock - Blythe model for expression
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Example LPS: Expression Summaries
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Example LPS: First look on the data
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Example LPS: Metagenes
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> meta.gene.rma.summary
$metagene.64
"201167_x_at" "204270_at"   "213606_s_at“
"219273_at"   "220557_s_at" "34478_at"

$metagene.80
"207425_s_at" "216234_s_at" "216629_at"

$metagene.343
"200935_at"   "201556_s_at" "205179_s_at" "207824_s_at“
"211790_s_at“ "214792_x_at" "217793_at"   "218600_at"

$metagene.352
"201625_s_at" "201627_s_at" "207387_s_at" "210692_s_at“
"211139_s_at“ "222061_at"

$metagene.604
"204747_at"   "205569_at"   "205660_at"   "210163_at"
"210797_s_at" "211122_s_at" "217502_at"

$metagene.619
"AFFX-HUMRGE/M10098_3_at"  "AFFX-HUMRGE/M10098_5_at“
"AFFX-HUMRGE/M10098_M_at"  "AFFX-r2-Hs18SrRNA-3_s_at"
"AFFX-r2-Hs18SrRNA-5_at"   "AFFX-r2-Hs18SrRNA-M_x_at"
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Example LPS: Metagenes - multiple testing

> round(meta.gene.mult.test.rma[[1]][1:30,],5)

         rawp Bonferroni    Holm Hochberg SidakSS SidakSD      BH      BY
 [1,] 0.00001    0.00932 0.00932  0.00932 0.00928 0.00928 0.00504 0.03772
 [2,] 0.00001    0.01008 0.01007  0.01007 0.01003 0.01002 0.00504 0.03772
 [3,] 0.00002    0.01573 0.01570  0.01570 0.01560 0.01557 0.00524 0.03924
 [4,] 0.00004    0.04341 0.04328  0.04328 0.04248 0.04235 0.00941 0.07042
 [5,] 0.00005    0.04821 0.04802  0.04802 0.04707 0.04689 0.00941 0.07042
 [6,] 0.00006    0.05645 0.05617  0.05617 0.05489 0.05462 0.00941 0.07042
 [7,] 0.00008    0.07559 0.07513  0.07513 0.07280 0.07238 0.01080 0.08083
 [8,] 0.00012    0.12024 0.11940  0.11940 0.11330 0.11255 0.01236 0.09255
 [9,] 0.00012    0.12398 0.12299  0.12299 0.11661 0.11573 0.01236 0.09255
[10,] 0.00013    0.12696 0.12581  0.12581 0.11924 0.11823 0.01236 0.09255
[11,] 0.00014    0.13600 0.13464  0.13464 0.12716 0.12598 0.01236 0.09255
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Example LPS: Predictive analysis

observed t-statistics

Mixture components
- without DR
- negative DR
- positive DR
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Example LPS: Predictive analysis

observed t-statistics

Mixture components
- without DR
- negative DR
- positive DR
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Inference of mixture
components by  EM-
algorithm or Gibbs-
sampler
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Pnegative = 0.0018

Ppositive  = 0.0031
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Example LPS: Predictive analysis
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Example LPS: Adjusted p-values

Predictive analysis is closely related with frequentist test-theory: Procedure
by Benjamini Hochberg (Efron, Storey, Tibshirani, 2001)
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FDR: 0.1

BH:
red area contains
in mean at most
10% false positive
decisions.
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Genes with differential reaction (RMA)

BH-procedure:  # Genes: 122
PA with PPV>0.99: # Genes: 98 + 31

Genes with differential reaction (MAS5)

BH-procedure:  # Genes: 42
PA with PPV>0.99: # Genes: 62

Set of genes common to RMA and MAS5 result: 27

Example LPS: Interpretation
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• Confounder, Covariates, Population variability -
 Pools are unbalanced between cases and controls

• Sample size calculation +
 Setting allows with high chance to detect absolute effects above 2.
 cDNA arrays may have resulted in a more efficient analysis.

• Generality +/-
 Few pools may not give a representative sample of the patient group of interest.

• Interpretability -
 Inhomogeneities with respect to sex and age make it difficult to interpret DR as
 related to the disease.

• Artificial assumptions -
 Assumption of a linear model for confounder effects allows to assume an effect
 measurement fully attributable to the disease. Use of cDNA arrays would have
 automatically eliminated the confounder effects.

Example LPS: Interpretation
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The most simple measurement model in microarray
experiments

Situation: m arrays (Affimetrix) from control population
 n arrays (Affimetrix) from population with
 special condition /treatment

Observation of interest: Mean difference of log-transformed gene expression (∆logFC)

∆logFCobs = ∆logFCtrue + e

e ~ N(0, σ²⋅[1/n+1/m])

In an experiment with 5 arrays per population and the same variance for the expression of a gene of interest,
the above formula implies that the variance of the ∆logFC is only 40% (1/5+1/5 = 2/5 = 0.4) of the variability
of a single measurement – taming of uncertainty.
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Separate out differences between the conditions / treatments
from the uncontrolled variation that is assumed to be present.

Is ∆logFCtrue ≠ 0? – How to decide?

Special Decision rules: Statistical Tests

• When the probability model for the mechanism generating the observed data is known,
hypotheses about the model can be tested.

• This involves the question: Could the presented data reasonable have come from the
model if the hypothesis is correct?

• Usually a decision must be made on the basis of the available data, and some degree of
uncertainty is tolerated about the correctness of that decision.

• These four components: data, model, hypothesis, and decision are basic to the
statistical problem of hypothesis testing.
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Quality of decision

True state of gene

Decision Gene is diff. expr. Gene is not diff. expr.

Gene is diff. expr. OK false positive decision
happens with probability α

Gene is not diff. expr. false negative decision
happens with probability β

OK

Two sources of error: False positive rate α
 False negative rate β
Power of a test: Ability to detect a difference if there is a true difference
 Power – true positive rate or Power = 1 - β
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The Statistical test
• Question of interest (Alterative): Is the gene G differentially expressed between two cell populations?

• Answer the question via a proof by contradiction: Show that there is no evidence to support the logical
contrary of the alternative. The logical contrary of the alternative is called null hypothesis.

• Null hypothesis: The gene G is not differentially expressed between two cell populations of interest.

• A test statistic T is introduced which measures the fit of the observed data to the null hypothesis.
The test statistics T implies a prob. distribution P to quantify its variability when the null hypothesis is true.

• It will be checked if the test statistic evaluated at the observed data tobs behaves typically (not extreme) with
respect to the test distribution.
The p-value is the probability under the null hypothesis of an observation which is more extreme as the
observation given by the data: P( T ≥ tobs ) = p.

• A criteria is needed to asses extreme behaviour of the test statistic via the p – value which is called the level
of the test: αα .

• The observed data does not fit to the null hypothesis if p < αα  or |tobs| > t* where t* is the 1-α or 1-α/2
quantile of the prob. distribution P. t* is also called the critical value.
The conditions p < αα  and tobs > t* are equivalent. If p < αα  or tobs > t* the null hypothesis will be rejected.

• If p ≥ αα  or tobs ≥ t* the null hypothesis can not be rejected – this does not mean that it is true
Absence of evidence for a difference is no evidence for an absence of difference.
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Controlling the power – sample size calculations

The test should produce a significant result (level α) with a power of 1-β
if ∆logFCtrue = δ

The above requirement is fulfilled if: δ = (z1-α/2 + z1-β)⋅σn,m

or

2

22
12/1 )zz(

mn
mn

δ

σ⋅+
=

+
⋅ β−α−

δ0

z1-α/2 σn,m z1-β σn,m

alternative: ∆logFCtrue = δnull hypothesis: ∆logFCtrue = 0

σ2
n,m = σ2⋅(1/n+1/m)
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Controlling the power – sample size calculations

2

22
12/1 )zz(

mn
mn

δ

σ⋅+
=

+
⋅ β−α−

n = N⋅γ and m = N⋅(1-γ) with M – total size of experiment and γ ∈ ]0,1[

2

22
12/1 )zz(

)1(
1

N
δ

σ⋅+
⋅

γ−⋅γ
= β−α−

The size of the experiment is minimal if γγ = ½.
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Sample size calculation for a microarray experiment I

Truth

Test result diff. expr. (H1) not diff. expr. (H0)

diff. expr. D1 D0 D

not diff. expr. U1 U0 U
Number of genes on array G1 G0 G

α0 = E[D0]/G0 β1 = E[U1]/G1 FDR=E[D0/D]
E: expectation / mean number

family type I error probability: αF = P[D0>0]
family type II error probability: βF = P[U1>0]



Practical microarray analysis – experimental design

Heidelberg, October 2003 12

Sample size calculation for a microarray experiment II

Independent genes Dependent Genes

P[D0=0] = (1-α0)
Go = 1-αF

D0 ~ Binomial(G0, α0)

E[D0] = G0 ⋅ α0

Poissonapprox.: E[D0] ~ -ln(1-αF)

P[U1=0] = (1-β1)
G1 = 1-βF

E[U1] = G1 ⋅ (1-β1)

Bonferroni: α0 = αF / G0

No direct link between the probability for
D0 and αF.

1-βF ≥ max{0,1- G1⋅β1}

No direct link between the probability for
U1 and βF.
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Sample size calculation for a microarray experiment III
for an array with 33000 independent genes

What are useful α0 and β1?

αF = 0.8 E[D0] = - ln(1-0.8) = 1.61 = λ P(exactly k false pos.) = exp(-λ) ⋅ λk / (k!)

false pos. 0 1 2 3 4 5

Prob. 0.200 0.322 0.259 0.139 0.056 0.018

P(at least six false positives) = 0.0062
32500 unexpressed genes: α0 = 1.61/32500 = 0.0000495

500 expressed genes, set E[D1] = 450 1-β1 = 450/500 = 0.9 β1 = 0.1 1-βF = (1-β1)
 G1 < 10-23

E[FDR] = 0.0035 95% quantile of FDR: 0.0089 (calculated by simulation)
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Sample size calculation for a microarray experiment IV

In order to complete the sample size calculation for a microarray experiment,
information on σ2 is needed.

The size of the experiment, N, needed to detect a ∆logFCtrue of δ
on a significance level α and with power 1-β is:

2

22
12/1 )zz(

4N
δ

σ⋅+
⋅= β−α−

In a similar set of experiments σ2 for a set of 20 VSN transformed arrays was between
1.55 and 1.85. One may choose the value σ2 = 2.

δ log(1.5) log(2) log(3) log(5) log(10)
N (σ2 = 2) 1388 476 190 88 44
N (σ2 = 1) 694 238 96 44 22

Sample size with α = 0.0000495, β = 0.1
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Sample size formula for a one group test

The test should produce a significant result (level α) with a power of 1-β
if T = δ

The above requirement is fulfilled if: δ = (z1-α/2 + z1-β)⋅σn

or

2

22
12/1 )zz(

n
δ

σ⋅+
= β−α−

δ0

z1-α/2 σn z1-β σn

alternative: T = δnull hypothesis: T = 0

σ2
n = σ2/n
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Measurement model for cDNA arrays

Gene expression under condition A – intensity of red colour,
Gene expression under condition B – intensity of green colour

Measurement: mA/B = 










B,green

A,red
2 I

I
Log  = γA/B + δ + e

γA/B – log-transformed true fold change of gene of condition A with respect to condition B
δ - dye effect, e – measurement error with E[e] = 0 and Var(e) = σ2

Measurement mA/B is used to estimate unknown γA/B

• Vertices mRNA samples

• Edges hybridization

• Direction Dye assignment
 Green Red

B A
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Estimation of log fold change γγA/B

Estimate of γA/B

R
B/Ag = mA/R – mB/R

DS
B/Ag  = (mA/B – mB/A)/2

Variability of estimate
Var( R

B/Ag ) = 2⋅σ2 Var( DS
B/Ag ) = 0.5⋅σ2

Sample Size increases proportional to the variance of the measurement!

B A

Reference Design Dye swap design

B A

R
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2x2 factorial experiments I

treatment / condition Wild type Mutation

before treatment β β+µ
after treatment β+τ β+τ+µ+ψ

β - baseline effect; τ - effect of treatment; µ - effect of mutation
ψ - differential effect on treatment between WT and MUT

treatment effect on gene expr. in WT cells: ∆WT = (β + τ) - β = τ
treatment effect on gene expr. in MUT cells: ∆MUT = (β + τ + µ + ψ) – (β + µ)= τ + ψ

differential treatment effect: ∆MUT≠∆WT or ψ  ≠ 0

How many cDNA arrays are needed to show ψ  ≠ 0 with significance α and power 1-β if |ψ | > ln(5)?
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2x2 factorial experiments II

Study the joint effect of two conditions / treatment, A and B, on the gene expression of a
cell population of interest.

There are four possible condition / treatment combinations:

AB: treatment applied to MUT cells
A: treatment applied to WT cells
B: no treatment applied to MUT cells
0: no treatment applied to WT cells

Design with 12 slides

ABB

0 A
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2x2 factorial experiments III

Array Measurement
mA/0 γA/0 + δ + e = τ + δ + e
m0/A -γA/0 + δ + e = -τ + δ + e
mB/0 γB/0 + δ + e = µ + δ + e
m0/B -γB/0 + δ + e = -µ + δ + e
mAB/0 γAB/0 + δ + e = µ + τ + ψ + δ + e
m0/AB -γAB/0 + δ + e = - (µ + τ + ψ) + δ + e
mAB/A γAB/A + δ + e = µ + ψ + δ + e
mA/AB -γAB/A + δ + e = - (µ + ψ) + δ + e
mAB/B γAB/B + δ + e = µ + ψ + δ + e
mB/AB -γAB/B + δ + e = - (µ + ψ) + δ + e
mA/B γA/B + δ + e = τ - µ + δ + e
mB/A -γA/B + δ + e = - (τ - µ) + δ + e

• Each measurement has variance σ2

• Parameter β is confounded with the dye effect
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Regression analysis
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• For parameter θ = (δ, τ, µ, ψ) define the design
matrix X such that E(M) = Xθ.

• For each gene, compute least square estimate
θ* = (X’X)-1X’M (BLUE)

• Obtain measures of precision of estimated
effects.

• Use all possibilities of the theory of linear
models.

Design problem:
• Each measurement M is made with variability

σ2. How precise can we estimate the
components or contrasts of θ?
Answer: Look at (X’X)-1
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2 x 2 factorial designs IV

Ø total.2.by.2.design.mat

     delta  alpha beta   psi

A/0      1      1    0     0

0/A      1     -1    0     0

B/0      1      0    1     0

0/B      1      0   -1     0

AB/0     1      1    1     1

0/AB     1     -1   -1    -1

AB/A     1      0    1     1

A/AB     1      0   -1    -1

AB/B     1      1    0     1

B/AB     1     -1    0    -1

B/A      1     -1    1     0

A/B      1      1   -1     0

Var(A-B) = Var(A) + Var(B) – 2⋅Cov(A,B)

ABB

0 A

> precision.2.by.2.rfc(x.mat)

$inv.mat

          tau     mu   psi

  tau   0.250  0.125 -0.25

   mu   0.125  0.250 -0.25

  psi  -0.250 -0.250  0.50

$effects

  tau    mu   psi   tau-mu

 0.25  0.25  0.50  0.25
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Sample size for differential treatment effect (DTE)
in a 2 x 2 factorial designs I

• Array has 20.000 genes: 19500 without DTE, 500 with DTE

• αF = 0.9, using Bonferroni adjustment: α = 0.9/20.000 = 0.0000462

• Mean number of correct positives is set to 450: 1-β = 0.9

• σ2 = 0.7, taken from similar experiments

• A total dye swap design (12 arrays) estimates ψ with precision σ2/2 = 0.35

N = [4.074 + 1.282]2⋅0.35 / ln(5)2 = 3.876

• The experiment would need in total 4 x 12 = 48 arrays

• Is there a chance to get the same result cheaper?
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2 x 2 factorial designs V

BA

AB

0

BA

AB

0

BA

AB

0

BA

AB

0

BA

AB

0

Design V
All-pairs

Scaled variances of estimated effects

      D.I D.II  D.III  D.IV  D.V D.tot

tau     2    1   0.75  1.00  0.5  0.25

mu      2    1   0.75  0.75  0.5  0.25
psi     3    3   1.00  2.00  1.0  0.50

# chips 3    3      4     4    6    12

Design I
Common ref.

Design II
Common ref.

Design III
Connected

Design IV
Connected
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Sample size for differential treatment effect (DTE)
in a 2 x 2 factorial designs II

Is there a chance to get the same result cheaper?

• Using total dye swap design, the experiment would need in total 4 x 12 = 48 arrays

• Using Design III, the effect of interest is estimated with doubled variance (4 → 8) but
by using a design which need only 4 arrays (12 → 4).

• This reduces the number of arrays needed from 48 to 32.



Practical microarray analysis – experimental design

Heidelberg, October 2003 26

Experimental Design - Conclusions
• Designs for time course experiments

• In addition to experimental constraints, design decisions should be guided by knowledge of
which effects are of greater interest to the investigator.

• The unrealistic planning based on independent genes may be put into a more realistic
framework by using simulation studies – speak to your bio – statistician/informatician

• How to collect and present experience from performed microarray experiments on which to base
assumptions for planing (σ2)?

• Further reading:
Kerr MK, Churchill GA (2001) Experimental design for gene expression microarrays,
Biostatistics, 2:183-201

Lee MLT, Whitmore GA (2002), Power and sample size for DNA microarray studies,
Stat. in Med., 21:3543-3570


