Foreword

MSnbase and pRoloc are under active developed; current functionality is evolving and new features are added on a regular basis. This software is free and open-source software. If you use it, please support the project by citing it in publications:

Gatto L. and Lilley K.S. MSnbase - an R/Bioconductor package for isobaric tagged mass spectrometry data visualization, processing and quantitation. Bioinformatics 28, 288-289 (2011).

Gatto L, Breckels LM, Wieczorek S, Burger T, Lilley KS. Mass-spectrometry-based spatial proteomics data analysis using pRoloc and pRolocdata. Bioinformatics. 2014 May 1;30(9):1322-4..

Breckels LM, Mulvey CM, Lilley KS and Gatto L. A Bioconductor workflow for processing and analysing spatial proteomics data. F1000Research 2016, 5:2926 doi: 10.12688/f1000research.10411.1.

If you are using the phenoDisco function, please also cite

Breckels L.M., Gatto L., Christoforou A., Groen A.J., Kathryn Lilley K.S. and Trotter M.W. The effect of organelle discovery upon sub-cellular protein localisation. J Proteomics, S1874-3919(13)00094-8 (2013).

For an introduction to spatial proteomics data analysis:

Gatto L, Breckels LM, Burger T, Nightingale DJ, Groen AJ, Campbell C, Nikolovski N, Mulvey CM, Christoforou A, Ferro M, Lilley KS. A foundation for reliable spatial proteomics data analysis. Mol Cell Proteomics. 2014 Aug;13(8):1937-52. doi: 10.1074/mcp.M113.036350.

The pRoloc package contains additional vignettes and reference material:

  • pRoloc-tutorial: pRoloc tutorial.
  • pRoloc-ml: Machine learning techniques available in pRoloc.
  • pRoloc-transfer-learning: A transfer learning algorithm for spatial proteomics.
  • pRoloc-goannotations: Annotating spatial proteomics data.

Questions and bugs

You are welcome to contact me directly about pRoloc. For bugs, typos, suggestions or other questions, please file an issue in our issue tracking system (https://github.com/lgatto/pRoloc/issues) providing as much information as possible, a reproducible example and the output of sessionInfo().

If you wish to reach a broader audience for general questions about proteomics analysis using R, you may want to use the Bioconductor support site: https://support.bioconductor.org/.

1 Introduction

1.1 Spatial proteomics

Spatial (or organelle) proteomics is the study of the localisation of proteins inside cells. The sub-cellular compartment can be organelles, i.e. structures defined by lipid bi-layers,macro-molecular assemblies of proteins and nucleic acids or large protein complexes. In this document, we will focus on mass-spectrometry based approaches that assay a population of cells, as opposed as microscopy based techniques that monitor single cells, as the former is the primary concern of pRoloc, although the techniques described below and the infrastructure in place could also be applied the processed image data. The typical experimental use-case for using pRoloc is a set of fractions, originating from a total cell lysate. These fractions can originate from a continuous gradient, like in the LOPIT (Dunkley et al. 2006) or PCP (Foster et al. 2006) approaches, or