Contents

1 Introduction

CSV files from the Ivy-GAP project have been assembled into a SummarizedExperiment instance.

library(ivygapSE)
data(ivySE)
ivySE
## class: SummarizedExperiment 
## dim: 25873 270 
## metadata(5): README URL builder tumorDetails subBlockDetails
## assays(1): fpkm
## rownames(25873): A1BG A2M ... PP12719 LOC100653024
## rowData names(5): gene_id chromosome gene_entrez_id gene_symbol
##   gene_name
## colnames(270): 305273026 305405294 ... 305273038 306124458
## colData names(28): tumor_id tumor_name ... bam_download_link
##   bai_download_link

There are several types of metadata collected with the object, including the README.txt (use cat(metadata(ivySE)$README, sep="\n") to see this in R), the URL where data were retrieved, a character vector (builder) with the R code for creating (much of) the SummarizedExperiment, and two tables of tumor-specific and block-specific information.

2 Background on the ivyGlimpse app

The ivyGlimpse app is a rapid prototype of a browser-based interface to salient features of the data. The most current code is maintained in the Bioconductor ivygapSE package, but a public version of the app may be visited at shinyapps.io.

The ivygapSE package will evolve, based in part on associations observed through the use of this app. Briefly, the main visualization of the app is a scatterplot of user-selected tumor image features. All contributions, based on tumor sub-blocks (that have varying multiplicities per tumor block and donor) are assembled together without regard for source; interactive aspects of the display allow the user to see which donor contributes each point.

Strata can be formed interactively by brushing over the scatterplot; after the brushing event, the survival times of donors contributing selected points are compared to donors all of whose contributions lie outside the selection. Expression data are also stratified in this way and gene-specific boxplot sets (for user-specified gene sets) are produced for each stratum.

3 Summary information on the underlying data

The number of RNA-seq samples is 270. The FPKM matrix has dimensions

dim(ivySE)
## [1] 25873   270

There are 42 different tumor donors.

length(unique(metadata(ivySE)$tumorDetails$donor_id))
## [1] 42

However, only 37 donors contributed tumor RNA that was sequenced:

sum(metadata(ivySE)$tumorDetails$tumor_name %in% ivySE$tumor_name)
## [1] 37

Features of images from sub-blocks were quantified according to the following terminology for anatomical characteristics. Not all images provided information on all attributes.

4 Additional details

We have used information in the IvyGAP technical white paper to spell out additional background on the data underlying the app and SummarizedExperiment.

4.1 Basic experimental design layout

There are six substudies contributing data in a partly sequential design.

4.2 Tumor-level details

The following table has one record per tumor (N=42).

4.3 Sub-block-level details

The following table has one record per sub-block (N=946).

4.4 Details on RNA-seq samples

The complete annotation on RNA-seq samples is provided in colData(ivySE). The table follows here:

4.4.1 Key RNA-seq subsets

4.4.1.1 Subsets of design origin

The sub-blocks arose from a number of measurement objectives.

sb = subBlockDetails(ivySE)
table(sb$study_name)
## 
##             Anatomic Structures ISH Survey 
##                                         96 
## Anatomic Structures ISH for Enriched Genes 
##                                         48 
##                Anatomic Structures RNA Seq 
##                                         47 
##               Cancer Stem Cells ISH Survey 
##                                        648 
##   Cancer Stem Cells ISH for Enriched Genes 
##                                         48 
##                  Cancer Stem Cells RNA Seq 
##                                         59

4.4.1.2 Subsets based on structure

We use the structure_acronym variable to assess the composition of sources in the RNA-seq collection.

struc = as.character(colData(ivySE)$structure_acronym)
spls = strsplit(struc, "-")
basis = vapply(spls, function(x) x[1], character(1))
spec = vapply(spls, function(x) x[2], character(1))
table(basis, exclude=NULL)
## basis
##    CT CThbv CTmvp CTpan CTpnz    IT    LE 
##   111    22    28    40    26    24    19
barplot(table(basis))

Each of the major structural types contributes multiple samples from specific objectives.

lapply(split(spec,basis), function(x)sort(table(x),decreasing=TRUE))
## $CT
## x
##   control reference       ID1     POSTN      CD44     DANCR     HIF1A    IGFBP2 
##        59        30         3         3         2         2         2         2 
##       MET      NOS2       PI3    PDGFRA      PDPN 
##         2         2         2         1         1 
## 
## $CThbv
## x
## TGFBR2  POSTN IGFBP2  ITGA6   CD44  DANCR  HIF1A 
##      8      7      2      2      1      1      1 
## 
## $CTmvp
## x
## reference    TGFBR2     ITGA6 
##        25         2         1 
## 
## $CTpan
## x
## reference       ID2      PDPN   TNFAIP3       MYC       PI3     PROM1 
##        24         4         3         3         2         2         2 
## 
## $CTpnz
## x
##     PI3    PDPN   PROM1 TNFAIP3     ID1    CD44   DANCR  IGFBP2     MYC 
##       8       4       4       4       2       1       1       1       1 
## 
## $IT
## reference 
##        24 
## 
## $LE
## reference 
##        19

4.4.2 A simple differential expression study

We have used limma to test for differential expression among samples identified as reference histology in classes CT, CT-mvp, CT-pan, IT, and LE. The resulting mean expression estimates (FPKM scale) and moderated test statistics are obtained as follows:

library(limma)
ebout = getRefLimma()

The ten genes that are most significantly differentially expressed between conditions CT and CT-mvp are found as follows:

odig = options()$digits
options(digits=3)
limma::topTable(ebout, 2)
##                logFC AveExpr    t  P.Value adj.P.Val   B
## TRPC6          16.58    3.82 39.2 2.93e-69  7.59e-65 147
## GPR116        100.40   27.90 35.1 4.42e-64  5.72e-60 135
## FZD4            9.37    3.09 32.8 5.29e-61  4.57e-57 128
## CYYR1          50.46   13.46 31.6 3.26e-59  2.11e-55 124
## CALD1         321.33  141.88 31.0 2.19e-58  1.13e-54 122
## NR5A2           7.66    1.86 30.7 5.55e-58  2.39e-54 122
## LOC100505813 5804.06 1998.11 30.0 6.80e-57  2.52e-53 119
## FSTL1         234.03   71.86 29.9 1.13e-56  3.67e-53 119
## KDR            28.06    7.82 29.3 7.86e-56  2.26e-52 117
## LRRC32         23.15    5.76 29.1 1.89e-55  4.57e-52 116
options(digits=odig) # revert

4.4.3 Differential expression by molecular subtype

We can bind the molecular subtype information from the tumor details to the expression sample annotation as follows:

moltype = tumorDetails(ivySE)$molecular_subtype
names(moltype) = tumorDetails(ivySE)$tumor_name
moltype[nchar(moltype)==0] = "missing"
ivySE$moltype = factor(moltype[ivySE$tumor_name])

We will confine attention to samples annotated as “reference histology” and compute the duplicate correlation for modeling the effect of molecular subtype in the available samples.

library(limma)
refex = ivySE[, grep("reference", ivySE$structure_acronym)]
refmat = assay(refex)
tydes = model.matrix(~moltype, data=as.data.frame(colData(refex)))
ok = which(apply(tydes,2,sum)>0)  # some subtypes don't have ref histo samples
tydes = tydes[,ok]
block = factor(refex$tumor_id)
dd = duplicateCorrelation(refmat, tydes, block=block)
f2 = lmFit(refmat, tydes, correlation=dd$consensus)
ef2 = eBayes(f2)
## Warning: Zero sample variances detected, have been offset away from zero
colnames(tydes)
## [1] "(Intercept)"                   "moltypeClassical, Mesenchymal"
## [3] "moltypeClassical, Neural"      "moltypeNeural"                
## [5] "moltypeProneural"
topTable(ef2,2)
##              logFC    AveExpr         t      P.Value    adj.P.Val        B
## PGAM4    -3.464745  0.8788400 -8.793853 1.450258e-14 3.752253e-10 22.27486
## SGCB     28.288935 45.5211562  7.738074 3.880394e-12 5.019872e-08 17.03899
## ANXA4    10.981958 14.4540170  7.174149 7.062419e-11 6.090865e-07 14.31838
## FLJ16779 -1.397749  0.4856463 -6.862396 3.397237e-10 1.964422e-06 12.84563
## TANK     28.120813 50.9024126  6.840152 3.796278e-10 1.964422e-06 12.74152
## SLIT1    -2.795607  1.5910338 -6.797291 4.700253e-10 2.026828e-06 12.54130
## FOXRED2  -6.266522  5.0362090 -6.753422 5.845577e-10 2.160609e-06 12.33689
## EFEMP1   74.747156 40.4488473  6.701711 7.553455e-10 2.244861e-06 12.09664
## COL8A2    2.298288  1.3095658  6.679804 8.417847e-10 2.244861e-06 11.99509
## BCRP3    -1.245920  0.4751551 -6.632199 1.064715e-09 2.244861e-06 11.77492

4.4.4 Classification of structural character

We assess the capacity of the expression measures to discriminate the structural type (CT, CT-mvp, CT-pan, LE, IT) using the random forests algorithm. Features used have interquartile range (IQR) over all relevant samples exceeding the median IQR over all genes.

refex = ivySE[, grep("reference", ivySE$structure_acronym)]
refex$struc = factor(refex$structure_acronym)
iqrs = rowIQRs(assay(refex))
inds = which(iqrs>quantile(iqrs,.5))
set.seed(1234)
rf1 = randomForest(x=t(assay(refex[inds,])), 
        y=refex$struc, mtry=30, importance=TRUE) 
rf1
## 
## Call:
##  randomForest(x = t(assay(refex[inds, ])), y = refex$struc, mtry = 30,      importance = TRUE) 
##                Type of random forest: classification
##                      Number of trees: 500
## No. of variables tried at each split: 30
## 
##         OOB estimate of  error rate: 6.56%
## Confusion matrix:
##                           CT-reference-histology CTmvp-reference-histology
## CT-reference-histology                        29                         0
## CTmvp-reference-histology                      0                        25
## CTpan-reference-histology                      0                         0
## IT-reference-histology                         2                         0
## LE-reference-histology                         0                         0
##                           CTpan-reference-histology IT-reference-histology
## CT-reference-histology                            0                      1
## CTmvp-reference-histology                         0                      0
## CTpan-reference-histology                        24                      0
## IT-reference-histology                            0                     21
## LE-reference-histology                            0                      4
##                           LE-reference-histology class.error
## CT-reference-histology                         0  0.03333333
## CTmvp-reference-histology                      0  0.00000000
## CTpan-reference-histology                      0  0.00000000
## IT-reference-histology                         1  0.12500000
## LE-reference-histology                        15  0.21052632
varImpPlot(rf1)

5 Next steps

Patel et al. Science 2014 (344(6190): 1396–1401) present single cell RNA-seq for 430 cells from 5 tumors of different molecular subtypes. It would be interesting to use signature of structural origin to see whether intra-tumor variation can be resolved into components coherent with the five-element typology. It would also be of interest to assess whether structural type signatures are associated with any signatures of drug sensitivity in relevant cell lines.