Package ‘pRoloc’

May 12, 2019

Type Package

Title A unifying bioinformatics framework for spatial proteomics

Version 1.24.0

Author Laurent Gatto, Oliver Crook and Lisa M. Breckels with contributions from Thomas Burger and Samuel Wieczorek

Maintainer Laurent Gatto <laurent.gatto@uclouvain.be>

Description The pRoloc package implements machine learning and visualisation methods for the analysis and interrogation of quantitative mass spectrometry data to reliably infer protein sub-cellular localisation.

Depends R (>= 2.15), MSnbase (>= 1.19.20), MLInterfaces (>= 1.37.1), methods, Rcpp (>= 0.10.3), BiocParallel

Imports Biobase, mclust (>= 4.3), caret, e1071, sampling, class, kernlab, lattice, met, randomForest, proxy, FNN, hexbin, BiocGenerics, stats, dendextend, RColorBrewer, scales, MASS, knitr, mvtnorm, LaplacesDemon, coda, mixtools, gtools, plyr, ggplot2, biomaRt, utils, grDevices, graphics

Suggests testthat, rmarkdown, pRolocdata (>= 1.9.4), roxygen2, synaptnet, xtable, rgl, BiocStyle (>= 2.5.19), hpar (>= 1.15.3), dplyr, GO.db, AnnotationDbi, Rtsne (>= 0.13), nipals, reshape

LinkingTo Rcpp, RcppArmadillo

License GPL-2

VignetteBuilder knitr

Video https://www.youtube.com/playlist?list=PLvIXxpatSLA2IoV5Sr5BjYUYM4ow

URL https://github.com/lgatto/pRoloc

BugReports https://github.com/lgatto/pRoloc/issues

biocViews ImmunoOncology, Proteomics, MassSpectrometry, Classification, Clustering, QualityControl

machinelearning-functions-nnet.R
machinelearning-functions-PerTurbo.R
machinelearning-functions-plsda.R
machinelearning-functions-rf.R machinelearning-functions-svm.R
machinelearning-functions-kntl.R
machinelearning-functions-tagm-map.R
machinelearning-functions-tagm-mcmc.R
RcppExports.R
MLInterfaces.R clustering-framework.R MSnSet.R
qsep.R

RoxygenNote 6.1.1

git_url https://git.bioconductor.org/packages/pRoloc

git_branch RELEASE_3_9

git_last_commit dbf39a6

git_last_commit_date 2019-05-02

Date/Publication 2019-05-11

R topics documented:

addGoAnnotations .. 4
addLegend ... 5
addMarkers .. 6
AnnotationParams-class ... 7
checkFeatureNamesOverlap ... 8
checkFvarOverlap .. 9
chi2-methods .. 10
classWeights .. 11
clustDist .. 12
ClustDist-class .. 13
ClustDistList-class .. 14
empPvalues ... 16
exprsToRatios-methods ... 17
fDataToUnknown .. 17
filterBinMSnSet .. 18
filterMaxMarkers .. 19
filterMinMarkers .. 20
filterZeroCols .. 20
GenRegRes-class .. 21
getGOFromFeatures ... 22
getMarkerClasses .. 23
getMarkers .. 24
getNormDist .. 25
getPredictions .. 26
goldToTerm .. 27
R topics documented:

- highlightOnPlot .. 28
- knnClassification .. 29
- knnOptimisation ... 30
- knn2Classification .. 31
- knn2Optimisation ... 32
- ksvmClassification .. 34
- ksvmOptimisation ... 35
- lopims ... 36
- makeGoSet .. 37
- markerMSnSet .. 38
- MartInstance-class .. 39
- MCMCChains-class ... 39
- mcmc_get_outliers ... 41
- minMarkers .. 42
- MLearn-methods .. 43
- move2Ds .. 44
- mrkConsProfiles ... 45
- mrkHClust ... 46
- mrkVecToMat .. 47
- nbClassification .. 48
- nbOptimisation ... 49
- nndist-methods ... 50
- nnetClassification .. 51
- nnetOptimisation ... 52
- orderGoAnnotations ... 53
- orgQuants .. 54
- perTurboClassification ... 55
- perTurboOptimisation ... 56
- phenoDisco .. 57
- plot2D ... 59
- plot2Ds ... 62
- plotConsProfiles .. 64
- plotDist .. 64
- plotEllipse ... 66
- plsdaClassification ... 66
- plsdaOptimisation ... 67
- pRolocmarkers ... 68
- QSep-class .. 69
- rfClassification ... 72
- rfOptimisation ... 73
- sampleMSnSet .. 74
- setLisacol .. 75
- showGOEvidenceCodes ... 76
- SpatProtVis-class ... 77
- subsetMarkers ... 78
- svmClassification .. 79
- svmOptimisation .. 80
- tagmMapTrain .. 81
- tagmMcmcTrain .. 82
- testMarkers ... 84
- testMSnSet ... 85
- thetas ... 86
addGoAnnotations

Description

Adds GO annotations to the feature data

Usage

addGoAnnotations(object, params, evidence, useID = FALSE,
 fcol = "GOAnnotations", ...)

Arguments

- **object**: An instance of class MSnSet.
- **params**: An instance of class AnnotationParams. If missing, `getAnnotationParams` will be used.
- **evidence**: GO evidence filtering.
- **useID**: Logical. Should GO term names or identifiers be used? If `TRUE`, identifiers will be used. If `FALSE` GO term names will be used.
- **fcol**: Character. Name of the matrix of annotations to be added to the `fData` default is `GOAnnotations`
- **...**: Other arguments passed to `makeGoSet`

Value

An updated MSnSet with new feature data column called `GOAnnotations` containing a matrix of GO annotations

Author(s)

Lisa M Breckels

Examples

```r
library(pRolocdata)
data(dunkley2006)
par <- setAnnotationParams(inputs =
                          c("Arabidopsis thaliana genes",
                          "Gene stable ID"))
## add protein sets/annotation information
xx <- addGoAnnotations(dunkley2006, par)
dim(fData(xx)$GOAnnotations)

## filter sets
xx <- filterMinMarkers(xx, n = 50)
dim(fData(xx)$GOAnnotations)
```
addLegend

xx <- filterMaxMarkers(xx, p = .25)
dim(fData(xx)$GOAnnotations)

Subset for specific protein sets
sub <- subsetMarkers(xx, keep = c("vacuole"))

Order protein sets
res <- orderGoAnnotations(xx, k = 1:3, p = 1/3, verbose = FALSE)
if (interactive()) {
pRolocVis(res, fcol = "GOAnnotations")
}

addLegend

Description

Adds a legend to a plot2D figure.

Usage

addLegend(object, fcol = "markers", where = c("bottomleft", "bottom", "bottomright", "left", "topleft", "top", "topright", "right", "center", "other"), col, bty = "n", ...)

Arguments

object An instance of class MSnSet
fcol Feature meta-data label (fData column name) defining the groups to be differentiated using different colours. Default is markers.
where One of "bottomleft" (default), "bottomright", "topleft", "topright" or "other" defining the location of the legend. "other" opens a new graphics device, while the other locations are passed to legend.
col A character defining point colours.
bty Box type, as in legend. Default is set to "n".
... Additional parameters passed to legend.

Details

The function has been updated in version 1.3.6 to recycle the default colours when more organelle classes are provided. See plot2D for details.

Value

Invisibly returns NULL

Author(s)

Laurent Gatto
addMarkers

Description

The function adds a 'markers' feature variable. These markers are read from a comma separated values (csv) spreadsheet file. This markers file is expected to have 2 columns (others are ignored) where the first is the name of the marker features and the second the group label. Alternatively, a markers named vector as provided by the `pRolocmarkers` function can also be used.

Usage

```r
addMarkers(object, markers, mcol = "markers", fcol, verbose = TRUE)
```

Arguments

- `object` An instance of class `MSnSet`.
- `markers` A character with the name the markers' csv file or a named character of markers as provided by `pRolocmarkers`.
- `mcol` A character of length 1 defining the feature variable label for the newly added markers. Default is "markers".
- `fcol` An optional feature variable to be used to match against the markers. If missing, the feature names are used.
- `verbose` A logical indicating if number of markers and marker table should be printed to the console.

Details

It is essential to assure that `featureNames(object)` (or `fcol`, see below) and marker names (first column) match, i.e. the same feature identifiers and case fold are used.

Value

A new instance of class `MSnSet` with an additional `markers` feature variable.

Author(s)

Laurent Gatto

See Also

See `pRolocmarkers` for a list of spatial markers and `markers` for details about markers encoding.

Examples

```r
library("pRolocdata")
data(dunkley2006)
atha <- pRolocmarkers("atha")
try(addMarkers(dunkley2006, atha)) # markers already exists
fData(dunkley2006)$markers.org <- fData(dunkley2006)$markers
fData(dunkley2006)$markers <- NULL
```
marked <- addMarkers(dunkley2006, atha)
fvvarLabels(marked)
if 'markers' already exists
marked <- addMarkers(marked, atha, mcol = "markers2")
fvarLabels(marked)
stopifnot(all.equal(fData(marked)$markers, fData(marked)$markers2))
plot2D(marked)
addLegend(marked, where = "topleft", cex = .7)

AnnotationParams-class

Description

Class to store annotation parameters to automatically query a Biomart server, retrieve relevant annotation for a set of features of interest using, for example `getGOFromFeatures` and `makeGoSet`.

Objects from the Class

Objects can be created and set with the `setAnnotationParams` function. Object are created by calling without any arguments `setAnnotationParams()`, which will open an interactive interface. Depending on the value of the "many.graphics" option, a graphical of a text-based menu will open (the text interface can be forced by setting the `graphics` argument to `FALSE`: `setAnnotationParams(graphics = FALSE)`). The menu will allow to select the species of interest first and the type of features (ENSEMBL gene identifier, Entrez id, ...) second.

The species that are available are those for which ENSEMBL data is available in Biomart and have a set of attributes of interest available. The compatible identifiers for downstream queries are then automatically filtered and displayed for user selection.

It is also possible to pass a parameter `inputs`, a character vector of length 2 containing a pattern uniquely matching the species of interest (in position 1) and a patterns uniquely matching the feature types (in position 2). If the matches are not unique, an error will be thrown.

A new instance of the `AnnotationParams` will be created to enable easy and automatic query of the `Mart` instance. The instance is invisibly returned and stored in a global variable in the `pRoloc` package’s private environment for automatic retrieval. If a variable containing an `AnnotationParams` instance is already available, it can be set globally by passing it as argument to the `setAnnotationParams` function. Globally set `AnnotationParams` instances can be accessed with the `getAnnotationParams` function.

See the `pRoloc-theta` vignette for details.

Slots

- `mart`: Object of class "Mart" from the `biomaRt` package.
- `martname`: Object of class "character" with the name of the mart instance.
- `dataset`: Object of class "character" with the data set of the mart instance.
- `filter`: Object of class "character" with the filter to be used when querying the mart instance.
- `date`: Object of class "character" indicating when the current instance was created.
- `biomaRtVersion`: Object of class "character" with the `biomaRt` version used to create the `AnnotationParams` instance.
- `__classVersion__`: Object of class "Versions" with the version of the `AnnotationParams` class of the current instance.
Methods

show signature(object = "AnnotationParams"): to display objects.

Author(s)

Laurent Gatto <lg390@cam.ac.uk>

See Also

getGOFromFeatures, makeGoSet and the pRoloc-theta vignette.

Examples

data(andy2011params)
andy2011params
data(dunkley2006params)
dunkley2006params

try(setAnnotationParams(inputs = c("nomatch1", "nomatch2")))
setAnnotationParams(inputs = c("Human genes",
 "UniProtKB/Swiss-Prot ID"))
getAnnotationParams()

checkFeatureNamesOverlap

Check feature names overlap

Description

Checks the marker and unknown feature overlap of two MSnSet instances.

Usage

checkFeatureNamesOverlap(x, y, fcolx = "markers", fcoly, verbose = TRUE)

Arguments

x An MSnSet instance.
y An MSnSet instance.
fcolx The feature variable to separate unknown (fData(y)$coly == "unknown") from the marker features in the x object.
fcoly As fcolx, for the y object. If missing, the value of fcolx is used.
verbose If TRUE (default), the overlap is printed out on the console.

Value

Invisibly returns a named list of common markers, unique x markers, unique y markers in, common unknowns, unique x unknowns and unique y unknowns.
checkFvarOverlap

Author(s)

Laurent Gatto

Examples

library("pRolocdata")
data(andy2011)
data(andy2011goCC)
checkFeatureNamesOverlap(andy2011, andy2011goCC)
featureNames(andy2011goCC)[1] <- "ABC"
res <- checkFeatureNamesOverlap(andy2011, andy2011goCC)
res$markersX
res$markersY

checkFvarOverlap Compare a feature variable overlap

Description

Extracts qualitative feature variables from two MSnSet instances and compares with a contingency table.

Usage

checkFvarOverlap(x, y, fcolx = "markers", fcoly, verbose = TRUE)

Arguments

x An MSnSet instance.
y An MSnSet instance.
fcolx The feature variable to separate unknown (fData(y)$coly == "unknown") from the marker features in the x object.
fcoly As fcolx, for the y object. If missing, the value of fcolx is used.
verbose If TRUE (default), the contingency table of the the feature variables is printed out.

Value

Invisibly returns a named list with the values of the diagonal, upper and lower triangles of the contingency table.

Author(s)

Laurent Gatto

Examples

library("pRolocdata")
data(dunkley2006)
res <- checkFvarOverlap(dunkley2006, dunkley2006, "markers", "markers.orig")
str(res)
chi2-methods The PCP 'chi square' method

Description

In the original protein correlation profiling (PCP), Andersen et al. use the peptide normalised profiles along gradient fractions and compared them with the reference profiles (or set of profiles) by computing χ^2 values, $\sum \frac{(x_i - x_p)^2}{x_p}$, where x_i is the normalised value of the peptide in fraction i and x_p is the value of the marker (from Wiese et al., 2007). The protein χ^2 is then computed as the median of the peptide χ^2 values. Peptides and proteins with similar profiles to the markers will have small χ^2 values.

The chi2 methods implement this idea and compute such χ^2 values for sets of proteins.

Methods

signature(x = "matrix", y = "matrix", method = "character", fun = "NULL", na.rm = "logical")
Compute rnorm(x) times rnorm(y) χ^2 values, for each x, y feature pair. Method is one of "Andersen2003" or "Wiese2007"; the former (default) computed the χ^2 as sum((y-x)*2/length(x), while the latter uses sum((y-x)*2/x). na.rm defines if missing values (NA and NaN) should be removed prior to summation. fun defines how to summarise the χ^2 values; default, NULL, does not combine the χ^2 values.

signature(x = "matrix", y = "numeric", method = "character", na.rm = "logical") Computes rnorm(x) χ^2 values, for all the (x_i, y) pairs. See above for the other arguments.

signature(x = "numeric", y = "matrix", method = "character", na.rm = "logical") Computes rnorm(y) χ^2 values, for all the (x, y_i) pairs. See above for the other arguments.

signature(x = "numeric", y = "numeric", method = "character", na.rm = "logical") Computes the χ^2 value for the (x, y) pairs. See above for the other arguments.

Author(s)

Laurent Gatto <lg390@cam.ac.uk>

References

See Also

tmpPvalues
Examples

```r
mrk <- rnorm(6)
prot <- matrix(rnorm(60), ncol = 6)
chi2(mrk, prot, method = "Andersen2003")
chi2(mrk, prot, method = "Wiese2007")

pepmark <- matrix(rnorm(18), ncol = 6)
pepprot <- matrix(rnorm(60), ncol = 6)
chi2(pepmark, pepprot)
chi2(pepmark, pepprot, fun = sum)
```

Description

Calculates class weights to be used for parameter optimisation and classification such as `svmOptimisation` or `svmClassification` - see the pRoloc tutorial vignette for an example. The weights are calculated for all non-unknown classes the inverse of the number of observations.

Usage

```r
classWeights(object, fcol = "markers")
```

Arguments

- **object**: An instance of class MSnSet
- **fcol**: The name of the features to be weighted

Value

A table of class weights

Author(s)

Laurent Gatto

Examples

```r
library("pRolocdata")
data(hyperLOPIT2015)
classWeights(hyperLOPIT2015)
data(dunkley2006)
classWeights(dunkley2006)
```
Description
This function computes the mean (normalised) pairwise distances for pre-defined sets of proteins.

Usage
clustDist(object, k = 1:5, fcol = "GOAnnotations", n = 5,
 verbose = TRUE, seed)

Arguments
object An instance of class "MSnSet".
k The number of clusters to try fitting to the protein set. Default is k = 1:5.
fcol The feature meta-data containing matrix of protein sets/ marker definitions. Default is GOAnnotations.
n The minimum number of proteins per set. If protein sets contain less than n instances they will be ignored. Default is 5.
verbose A logical defining whether a progress bar is displayed.
seed An optional seed for the random number generator.

Details
The input to the function is a MSnSet dataset containing a matrix appended to the feature data slot identifying the membership of protein instances to a pre-defined set(s) e.g. a specific Gene Ontology term etc.

For each protein set, the clustDist function (i) extracts all instances belonging to the set, (ii) using the kmeans algorithm fits and tests k = c(1:5) (default) cluster components to each set, (iii) calculates the mean pairwise distance for each k tested.

Note: currently distances are calculated in Euclidean space, but other distance metrics will be supported in the future).

The output is a list of ClustDist objects, one per information cluster. The ClustDist class summarises the algorithm information such as the number of k’s tested for the kmeans, and mean and normalised pairwise Euclidean distances per number of component clusters tested. See ?ClustDist for more details.

Value
An instance of "ClustDistList" containing a "ClustDist" instance for every protein set, which summarises the algorithm information such as the number of k’s tested for the kmeans, and mean and normalised pairwise Euclidean distances per number of component clusters tested.

Author(s)
Lisa Breckels
See Also

For class definitions see "ClustDistList" and "ClustDist".

Examples

```r
library(pRolocdata)
data(dunkley2006)
par <- setAnnotationParams(inputs =
c("Arabidopsis thaliana genes",
"Gene stable ID"))
## add protein sets/annotation information
xx <- addGoAnnotations(dunkley2006, par)
## filter
xx <- filterMinMarkers(xx, n = 50)
xx <- filterMaxMarkers(xx, p = .25)
## get distances for protein sets
dd <- clustDist(xx)
## plot clusters for first 'ClustDist' object
## in the 'ClustDistList'
plot(dd[[1]], xx)
## plot distances for all protein sets
plot(dd)
## Extract normalised distances
## Normalise by n^1/3
minDist <- getNormDist(dd, p = 1/3)
## Get new order according to lowest distance
o <- order(minDist)
## Re-order GOAnnotations
fData(xx)$GOAnnotations <- fData(xx)$GOAnnotations[, o]
if (interactive()) {
  pRolocVis(xx, fcol = "GOAnnotations")
}
```

Description

The ClustDist summaries algorithm information, from running the clustDist function, such as the number of k’s tested for the kmeans, and mean and normalised pairwise (Euclidean) distances per numer of component clusters tested.

Objects from the Class

Object of this class are created with the clustDist function.

Slots

k: Object of class "numeric" storing the number of k clusters tested.
dist: Object of class "list" storing the list of distance matrices.
term: Object of class "character" describing GO term name.
id: Object of class "character" describing the GO term ID.
ClustDistList-class

Arguments

- `nrow`: Object of class "numeric" showing the number of instances in the set
- `clustsz`: Object of class "list" describing the number of instances for each cluster for each k tested
- `components`: Object of class "vector" storing the class membership of each protein for each k tested.
- `fcol`: Object of class "character" showing the feature column name in the corresponding MSnSet where the protein set information is stored.

Methods

- `plot`: Plots the kmeans clustering results.
- `show`: Shows the object.

Author(s)

Lisa M Breckels <lms79@cam.ac.uk>

Examples

```r
showClass("ClustDist")
library('pRolocdata')
data(dunkley2006)
par <- setAnnotationParams(inputs =
                           c("Arabidopsis thaliana genes",
                             "Gene stable ID"))

## add protein set/annotation information
xx <- addGoAnnotations(dunkley2006, par)

## filter
xx <- filterMinMarkers(xx, n = 50)
xx <- filterMaxMarkers(xx, p = .25)

## get distances for protein sets
dd <- clustDist(xx)

## plot clusters for first 'ClustDist' object
## in the 'ClustDistList'
plot(dd[[1]], xx)

## plot distances for all protein sets
plot(dd)
```

Description

A class for storing lists of `ClustDist` instances.
Objects from the Class

Object of this class are created with the `clustDist` function.

Slots

- `x`: Object of class list containing valid ClustDist instances.
- `log`: Object of class list containing an object creation log, containing among other elements the call that generated the object.
- `__classVersion__`: The version of the instance. For development purposes only.

Methods

- `\[\]`: Extracts a single ClustDist at position.
- `[`: Extracts one or more ClustDists as ClustDistList.
- `length`: Returns the number of ClustDists.
- `names`: Returns the names of ClustDists, if available. The replacement method is also available.
- `show`: Display the object by printing a short summary.
- `lapply(x, FUN, ...)`: Apply function `FUN` to each element of the input `x`. If the application of `FUN` returns and ClustDist, then the return value is an ClustDistList, otherwise a list.
- `plot`: Plots a boxplot of the distance results per protein set.

Author(s)

Lisa M Breckels <lms79@cam.ac.uk>

Examples

```r
library('prilocdata')
data(dunkley2006)
par <- setAnnotationParams(inputs =
    c("Arabidopsis thaliana genes",
    "Gene stable ID"))

## add protein set/annotation information
xx <- addGoAnnotations(dunkley2006, par)

## filter
xx <- filterMinMarkers(xx, n = 50)
x <- filterMaxMarkers(xx, p = .25)

## get distances for protein sets
dd <- clustDist(xx)

## plot distances for all protein sets
plot(dd)

names(dd)

## Extract first 4 ClustDist objects of the ClustDistList
dd[1:4]

## Extract 1st ClustDist object
dd[[1]]
```
 empPvalues

Estimate empirical p-values for χ^2 protein correlations.

Description

Andersen et al. (2003) used a fixed χ^2 threshold of 0.05 to identify organelle-specific candidates. This function computes empirical p-values by permutation the markers relative intensities and computed null χ^2 values.

Usage

empPvalues(marker, corMatrix, n = 100, ...)

Arguments

marker
A numerics with markers relative intensities.

corMatrix
A matrix of $nrow(corMatrix)$ protein relative intensities to be compares against the marker.

n
The number of iterations.

...
Additional parameters to be passed to chi2.

Value

A numeric of length $nrow(corMatrix)$.

Author(s)

Laurent Gatto <lg390@cam.ac.uk>

References

See Also

chi2 for χ^2 calculation.

Examples

set.seed(1)
mrk <- rnorm(6, 5, 1)
prot <- rbind(matrix(rnorm(120, 5, 1), ncol = 6),
 mrk + rnorm(6))
mrk <- mrk/sum(mrk)
prot <- prot/rowSums(prot)
empPvalues(mrk, prot)
exprsToRatios-methods Calculate all ratio pairs

Description
Calculations all possible ratios for the assayData columns in an "MSnSet".

Methods
signature(object = "MSnSet", log = "logical") If log is FALSE (default) the ratios for all the assayData columns are computed; otherwise, log ratios (differences) are calculated.

Examples
library("pRolocdata")
data(dunkley2006)
x <- dunkley2006[, 1:3]
head(exprs(x))
r <- exprsToRatios(x)
head(exprs(r))
pData(r)

fDataToUnknown Update a feature variable

Description
This function replaces a string or regular expression in a feature variable using the sub function.

Usage
fDataToUnknown(object, fcol = "markers", from = "^\$", to = "unknown",
...)

Arguments
object An instance of class MSnSet.
fcol Feature variable to be modified. Default is "markers". If NULL, all feature variables will updated.
from A character defining the string or regular expression of the pattern to be replaced. Default is the empty string, i.e. the regular expression "^\$". See sub for details. If NA, then NA values are replaced by to.
to A replacement for matched pattern. Default is "unknown". See sub for details.
... Additional arguments passed to sub.

Value
An updated MSnSet.
filterBinMSnSet

Author(s)

Laurent Gatto

Examples

library("pRolocdata")
data(dunkley2006)
getMarkers(dunkley2006, "markers")
dunkley2006 <- fDataToUnknown(dunkley2006,
 from = "unknown", to = "unassigned")
getMarkers(dunkley2006, "markers")

Description

Removes columns or rows that have a certain proportion or absolute number of 0 values.

Usage

filterBinMSnSet(object, MARGIN = 2, t, q, verbose = TRUE)

Arguments

 object An MSnSet
 MARGIN 1 or 2. Default is 2.
 t Rows/columns that have t or less 1s, it will be filtered out. When t and q are
 missing, default is to use t = 1.
 q If a row has a higher quantile than defined by q, it will be filtered out.
 verbose A logical defining of a message is to be printed. Default is TRUE.

Value

A filtered MSnSet.

Author(s)

Laurent Gatto

See Also

zerosInBinMSnSet, filterZeroCols, filterZeroRows.
Examples

```r
set.seed(1)
m <- matrix(sample(0:1, 25, replace=TRUE), 5)
m[1, ] <- 0
m[, 1] <- 0
rownames(m) <- colnames(m) <- letters[1:5]
fd <- data.frame(row.names = letters[1:5])
x <- MSnSet(exprs = m, fData = fd, pData = fd)
exprs(x)
## Remove columns with no 1s
exprs(filterBinMSnSet(x, MARGIN = 2, t = 0))
## Remove columns with one 1 or less
exprs(filterBinMSnSet(x, MARGIN = 2, t = 1))
## Remove columns with two 1s or less
exprs(filterBinMSnSet(x, MARGIN = 2, t = 2))
## Remove columns with three 1s
exprs(filterBinMSnSet(x, MARGIN = 2, t = 3))
## Remove columns that have half or less of 1s
exprs(filterBinMSnSet(x, MARGIN = 2, q = 0.5))
```

filterMaxMarkers

Removes class/annotation information from a matrix of candidate markers that appear in the fData.

Description

Removes annotation information that contain more that a certain number/percentage of proteins

Usage

```r
filterMaxMarkers(object, n, p = 0.2, fcol = "GOAnnotations", verbose = TRUE)
```

Arguments

- **object**: An instance of class MSnSet.
- **n**: Maximum number of proteins allowed per class/information term.
- **p**: Maximum percentage of proteins per column. Default is 0.2 i.e. remove columns that have information for greater than 20 of the total number of proteins in the dataset (note: this is useful for example, if information is GO terms, for removing very general and uninformative terms).
- **fcol**: The name of the matrix of marker information. Default is GOAnnotations.
- **verbose**: The name of the matrix of marker information. Default is GOAnnotations.

Value

An updated MSnSet

See Also

addGoAnnotations and example therein.
filterMinMarkers

Removes class/annotation information from a matrix of candidate markers that appear in the fData.

Description

Removes annotation information that contain less that a certain number/percentage of proteins

Usage

filterMinMarkers(object, n = 10, p, fcol = "GOAnnotations", verbose = TRUE)

Arguments

object An instance of class MSnSet.

n Minimum number of proteins allowed per column. Default is 10.

p Minimum percentage of proteins per column.

fcol The name of the matrix of marker information. Default is GOAnnotations.

verbose Number of marker candidates retained after filtering.

Value

An updated MSnSet.

Author(s)

Lisa M Breckels

See Also

addGoAnnotations and example therein.

filterZeroCols

Remove 0 columns/rows

Description

Removes all assay data columns/rows that are composed of only 0, i.e. have a colSum/rowSum of 0.

Usage

filterZeroCols(object, verbose = TRUE)

filterZeroRows(object, verbose = TRUE)

Arguments

object A MSnSet object.

verbose Print a message with the number of filtered out columns/row (if any).
GenRegRes-class

Value
An MSnSet.

Author(s)
Laurent Gatto

Examples

```r
library("pRolocdata")
data(andy2011goCC)
any(colSums(exprs(andy2011goCC)) == 0)
exprs(andy2011goCC)[, 1:5] <- 0
ncol(andy2011goCC)
ncol(filterZeroCols(andy2011goCC))
```

GenRegRes-class Class "GenRegRes" and "ThetaRegRes"

Description
Regularisation framework containers.

Objects from the Class
Object of this class are created with the respective regularisation function: knnOptimisation, svmOptimisation, plsdaOptimisation, knntlOptimisation, ...

Slots

- **algorithm**: Object of class "character" storing the machine learning algorithm name.
- **hyperparameters**: Object of class "list" with the respective algorithm hyper-parameters tested.
- **design**: Object of class "numeric" describing the cross-validation design, the test data size and the number of replications.
- **log**: Object of class "list" with warnings thrown during the hyper-parameters regularisation.
- **seed**: Object of class "integer" with the random number generation seed.
- **results**: Object of class "matrix" of dimensions times (see design) by number of hyperparameters + 1 storing the macro F1 values for the respective best hyper-parameters for each replication.
- **f1Matrices**: Object of class "list" with respective times cross-validation F1 matrices.
- **cmMatrices**: Object of class "list" with respective times contingency matrices.
- **testPartitions**: Object of class "list" with respective times test partitions.
- **datasize**: Object of class "list" with details about the respective inner and outer training and testing data sizes.

Only in ThetaRegRes:

- **predictions**: A list of predictions for the optimisation iterations.
- **otherWeights**: Alternative best theta weights: a vector per iterations, NULL if no other best weights were found.
getGOFromFeatures

Description
The function pulls the gene ontology (GO) terms for a set of feature names.

Methods

getF1Scores Returns a matrix of F1 scores for the optimisation parameters.

f1Count signature(object = "GenRegRes", t = "numeric") and signature(object = "ThetaRegRes", t = "numeric"): Constructs a table of all possible parameter combination and count how many have an F1 scores greater or equal than t. When t is missing (default), the best F1 score is used. This method is useful in conjunctin with plot.

getParams Returns the best parameters. It is however strongly recommended to inspect the optimisation results. For a ThetaRegRes optimisation result, the method to chose the best parameters can be "median" (default) or "mean" (the median or mean of the best weights is chosen), "max" (the first weights with the highest macro-F1 score, considering that multiple max scoring combinations are possible) or "count" (the observed weight that get the maximum number of observations, see f1Count). The favourP argument can be used to prioritise weights that favour the primary data (i.e. heigh weights). See favourPrimary below.

getAddress Returns the seed used for the optimisation run.

getWarnings signature(object = "GenRegRes"): Returns a vector of recorded warnings.

levelPlot signature(object = "GenRegRes"): Plots a heatmap of of the optimisation results. Only for "GenRegRes" instances.

plot Plots the optimisation results.

show Shows the object.

Other functions

Only for ThetaRegRes:

combineThetaRegRes(object) Takes a list of ThetaRegRes instances to be combined and returns a new ThetaRegRes instance.

favourPrimary(primary, auxiliary, object, verbose = TRUE) Takes the primary and auxiliary data sources (two MSnSet instances) and a ThetaRegRes object and returns and updated ThetaRegRes instance containing best parameters/weights (see the getParams function) favouring the primary data when multiple best theta weights are available.

Author(s)
Laurent Gatto <lg390@cam.ac.uk>

Examples

showClass("GenRegRes")
showClass("ThetaRegRes")
Usage

getGOFromFeatures(id, namespace = "cellular_component",
 evidence = NULL, params = NULL, verbose = FALSE, nmax = 500)

Arguments

id An character with feature names to be pulled from biomart. If and MSnSet is
 provided, then featureNames(id) is used.
namespace The GO namespace. One of biological_process, cellular_component (de-
 fault) or molecular_function.
evidence The GO evidence code. See showGOEvidenceCodes for details. If NULL (de-
 fault), no filtering based on the evidence code is performed.
params An instance of class "AnnotationParams".
verbose A logical defining verbosity of the function. Default is FALSE.
nmax As described in https://support.bioconductor.org/p/86358/, the Biomart
 result can be unreliable for large queries. This argument splits the input in
 chunks of length nmax (default is 500). If set to NULL, the query is performed in
 full.

Value

A data.frame with relevant GO terms.

Author(s)

Laurent Gatto

Examples

library(pRolocdata)
data(dunkley2006)
data(dunkley2006params)
dunkley2006params
fn <- featureNames(dunkley2006)[1:5]
getGOFromFeatures(fn, params = dunkley2006params)

getMarkerClasses Returns the organelle classes in an 'MSnSet'

Description

Convenience accessor to the organelle classes in an 'MSnSet'. This function returns the organelle
classes of an MSnSet instance. As a side effect, it prints out the classes.

Usage

getMarkerClasses(object, fcol = "markers", ...)
getMarkers

Arguments

- **object**: An instance of class "MSnSet".
- **fcol**: The name of the markers column in the `featureData` slot. Default is `markers`.
- **...**: Additional parameters passed to `sort` from the base package.

Value

A character vector of the organelle classes in the data.

Author(s)

Lisa Breckels and Laurent Gatto

See Also

- `getMarkers` to extract the marker proteins. See `markers` for details about spatial markers storage and encoding.

Examples

```r
library("pRolocdata")
data(dunkley2006)
organelles <- getMarkerClasses(dunkley2006)
## same if markers encoded as a matrix
dunkley2006 <- mrkVecToMat(dunkley2006, mfcol = "Markers")
organelles2 <- getMarkerClasses(dunkley2006, fcol = "Markers")
stopifnot(all.equal(organelles, organelles2))
```

getMarkers

Get the organelle markers in an MSnSet

Description

Convenience accessor to the organelle markers in an MSnSet. This function returns the organelle markers of an MSnSet instance. As a side effect, it print out a marker table.

Usage

```r
getMarkers(object, fcol = "markers", names = TRUE, verbose = TRUE)
```

Arguments

- **object**: An instance of class "MSnSet".
- **fcol**: The name of the markers column in the `featureData` slot. Default is "markers".
- **names**: A logical indicating if the markers vector should be named. Ignored if markers are encoded as a matrix.
- **verbose**: If TRUE, a marker table is printed and the markers are returned invisibly. If FALSE, the markers are returned.
getNormDist

Extract Distances from a "ClustDistList" object

Description

This function computes and outputs normalised distances from a "ClustDistList" object.

Usage

```
getNormDist(object, p = 1/3)
```

Arguments

- **object**
 An instance of class "ClustDistList".
- **p**
 The normalisation factor. Default is 1/3.

Value

An numeric of normalised distances, one per protein set in the ClustDistList.

Author(s)

Lisa Breckels

See Also

"ClustDistList", "ClustDist", and examples in clustDist.
getPredictions

Returns the predictions in an ‘MSnSet’

Description
Convenience accessor to the predicted feature localisation in an ‘MSnSet’. This function returns the predictions of an MSnSet instance. As a side effect, it prints out a prediction table.

Usage
getPredictions(object, fcol, scol, mcol = "markers", t = 0, verbose = TRUE)

Arguments
- object: An instance of class "MSnSet".
- fcol: The name of the prediction column in the featureData slot.
- scol: The name of the prediction score column in the featureData slot. If missing, created by pasting '.scores' after fcol.
- mcol: The feature meta data column containing the labelled training data.
- t: The score threshold. Predictions with score < t are set to 'unknown'. Default is 0. It is also possible to define thresholds for each prediction class, in which case, t is a named numeric with names exactly matching the unique prediction class names.
- verbose: If TRUE, a prediction table is printed and the predictions are returned invisibly. If FALSE, the predictions are returned.

Value
An instance of class "MSnSet" with fcol.pred feature variable storing the prediction results according to the chosen threshold.

Author(s)
Laurent Gatto and Lisa Breckels

See Also
orgQuants for calculating organelle-specific thresholds.

Examples
library("pRolocdata")
data(dunkley2006)
res <- svmClassification(dunkley2006, fcol = "pd.markers", sigma = 0.1, cost = 0.5)
fData(res)$svm[500:510]
fData(res)$svm.scores[500:510]
getPredictions(res, fcol = "svm", t = 0) ## all predictions
getPredictions(res, fcol = "svm", t = .9) ## single threshold
50% top predictions per class
ts <- orgQuants(res, fcol = "svm", t = .5)
getPredictions(res, fcol = "svm", t = ts)

goIdToTerm

Convert GO ids to/from terms

Description

Converts GO identifiers to/from GO terms, either explicitly or by checking if (any items in) the input contains "GO: ".

Usage

```r
goIdToTerm(x, names = TRUE, keepNA = TRUE)
goTermToId(x, names = TRUE, keepNA = TRUE)
flipGoTermId(x, names = TRUE, keepNA = TRUE)
prettyGoTermId(x)
```

Arguments

- `x` A character of GO ids or terms.
- `names` Should a named character be returned? Default is TRUE.
- `keepNA` Should any GO term/id names that are missing or obsolete be replaced with a NA? Default is TRUE. If FALSE then the GO term/id names is kept.

Value

A character of GO terms (ids) if `x` were ids (terms).

Author(s)

Laurent Gatto

Examples

```r
goIdToTerm("GO:0000001")
goIdToTerm("GO:0000001", names = FALSE)
goIdToTerm(c("GO:0000001", "novalid"))
goIdToTerm(c("GO:0000001", "GO:0000002", "notvalid"))
goTermToId("mitochondrion inheritance")
goTermToId("mitochondrion inheritance", name = FALSE)
goTermToId(c("mitochondrion inheritance", "notvalid"))
prettyGoTermId("mitochondrion inheritance")
prettyGoTermId("GO:0000001")
flipGoTermId("mitochondrion inheritance")
flipGoTermId("GO:0000001")
flipGoTermId("GO:0000001", names = FALSE)
```
highlightOnPlot

Highlight features of interest on a spatial proteomics plot

Description
Highlights a set of features of interest given as a FeaturesOfInterest instance on a PCA plot produced by codeplot2D or plot3D. If none of the features of interest are found in the MSnset’s featureNames, an warning is thrown.

Usage
highlightOnPlot(object, foi, labels, args = list(), ...)
highlightOnPlot3D(object, foi, labels, args = list(), radius = 0.1 * 3, ...)

Arguments
- object: The main dataset described as an MSnSet or a matrix with the coordinates of the features on the PCA plot produced (and invisibly returned) by plot2D.
- foi: An instance of FeaturesOfInterest, or, alternatively, a character of feautre names.
- labels: A character of length 1 with a feature variable name to be used to label the features of interest. This is only valid if object is an MSnSet. Alternatively, if TRUE, then featureNames(object) (or coderownames(object), if object is a matrix) are used. Default is missing, which does not add any labels.
- args: A named list of arguments to be passed to plot2D if the PCA coordinates are to be calculated. Ignored if the PCA coordinates are passed directly, i.e. object is a matrix.
- ...: Additional parameters passed to points or text (when labels is TRUE) when adding to plot2D, or spheres3d or text3d when adding the plot3D.
- radius: Radius of the spheres to be added to the visualisation produced by plot3D. Default is 0.3 (i.e plot3D’s radius1 * 3), to emphasise the features with regard to unknown (radius1 = 0.1) and marker (radius1 * 2) features.

Value
NULL; used for its side effects.

Author(s)
Laurent Gatto

Examples
library("pRolocdata")
data("tan2009r1")
x <- FeaturesOfInterest(description = "A test set of features of interest",
 fnames = featureNames(tan2009r1)[1:10],
 object = tan2009r1)
using FeaturesOfInterest or feature names
par(mfrow = c(2, 1))
plot2D(tan2009r1)
highlightOnPlot(tan2009r1, x)
plot2D(tan2009r1)
highlightOnPlot(tan2009r1, featureNames(tan2009r1)[1:10])

.pca <- plot2D(tan2009r1)
head(.pca)
highlightOnPlot(.pca, x, col = "red")
highlightOnPlot(tan2009r1, x, col = "red", cex = 1.5)
highlightOnPlot(tan2009r1, x, labels = TRUE)

.pca <- plot2D(tan2009r1, dims = c(1, 3))
highlightOnPlot(.pca, x, pch = "+", dims = c(1, 3))
highlightOnPlot(tan2009r1, x, args = list(dims = c(1, 3)))

.pca2 <- plot2D(tan2009r1, mirrorX = TRUE, dims = c(1, 3))
previous pca matrix, need to mirror X axis
highlightOnPlot(.pca, x, pch = "+", args = list(mirrorX = TRUE))
new pca matrix, with X mirrors (and 1st and 3rd PCs)
highlightOnPlot(.pca2, x, col = "red")

plot2D(tan2009r1)
highlightOnPlot(tan2009r1, x)
highlightOnPlot(tan2009r1, x, labels = TRUE, pos = 3)
highlightOnPlot(tan2009r1, x, labels = "Flybase.Symbol", pos = 1)

in 3 dimensions
if (interactive()) {
 plot3D(tan2009r1, radius1 = 0.05)
 highlightOnPlot3D(tan2009r1, x, labels = TRUE)
 highlightOnPlot3D(tan2009r1, x)
}

knnClassification

knn classification

Description
Classification using for the k-nearest neighbours algorithm.

Usage

```r
knnClassification(object, assessRes, scores = c("prediction", "all", "none"), k, fcol = "markers", ...)  
```

Arguments

- **object**: An instance of class "MSnSet".
- **assessRes**: An instance of class "GenRegRes", as generated by `knnOptimisation`.
- **scores**: One of "prediction", "all" or "none" to report the score for the predicted class only, for all classes or none.
knnOptimisation

knn parameter optimisation

Description
Classification parameter optimisation for the k-nearest neighbours algorithm.

Usage
knnOptimisation(object, fcol = "markers", k = seq(3, 15, 2),
 times = 100, test.size = 0.2, xval = 5, fun = mean, seed,
 verbose = TRUE, ...)

Arguments

 object An instance of class "MSnSet".
 fcol The feature meta-data containing marker definitions. Default is markers.
 k The hyper-parameter. Default values are seq(3, 15, 2).
 times The number of times internal cross-validation is performed. Default is 100.
 test.size The size of test data. Default is 0.2 (20 percent).
 xval The n-cross validation. Default is 5.

Value
An instance of class "MSnSet" with knn and knn.scores feature variables storing the classification results and scores respectively.

Author(s)
Laurent Gatto

Examples

library(pRolocdata)
data(dunkley2006)
reducing parameter search space and iterations
params <- knnOptimisation(dunkley2006, k = c(3, 10), times = 3)
params
plot(params)
f1Count(params)
levelPlot(params)
getParam(params)
res <- knnClassification(dunkley2006, params)
getPredictions(res, fcol = "knn")
getPredictions(res, fcol = "knn", t = 0.75)
plot2D(res, fcol = "knn")
fun The function used to summarise the xval macro F1 matrices.
seed The optional random number generator seed.
verbose A logical defining whether a progress bar is displayed.
... Additional parameters passed to knn from package class.

Details

Note that when performance scores precision, recall and (macro) F1 are calculated, any NA values are replaced by 0. This decision is motivated by the fact that any class that would have either a NA precision or recall would result in an NA F1 score and, eventually, a NA macro F1 (i.e. mean(F1)). Replacing NAs by 0s leads to F1 values of 0 and a reduced yet defined final macro F1 score.

Value

An instance of class "GenRegRes".

Author(s)

Laurent Gatto

See Also

knnClassification and example therein.

kntlClassification

knntlClassification knn transfer learning classification

Description

Classification using a variation of the KNN implementation of Wu and Dietterich’s transfer learning schema

Usage

kntlClassification(primary, auxiliary, fcol = "markers", bestTheta, k, scores = c("prediction", "all", "none"), seed)

Arguments

primary An instance of class "MSnSet".
auxiliary An instance of class "MSnSet".
fcol The feature meta-data containing marker definitions. Default is markers.
bestTheta Best theta vector as output from knnt1Optimisation, see knnt1Optimisation for details
k Numeric vector of length 2, containing the best k parameters to use for the primary and auxiliary datasets. If k k is not specified it will be calculated internally.
scores One of "prediction", "all" or "none" to report the score for the predicted class only, for all classes or none.
seed The optional random number generator seed.
knntlOptimisation

Value
A character vector of the classifications for the unknowns

Author(s)
Lisa Breckels

See Also
knntlOptimisation

Examples

library(pRolocdata)
data(andy2011)
data(andy2011goCC)
reducing calculation time of k by pre-running knnOptimisation
x <- c(andy2011, andy2011goCC)
k <- lapply(x, function(z)
 knnOptimisation(z, times=5,
 fcol = "markers.orig",
 verbose = FALSE))
k <- sapply(k, function(z) getParams(z))
k
reducing parameter search with theta = 1,
weights of only 1 or 0 will be considered
opt <- knntlOptimisation(andy2011, andy2011goCC,
 fcol = "markers.orig",
 times = 2,
 by = 1, k = k)
opt
th <- getParams(opt)
plot(opt)
res <- knntlClassification(andy2011, andy2011goCC,
 fcol = "markers.orig", th, k)
res

knntlOptimisation theta parameter optimisation

Description
Classification parameter optimisation for the KNN implementation of Wu and Dietterich’s transfer learning schema

Usage
knntlOptimisation(primary, auxiliary, fcol = "markers", k, times = 50,
 test.size = 0.2, xval = 5, by = 0.5, length.out, th, xfolds,
 BPPARAM = BiocParallel::bpparam(), method = "Breckels",
 log = FALSE, seed)
Arguments

- **primary**: An instance of class "MSnSet".
- **auxiliary**: An instance of class "MSnSet".
- **fcol**: The feature meta-data containing marker definitions. Default is markers.
- **k**: Numeric vector of length 2, containing the best k parameters to use for the primary (k[1]) and auxiliary (k[2]) datasets. See knnOptimisation for generating best k.
- **times**: The number of times cross-validation is performed. Default is 50.
- **test.size**: The size of test (validation) data. Default is 0.2 (20 percent).
- **xval**: The number of rounds of cross-validation to perform.
- **by**: The increment for theta, must be one of c(1,0.5,0.25,0.2,0.15,0.1,0.05)
- **length.out**: Alternative to using by parameter. Specifies the desired length of the sequence of theta to test.
- **th**: A matrix of theta values to test for each class as generated from the function thetas, the number of columns should be equal to the number of classes contained in fcol. Note: columns will be ordered according to getMarkerClasses(primary,fcol). This argument is only valid if the default method 'Breckels' is used.
- **xfolds**: Option to pass specific folds for the cross validation.
- **BPPARAM**: Required for parallelisation. If not specified selects a default BiocParallelParam, from global options or, if that fails, the most recently registered() back-end.
- **method**: The k-NN transfer learning method to use. The default is 'Breckels' as described in the Breckels et al (2016). If 'Wu' is specified then the original method implemented Wu and Dietterich (2004) is implemented.
- **log**: A logical defining whether logging should be enabled. Default is FALSE. Note that logging produces considerably bigger objects.
- **seed**: The optional random number generator seed.

Details

Value

A list of containing the theta combinations tested, associated macro F1 score and accuracy for each combination over each round (specified by times).

Author(s)

Lisa Breckels

References

ksvmClassification

See Also

knnt1Classification and example therein.

ksvmClassification ksvm classification

Description

Classification using the support vector machine algorithm.

Usage

ksvmClassification(object, assessRes, scores = c("prediction", "all", "none"), cost, fcol = "markers", ...)

Arguments

object An instance of class "MSnSet".
assessRes An instance of class "GenRegRes", as generated by ksvmOptimisation.
scores One of "prediction", "all" or "none" to report the score for the predicted class only, for all classes or none.
cost If assessRes is missing, a cost must be provided.
fcol The feature meta-data containing marker definitions. Default is markers.
... Additional parameters passed to ksvm from package kernlab.

Value

An instance of class "MSnSet" with ksvm and ksvm.scores feature variables storing the classification results and scores respectively.

Author(s)

Laurent Gatto

Examples

library(pRolocdata)
data(dunkley2006)
reducing parameter search space and iterations
params <- ksvmOptimisation(dunkley2006, cost = 2^seq(-1,4,5), times = 3)
params
plot(params)
f1Count(params)
levelPlot(params)
getParams(params)
res <- ksvmClassification(dunkley2006, params)
getPredictions(res, fcol = "ksvm")
getPredictions(res, fcol = "ksvm", t = 0.75)
plot2D(res, fcol = "ksvm")
ksvmOptimisation

ksvm parameter optimisation

Description

Classification parameter optimisation for the support vector machine algorithm.

Usage

```r
ksvmOptimisation(object, fcol = "markers", cost = 2^(-4:4),
                  times = 100, test.size = 0.2, xval = 5, fun = mean, seed,
                  verbose = TRUE, ...)
```

Arguments

- `object`: An instance of class "MSnSet".
- `fcol`: The feature meta-data containing marker definitions. Default is `markers`.
- `cost`: The hyper-parameter. Default values are `2^-4:4`.
- `times`: The number of times internal cross-validation is performed. Default is 100.
- `test.size`: The size of test data. Default is 0.2 (20 percent).
- `xval`: The n-cross validation. Default is 5.
- `fun`: The function used to summarise the `xval` macro F1 matrices.
- `seed`: The optional random number generator seed.
- `verbose`: A logical defining whether a progress bar is displayed.
- `...`: Additional parameters passed to `ksvm` from package kernlab.

Details

Note that when performance scores precision, recall and (macro) F1 are calculated, any NA values are replaced by 0. This decision is motivated by the fact that any class that would have either a NA precision or recall would result in an NA F1 score and, eventually, a NA macro F1 (i.e. mean(F1)). Replacing NAs by 0s leads to F1 values of 0 and a reduced yet defined final macro F1 score.

Value

An instance of class "GenRegRes".

Author(s)

Laurent Gatto

See Also

`ksvmClassification` and example therein.
lopims

A complete LOPIMS pipeline

Description

The function processes MSe data using the synergise function of the synapter package and combines resulting Synapter instances into one "MSnSet" and organelle marker data is added as a feature-level annotation variable.

Usage

lopims(hdmsedir = "HDMSe", msedir = "MSe", pep3ddir = "pep3D",
 fastafile, markerfile, mfdr = 0.025, ...)

Arguments

hdmsedir A character identifying the directory containing the HDMSe final peptide files. Default is HDMSe.
msedir A character identifying the directory containing the MSe final peptide files. Default is MSe.
pep3ddir A character identifying the directory containing the MSe pep 3D files. Default is pep3D.
fastafile A character identifying the protein fasta database. Default is to use the fasta file in the current directory. If several such files exist, the function reports an error.
markerfile A character identifying the marker file (see details for format). Default is to use a csv file starting with marker in the current directory. If several such files exist, the function reports an error.
mfdr The master FDR value. Default is 0.025.
... Additional paramters passed to synergise.

Details

The LOPIMS pipeline is composed of 5 steps:

1. The HDMSe final peptide files are used to compute false discovery rates upon all possible combinations of HDMSe final peptides files and the best combination smaller or equal to mfdr is chosen. See estimateMasterFdr for details. The corresponding master run is then created as descibed in makeMaster. (function lopims1)
2. Each MSe/pep3D pair is processed using the HDMSe master file using synergise. (function lopims2)
3. The respective peptide-level synergise output objects are converted and combined into an single "MSnSet" instance. (function lopims3)
4. Protein-level quantitation is inferred as follows. For each protein, a reference sample/fraction is chosen based on the number of missing values (NA). If several samples have a same minimal number of NAs, ties are broken using the sum of counts. The peptides that do not display any missing values for each (frac_i, frac_ref) pair are summed and the ratio is reported (see pRoloc::refNormMeanOfNonNA PepSum for details). (function lopims4)
5. The markers defined in the markerfile are collated as feature meta-data in the markers variable. See addMarkers for details. (function lopims5)

Intermediate synergise reports as well as resulting objects are stored in a LOPIMS_pipeline directory. For details, please refer to the synapter vignette and reference papers.

Value

An instance of class "MSnSet" with protein level quantitation and respective organelle markers.

Author(s)

Laurent Gatto

References

makeGoSet

Description

Creates a new "MSnSet" instance populated with a GO term binary matrix based on an original object.

Usage

```
makeGoSet(object, params, namespace = "cellular_component", evidence = NULL)
```

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>object</td>
<td>An instance of class "MSnSet" or a character of feature names.</td>
</tr>
<tr>
<td>params</td>
<td>An instance of class "AnnotationParams", compatible with featureNames(object)'s format.</td>
</tr>
<tr>
<td>namespace</td>
<td>The ontology name space. One or several of "biological_process", "cellular_component" or "molecular_function".</td>
</tr>
<tr>
<td>evidence</td>
<td>GO evidence filtering.</td>
</tr>
</tbody>
</table>

Value

A new "MSnSet" with the GO terms for the respective features in the original object.
markerMSnSet

Author(s)
Laurent Gatto

Examples
library("pRolocdata")
data(dunkley2006)
data(dunkley2006params)
goset <- makeGoSet(dunkley2006[1:10,],
dunkley2006params)
goset
eprs(goset)[1:10, 1:5]
image(goset)

markerMSnSet

<table>
<thead>
<tr>
<th>Extract marker/unknown subsets</th>
</tr>
</thead>
</table>

Description
These function extract the marker or unknown proteins into a new MSnSet.

Usage
markerMSnSet(object, fcol = "markers")
unknownMSnSet(object, fcol = "markers")

Arguments

- **object**: An instance of class MSnSet
- **fcol**: The name of the feature data column, that will be used to separate the markers from the proteins of unknown localisation. When the markers are encoded as vectors, features of unknown localisation are defined as fData(object)[,fcol] == "unknown". For matrix-encoded markers, unlabelled proteins are defined as rowSums(fData(object)[,fcol]) == 0. Default is "markers".

Value
An new MSnSet with marker/unknown proteins only.

Author(s)
Laurent Gatto

See Also
sampleMSnSet testMSnSet and markers for markers encoding.
Examples

```r
library("pRolocdata")
data(dunkley2006)

mrk <- markerMSnSet(dunkley2006)
unk <- unknownMSnSet(dunkley2006)
dim(dunkley2006)
dim(mrk)
dim(unk)
table(fData(dunkley2006)$markers)
table(fData(mrk)$markers)
table(fData(unk)$markers)
```

```r
## matrix-encoded markers
dunkley2006 <- mrkVecToMat(dunkley2006)
dim(markerMSnSet(dunkley2006, "Markers"))

stopifnot(all.equal(featureNames(markerMSnSet(dunkley2006, "Markers")),
featureNames(markerMSnSet(dunkley2006, "markers"))))
dim(unknownMSnSet(dunkley2006, "Markers"))

stopifnot(all.equal(featureNames(unknownMSnSet(dunkley2006, "Markers")),
featureNames(unknownMSnSet(dunkley2006, "markers"))))
```

MartInstance-class

Class "MartInstance"

Description

Internal infrastructure to query/handle several individual mart instance. See MartInterface.R for details.

Author(s)

Laurent Gatto <lg390@cam.ac.uk>

MCMCChains-class

Infrastructure to store and process MCMC results

Description

The MCMCParams infrastructure is used to store and process Marchov chain Monte Carlo results for the T-Augmented Gaussian Mixture model (TAGM) from Crook et al. (2018).

Usage

```r
chains(object)
```

```r
## S4 method for signature 'MCMCParams'

show(object)
```

```r
## S4 method for signature 'ComponentParam'

show(object)
```
S4 method for signature 'MCMCChains'
show(object)

S4 method for signature 'MCMCChains'
length(x)

S4 method for signature 'MCMCPrams'
length(x)

S4 method for signature 'MCMCChains,ANY,ANY'
x[[i, j = "missing",
drop = "missing"]]

S4 method for signature 'MCMCPrams,ANY,ANY'
x[[i, j = "missing",
drop = "missing"]]

S4 method for signature 'MCMCChains,ANY,ANY,ANY'
x[i, j = "missing",
drop = "missing"]

S4 method for signature 'MCMCPrams,ANY,ANY,ANY'
x[i, j = "missing",
drop = "missing"]

S4 method for signature 'MCMCChains'
show(object)

Arguments

object An instance of appropriate class.
x Object to be subset.
i An integer(). Should be of length 1 for [.
j Missing.
drop Missing.

Details

Objects of the MCMCPrams class are created with the tagmMcmcTrain() function. These objects store the priors of the generative TAGM model and the results of the MCMC chains, which themselves are stored as an instance of class MCMCChains and can be accessed with the chains() function. A summary of the MCMC chains (or class MCMCSummary) can be further computed with the tagmMcmcProcess() function.

See the pRoloc-bayesian vignette for examples.

Slots

chains list() containing the individual full MCMC chain results in an MCMCChains instance. Each element must be a valid MCMCChains instance.

posteriorEstimates A data.frame documenting the posteriors priors in an MCMCSummary instance. It contains N rows and columns tagm.allocation, tagm.probability, tagm.outlier, tagm.probability.lowerquantile, tagm.probability.upperquantile and tagm.mean.shannon.
mcmc_get_outliers

mcmc_get_outliers(x)

Usage

mcmc_get_outliers(x)

mcmc_get_meanComponent(x)

mcmc_get_meanoutliersProb(x)

geweke_test(k)

Description

Helper function to get the number of outlier at each MCMC iteration. Helper function to get mean component allocation at each MCMC iteration. Helper function to get mean probability of belonging to outlier at each iteration. Wrapper for the geweke diagnostics from coda package also return p-values. Helper function to pool chains together after processing Helper function to burn n iterations from the front of the chains Helper function to subsample the chains, known informally as thinning. Produces a violin plot with the protein posterior probabilities distributions for all organelles.

See Also

The function tagmMcmcTrain() to construct object of this class.
mcmc_pool_chains(param)
mcmc_burn_chains(x, n = 50)
mcmc_thin_chains(x, freq = 5)

S4 method for signature 'MCMCParams,character'
plot(x, y, ...)

Arguments

- **x**: Object of class MCMCParams
- **k**: A list of \texttt{coda::mcmc} objects, as returned by \texttt{mcmc_get_outliers}, \texttt{mcmc_get_meanComponent} and \texttt{mcmc_get_meanoutliersProb}.
- **param**: An object of class MCMCParams.
- **n**: integer(1) defining number of iterations to burn. The default is 50
- **freq**: Thinning frequency. The function retains every \textquote{freq}th iteration and is an \textquote{integer(1)}. The default thinning frequency is \textquote{5}.
- **y**: A \textquote{character(1)} with a protein name.
- **...**: Currently ignored.

Value

A list of length length(x).
A list of length length(x).
A list of length length(x).
A matrix with the test z- and p-values for each chain.
A pooled MCMCParams object.
An updated MCMCParams object.
A thinned \textquote{MCMCParams} object.
A ggplot2 object.

Author(s)

Laurent Gatto

\textbf{minMarkers} \hspace{1cm} \textit{Creates a reduced marker variable}

\textbf{Description}

This function updates an MSnSet instances and sets markers class to \textquote{unknown} if there are less than \texttt{n} instances.

\textbf{Usage}

\texttt{minMarkers(object, n = 10, fcol = "markers")}
Arguments

object

An instance of class "MSnSet".

n

Minimum of marker instances per class.

fcol

The name of the markers column in the featureData slot. Default is markers.

Value

An instance of class "MSnSet" with a new feature variables, named after the original fcol variable and the n value.

Author(s)

Laurent Gatto

See Also

getPredictions to filter based on classification scores.

Examples

library(pRolocdata)
data(dunkley2006)
d2 <- minMarkers(dunkley2006, 20)
getMarkers(dunkley2006)
getMarkers(d2, fcol = "markers20")

MLearn-methods

The MLearn interface for machine learning

Description

This method implements MLInterfaces’ MLearn method for instances of the class "MSnSet".

Methods

signature(formula = "formula", data = "MSnSet", .method = "learnerSchema", trainInd = "numeric")

The learning problem is stated with the formula and applies the .method schema on the MSnSet data input using the trainInd numeric indices as train data.

signature(formula = "formula", data = "MSnSet", .method = "learnerSchema", trainInd = "xvalSpec")

In this case, an instance of xvalSpec is used for cross-validation.

signature(formula = "formula", data = "MSnSet", .method = "clusteringSchema", trainInd = "missing")

Hierarchical (hclustI), k-means (kmeansI) and partitioning around medoids (pamI) clustering algorithms using MLInterface’s MLearn interface.

See Also

The MLInterfaces package documentation, in particular MLearn.
move2Ds

Displays a spatial proteomics animation

Description
Given two MSnSet instances of one MSnSetList with at least two items, this function produces an animation that shows the transition from the first data to the second.

Usage
move2Ds(object, pcol, fcol = "markers", n = 25, hl)

Arguments
object
An linkS4class{MSnSet} or a MSnSetList. In the latter case, only the two first elements of the list will be used for plotting and the others will be silently ignored.

pcol
If object is an MSnSet, a factor or the name of a phenotype variable (phenoData slot) defining how to split the single MSnSet into two or more data sets. Ignored if object is a MSnSetList.

fcol
Feature meta-data label (fData column name) defining the groups to be differentiated using different colours. Default is markers. Use NULL to suppress any colouring.

n
Number of frames, Default is 25.

hl
An optional instance of class linkS4class{FeaturesOfInterest} to track features of interest.

Value
Used for its side effect of producing a short animation.

Author(s)
Laurent Gatto

See Also
plot2Ds to a single figure with the two datasets.

Examples
library("pRolocdata")
data(dunkley2006)

Create a relevant MSnSetList using the dunkley2006 data
xx <- split(dunkley2006, "replicate")
xx1 <- xx[[1]]
xx2 <- xx[[2]]
fData(xx1)$markers[374] <- "Golgi"
fData(xx2)$markers[412] <- "unknown"
xx@x[[1]] <- xx1
The features we want to track
foi <- FeaturesOfInterest(description = "test",
 fnames = featureNames(xx[[1]]))[c(374, 412)]

(1) visualise each experiment separately
par(mfrow = c(2, 1))
plot2D(xx[[1]], main = "condition A")
highlightOnPlot(xx[[1]], foi)
plot2D(xx[[2]], mirrorY = TRUE, main = "condition B")
highlightOnPlot(xx[[2]], foi, args = list(mirrorY = TRUE))

(2) plot both data on the same plot
par(mfrow = c(1, 1))
tmp <- plot2Ds(xx)
highlightOnPlot(data1(tmp), foi, lwd = 2)
highlightOnPlot(data2(tmp), foi, pch = 5, lwd = 2)

(3) create an animation
move2Ds(xx, pcol = "replicate")
move2Ds(xx, pcol = "replicate", hl = foi)

mrkConsProfiles

Marker consensus profiles

Description

A function to calculate average marker profiles.

Usage

mrkConsProfiles(object, fcol = "markers", method = mean)

Arguments

- **object** An instance of class MSnSet.
- **fcol** Feature meta-data label (fData column name) defining the groups to be differentiated using different colours. Default is markers.
- **method** A function to average marker profiles. Default is mean.

Value

A matrix of dimensions number of clusters (excluding unknowns) by number of fractions.

Author(s)

Laurent Gatto and Lisa M. Breckels

See Also

The mrkHClust function to produce a hierarchical cluster.
Examples

```r
call = library("pRolocdata")
data(dunkley2006)
mrkConsProfiles(dunkley2006)
mrkConsProfiles(dunkley2006, method = median)
mm <- mrkCons Profiles(dunkley2006)
## Reorder fractions
o <- order(dunkley2006$fraction)
## Plot mean organelle profiles using the
## default pRoloc colour palette.
matplot(t(mm[, o]), type = "l",
xlab = "Fractions", ylab = "Relative intensity",
main = "Mean organelle profiles",
col = getStockcol(), lwd = 2, lty = 1)
## Add a legend
addLegend(markerMSnSet(dunkley2006), where = "topleft")
```

mrkHClust

Draw a dendrogram of subcellular clusters

Description

This functions calculates an average protein profile for each marker class (proteins of unknown localisation are ignored) and then generates a dendrogram representing the relation between marker classes. The colours used for the dendrogram labels are taken from the default colours (see `getStockcol`) so as to match the colours with other spatial proteomics visualisations such as `plot2D`.

Usage

```r
mrkHClust(object, fcol = "markers", distargs, hclustargs,
method = mean, plot = TRUE, ...)
```

Arguments

- `object` An instance of class `MSnSet`.
- `fcol` Feature meta-data label (fData column name) defining the groups to be differentiated using different colours. Default is `markers`.
- `distargs` A list of arguments to be passed to the `dist` function.
- `hclustargs` A list of arguments to be passed to the `hclust` function.
- `method` A function to average marker profiles. Default is `mean`.
- `plot` A logical defining whether the dendrogram should be plotted. Default is `TRUE`.
- `...` Additional parameters passed when plotting the `dendrogram`.

Value

Invisibly returns a dendrogram object, containing the hierarchical cluster as computed by `hclust`.

Author(s)

Laurent Gatto
mrkVecToMat

Create a marker vector or matrix.

Description

Functions producing a new vector (matrix) marker vector set from an existing matrix (vector) marker set.

Usage

mrkVecToMat(object, vfcol = "markers", mfcol = "Markers")

mrkMatToVec(object, mfcol = "Markers", vfcol = "markers")

mrkMatAndVec(object, vfcol = "markers", mfcol = "Markers")

showMrkMat(object, mfcol = "Markers")

isMrkMat(object, fcol = "Markers")

isMrkVec(object, fcol = "markers")

mrkEncoding(object, fcol = "markers")

Arguments

object An MSnSet object

vfcol The name of the vector marker feature variable. Default is "markers".

mfcol The name of the matrix marker feature variable. Default is "Markers".

fcol A marker feature variable name.

Details

Sub-cellular markers can be encoded in two different ways. Sets of spatial markers can be represented as character vectors (character or factor, to be accurate), stored as feature metadata, and proteins of unknown or uncertain localisation (unlabelled, to be classified) are marked with the "unknown" character. While very handy, this encoding suffers from some drawbacks, in particular the difficulty to label proteins that reside in multiple (possible or actual) localisations. The markers vector feature data is typically named markers. A new matrix encoding is also supported. Each spatial compartment is defined in a column in a binary markers matrix and the resident proteins are encoded with 1s. The markers matrix feature data is typically named Markers. If proteins are assigned unique localisations only (i.e. no multi-localisation) or their localisation is unknown (unlabelled), then both encodings are equivalent. When the markers are encoded as vectors, features of unknown localisation are defined as fData(object)[,fcol] == "unknown". For matrix-encoded markers, unlabelled proteins are defined as rowSums(fData(object)[,fcol]) == 0.
The `mrkMatToVec` and `mrkVecToMat` functions enable the conversion from matrix (vector) to vector (matrix). The `mrkMatAndVec` function generates the missing encoding from the existing one. If the destination encoding already exists, or, more accurately, if the feature variable of the destination encoding exists, an error is thrown. During the conversion from matrix to vector, if multiple possible label exists, they are dropped, i.e. they are converted to "unknown". Function `isMrkVec` and `isMrkMat` can be used to test if a marker set is encoded as a vector or a matrix. `mrkEncoding` returns either "vector" or "matrix" depending on the nature of the markers.

Value

An updated MSnSet with a new vector (matrix) marker set.

Author(s)

Laurent Gatto and Lisa Breckels

See Also

Other functions that operate on markers are `getMarkers`, `getMarkerClasses` and `markerMSnSet`. To add markers to an existing MSnSet, see the `addMarkers` function and `pRolocmarkers`, for a list of suggested markers.

Examples

```r
library("pRolocdata")
data(dunkley2006)
dunk <- mrkVecToMat(dunkley2006)
head(fData(dunk)$Markers)
fData(dunk)$markers <- NULL
dunk <- mrkMatToVec(dunk)
stopifnot(all.equal(fData(dunkley2006)$markers,
fData(dunk)$markers))
```

nbClassification

nb classification

Description

Classification using the naive Bayes algorithm.

Usage

```r
nbClassification(object, assessRes, scores = c("prediction", "all", "none"), laplace, fcol = "markers", ...)
```

Arguments

- `object` An instance of class "MSnSet".
- `assessRes` An instance of class "GenRegRes", as generated by `nbOptimisation`.
- `scores` One of "prediction", "all" or "none" to report the score for the predicted class only, for all classes or none.
- `laplace` If `assessRes` is missing, a laplace must be provided.
nbOptimisation

`fcol` The feature meta-data containing marker definitions. Default is `markers`.

... Additional parameters passed to `naiveBayes` from package `e1071`.

Value

An instance of class "`MSnSet`" with `nb` and `nb.scores` feature variables storing the classification results and scores respectively.

Author(s)

Laurent Gatto

Examples

```r
library(pRolocdata)
data(dunkley2006)
## reducing parameter search space and iterations
params <- nbOptimisation(dunkley2006, laplace = c(0, 5), times = 3)
params
plot(params)
F1Count(params)
levelPlot(params)
getParam(params)
res <- nbClassification(dunkley2006, params)
getPredictions(res, fcol = "naiveBayes")
getPredictions(res, fcol = "naiveBayes", t = 1)
plot2D(res, fcol = "naiveBayes")
```

Description

Classification algorithm parameter for the naive Bayes algorithm.

Usage

```r
nbOptimisation(object, fcol = "markers", laplace = seq(0, 5, 0.5),
times = 100, test.size = 0.2, xval = 5, fun = mean, seed,
verbose = TRUE, ...)
```

Arguments

- `object` An instance of class "`MSnSet`".
- `fcol` The feature meta-data containing marker definitions. Default is `markers`.
- `laplace` The hyper-parameter. Default values are `seq(0, 5, 0.5)`.
- `times` The number of times internal cross-validation is performed. Default is 100.
- `test.size` The size of test data. Default is 0.2 (20 percent).
- `xval` The n-cross validation. Default is 5.
- `fun` The function used to summarise the xval macro F1 matrices.
- `seed` The optional random number generator seed.
- `verbose` A logical defining whether a progress bar is displayed.
- ... Additional parameters passed to `naiveBayes` from package `e1071`.
Details

Note that when performance scores precision, recall and (macro) F1 are calculated, any NA values are replaced by 0. This decision is motivated by the fact that any class that would have either a NA precision or recall would result in an NA F1 score and, eventually, a NA macro F1 (i.e. mean(F1)). Replacing NAs by 0s leads to F1 values of 0 and a reduced yet defined final macro F1 score.

Value

An instance of class "GenRegRes".

Author(s)

Laurent Gatto

See Also

nbClassification and example therein.

Methods

signature(object = "matrix", k = "numeric", dist = "character", ...) Calculates indices and distances to the k (default is 3) nearest neighbours of each feature (row) in the input matrix object. The distance dist can be either of "euclidean" or "mahalanobis". Additional parameters can be passed to the internal function FNN::get.knn. Output is a matrix with 2 * k columns and nrow(object) rows.

signature(object = "MSnSet", k = "numeric", dist = "character", ...) As above, but for an MSnSet input. The indices and distances to the k nearest neighbours are added to the object's feature metadata.

signature(object = "matrix", query = "matrix", k = "numeric", ...) If two matrix instances are provided as input, the k (default is 3) indices and distances of the nearest neighbours of query in object are returned as a matrix of dimensions 2 * k by nrow(query). Additional parameters are passed to FNN::get.knnx. Only euclidean distance is available.

Examples

library("pRolocdata")
data(dunkley2006)

Using a matrix as input
m <- exprs(dunkley2006)
m[1:4, 1:3]
head(nndist(m, k = 5))
tail(nndist(m[1:100,], k = 2, dist = "mahalanobis"))
nnetClassification

Classification using the artificial neural network algorithm.

Usage

```r
nnetClassification(object, assessRes, scores = c("prediction", "all", "none"), decay, size, fcol = "markers", ...)```

### Arguments

- **object**: An instance of class "MSnSet".
- **assessRes**: An instance of class "GenRegRes", as generated by `nnetOptimisation`.
- **scores**: One of "prediction", "all" or "none" to report the score for the predicted class only, for all classes or none.
- **decay**: If `assessRes` is missing, a decay must be provided.
- **size**: If `assessRes` is missing, a size must be provided.
- **fcol**: The feature meta-data containing marker definitions. Default is markers.
- **...**: Additional parameters passed to `nnet` from package `nnet`.

### Value

An instance of class "MSnSet" with `nnet` and `nnet.scores` feature variables storing the classification results and scores respectively.

### Author(s)

Laurent Gatto

### Examples

```r
library(pRolocdata)
data(dunkley2006)
reducing parameter search space and iterations
params <- nnetOptimisation(dunkley2006, decay = 10^c(-1, -5), size = c(5, 10), times = 3)
params
plot(params)
f1Count(params)
```
library(lasso2)
levelPlot(params)
gapParams(params)
res <- nnetClassification(dunkley2006, params)
getPredictions(res, fcol = "nnet")
getPredictions(res, fcol = "nnet", t = 0.75)
plot2D(res, fcol = "nnet")

nnetOptimisation

Description
Classification parameter optimisation for artificial neural network algorithm.

Usage
nnetOptimisation(object, fcol = "markers", decay = c(0, 10^-1:-5),
size = seq(1, 10, 2), times = 100, test.size = 0.2, xval = 5,
fun = mean, seed, verbose = TRUE, ...)

Arguments
object An instance of class "MSnSet".
fcol The feature meta-data containing marker definitions. Default is markers.
decay The hyper-parameter. Default values are c(0, 10^-1:-5).
size The hyper-parameter. Default values are seq(1, 10, 2).
times The number of times internal cross-validation is performed. Default is 100.
test.size The size of test data. Default is 0.2 (20 percent).
xval The n-cross validation. Default is 5.
fun The function used to summarise the xval macro F1 matrices.
seed The optional random number generator seed.
verbose A logical defining whether a progress bar is displayed.
... Additional parameters passed to nnet from package nnet.

Details
Note that when performance scores precision, recall and (macro) F1 are calculated, any NA values are replaced by 0. This decision is motivated by the fact that any class that would have either a NA precision or recall would result in an NA F1 score and, eventually, a NA macro F1 (i.e. mean(F1)). Replacing NAs by 0s leads to F1 values of 0 and a reduced yet defined final macro F1 score.

Value
An instance of class "GenRegRes".

Author(s)
Laurent Gatto

See Also
nnetClassification and example therein.
orderGoAnnotations

Orders annotation information

Description

For a given matrix of annotation information, this function returns the information ordered according to the best fit with the data.

Usage

orderGoAnnotations(object, fcol = "GOAnnotations", k = 1:5, n = 5, p = 1/3, verbose = TRUE, seed)

Arguments

- **object**: An instance of class MSnSet.
- **fcol**: The name of the annotations matrix. Default is GOAnnotations.
- **k**: The number of clusters to test. Default is \( k = 1:5 \)
- **n**: The minimum number of proteins per component cluster.
- **p**: The normalisation factor, per \( k \) tested
- **verbose**: A logical indicating if a progress bar should be displayed. Default is TRUE.
- **seed**: An optional random number generation seed.

Details

As there are typically many protein/annotation sets that may fit the data we order protein sets by best fit i.e. cluster tightness, by computing the mean normalised Euclidean distance for all instances per protein set.

For each protein set i.e. proteins that have been labelled with a specified term/information criteria, we find the best \( k \) cluster components for the set (the default is to test \( k = 1:5 \)) according to the minimum mean normalised pairwise Euclidean distance over all component clusters. (Note: when testing \( k \) if any components are found to have less than \( n \) proteins these components are not included and \( k \) is reduced by 1).

Each component cluster is normalised by \( N^p \) (where \( N \) is the total number of proteins per component, and \( p \) is the power). Heuristically, \( p = 1/3 \) and normalising by \( N^{1/3} \) has been found the optimum normalisation factor.

Candidates in the matrix are ordered according to lowest mean normalised pairwise Euclidean distance as we expect high density, tight clusters to have the smallest mean normalised distance.

This function is a wrapper for running clustDist, getNormDist, see the "Annotating spatial proteomics data" vignette for more details.

Value

An updated MSnSet containing the newly ordered fcol matrix.

Author(s)

Lisa M Breckels
orgQuants

Returns organelle-specific quantile scores

Description

This function produces organelle-specific quantiles corresponding to the given classification scores.

Usage

orgQuants(object, fcol, scol, mcol = "markers", t, verbose = TRUE)

Arguments

- **object**: An instance of class "MSnSet".
- **fcol**: The name of the prediction column in the featureData slot.
- **scol**: The name of the prediction score column in the featureData slot. If missing, created by pasting `.scores` after fcol.
- **mcol**: The name of the column containing the training data in the featureData slot. Default is markers.
- **t**: The quantile threshold.
- **verbose**: If TRUE, the calculated thresholds are printed.

Value

A named vector of organelle thresholds.

Author(s)

Lisa Breckels

See Also

generateFolds and getPredictions to get organelle predictions based on calculated thresholds.

Examples

```r
library("pRolocdata")
data(dunkley2006)
res <- svmClassification(dunkley2006, fcol = "pd.markers",
 sigma = 0.1, cost = 0.5)
50% top predictions per class
ts <- orgQuants(res, fcol = "svm", t = 0.5)
generateFolds(res, fcol = "svm", t = ts)
```
Description

Classification using the PerTurbo algorithm.

Usage

```r
perTurboClassification(object, assessRes, scores = c("prediction", "all", "none"), pRegul, sigma, inv, reg, fcol = "markers")
```

Arguments

- `object` An instance of class "MSnSet".
- `assessRes` An instance of class "GenRegRes", as generated by `svmRegularisation`.
- `scores` One of "prediction", "all" or "none" to report the score for the predicted class only, for all classes or none.
- `pRegul` If `assessRes` is missing, a `pRegul` must be provided. See `perTurboOptimisation` for details.
- `sigma` If `assessRes` is missing, a `sigma` must be provided. See `perTurboOptimisation` for details.
- `inv` The type of algorithm used to invert the matrix. Values are: "Inversion Cholesky" (chol2inv), "Moore Penrose" (ginv), "solve" (solve), "svd" (svd). Default value is "Inversion Cholesky".
- `reg` The type of regularisation of matrix. Values are "none", "trunc" or "tikhonov". Default value is "tikhonov".
- `fcol` The feature meta-data containing marker definitions. Default is markers.

Value

An instance of class "MSnSet" with perTurbo and perTurbo.scores feature variables storing the classification results and scores respectively.

Author(s)

- Thomas Burger and Samuel Wieczorek

References

Examples

```r
library(pRolocdata)
data(dunkley2006)
reducing parameter search space
params <- perTurboOptimisation(dunkley2006,
 pRegul = 2^seq(-2,2,2),
 sigma = 10^seq(-1,1,1),
 inv = "Inversion Cholesky",
 reg ="tikhonov",
 times = 3)

params
plot(params)
f1Count(params)
levelPlot(params)
getParams(params)
res <- perTurboClassification(dunkley2006, params)
getPredictions(res, fcol = "perTurbo")
getPredictions(res, fcol = "perTurbo", t = 0.75)
plot2D(res, fcol = "perTurbo")
```

---

**perTurboOptimisation**  
*PerTurbo parameter optimisation*

**Description**

Classification parameter optimisation for the PerTurbo algorithm

**Usage**

```r
perTurboOptimisation(object, fcol = "markers", pRegul = 10^(seq(from = -1, to = 0, by = 0.2)),
 sigma = 10^(seq(from = -1, to = 1, by = 0.5)),
 inv = c("Inversion Cholesky", "Moore Penrose", "solve", "svd"),
 reg = c("tikhonov", "none", "trunc"), times = 1, test.size = 0.2,
 xval = 5, fun = mean, seed, verbose = TRUE)
```

**Arguments**

- `object`  
  An instance of class "MSnSet".

- `fcol`  
  The feature meta-data containing marker definitions. Default is markers.

- `pRegul`  
  The hyper-parameter for the regularisation (values are in [0,1]). If reg =="trunc", pRegul is for the percentage of eigen values in matrix. If reg =="tikhonov", then 'pRegul' is the parameter for the tikhonov regularisation. Available configurations are : "Inversion Cholesky" - ("tikhonov" / "none"), "Moore Penrose" - ("tikhonov" / "none"), "solve" - ("tikhonov" / "none"), "svd" - ("tikhonov" / "none" / "trunc").

- `sigma`  
  The hyper-parameter.

- `inv`  
  The type of algorithm used to invert the matrix. Values are : "Inversion Cholesky" (cho2inv), "Moore Penrose" (ginv), "solve" (solve), "svd" (svd). Default value is "Inversion Cholesky".

- `reg`  
  The type of regularisation of matrix. Values are "none", "trunc" or "tikhonov". Default value is "tikhonov".

```
phenoDisco

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>times</td>
<td>The number of times internal cross-validation is performed. Default is 100.</td>
</tr>
<tr>
<td>test.size</td>
<td>The size of test data. Default is 0.2 (20 percent).</td>
</tr>
<tr>
<td>xval</td>
<td>The n-cross validation. Default is 5.</td>
</tr>
<tr>
<td>fun</td>
<td>The function used to summarise the times macro F1 matrices.</td>
</tr>
<tr>
<td>seed</td>
<td>The optional random number generator seed.</td>
</tr>
<tr>
<td>verbose</td>
<td>A logical defining whether a progress bar is displayed.</td>
</tr>
</tbody>
</table>

Details

Note that when performance scores precision, recall and (macro) F1 are calculated, any NA values are replaced by 0. This decision is motivated by the fact that any class that would have either a NA precision or recall would result in an NA F1 score and, eventually, a NA macro F1 (i.e. mean(F1)). Replacing NAs by 0s leads to F1 values of 0 and a reduced yet defined final macro F1 score.

Value

An instance of class "GenRegRes".

Author(s)

Thomas Burger and Samuel Wieczorek

See Also

perTurboClassification and example therein.

phenoDisco

Runs the phenoDisco algorithm.

Description

phenoDisco is a semi-supervised iterative approach to detect new protein clusters.

Usage

phenoDisco(object, fcol = "markers", times = 100, GS = 10,
 allIter = FALSE, p = 0.05, ndims = 2,
 modelNames = mclust.options("emModelNames"), G = 1:9, BPPARAM,
 tmpfile, seed, verbose = TRUE, dimred = c("PCA", "t-SNE"), ...)

Arguments

object | An instance of class MSnSet. |
fcoll | A character indicating the organellar markers column name in feature meta-data. Default is markers. |
times | Number of runs of tracking. Default is 100. |
GS | Group size, i.e how many proteins make a group. Default is 10 (the minimum group size is 4). |
allIter | Logical, defining if predictions for all iterations should be saved. Default is FALSE. |
Significance level for outlier detection. Default is 0.05.

Number of principal components to use as input for the discovery analysis. Default is 2. Added in version 1.3.9.

A vector of characters indicating the models to be fitted in the EM phase of clustering using Mclust. The help file for mclustModelNames describes the available models. Default model names are c("EII","VII","EEI","VEI","EVI","VVI","EEE","EEV","VVV"), as returned by mclust.options("emModelNames"). Note that using all these possible models substantially increases the running time. Legacy models are c("EEE","EEV","VEV","VVV"), i.e. only ellipsoidal models.

An integer vector specifying the numbers of mixture components (clusters) for which the BIC is to be calculated. The default is G=1:9 (as in Mclust).

Support for parallel processing using the BiocParallel infrastructure. When missing (default), the default registered BiocParallelParam parameters are used. Alternatively, one can pass a valid BiocParallelParam parameter instance: SnowParam, MulticoreParam, DoparParam, … see the BiocParallel package for details. To revert to the original serial implementation, use NULL.

An optional character to save a temporary MSnSet after each iteration. Ignored if missing. This is useful for long runs to track phenotypes and possibly kill the run when convergence is observed. If the run completes, the temporary file is deleted before returning the final result.

An optional numeric of length 1 specifying the random number generator seed to be used. Only relevant when executed in serialised mode with BPPARAM = NULL. See BPPARAM for details.

Logical, indicating if messages are to be printed out during execution of the algorithm.

A character defining which of Principal Component Analysis ("PCA") or t-Distributed Stochastic Neighbour Embedding ("t-SNE") should be use to reduce dimensions prior to running phenoDisco novelty detection.

Additional arguments passed to the dimensionality reduction method. For both PCA and t-SNE, the data is scaled and centred by default, and these parameters (scale and centre for PCA, and pca_scale and pca_center for t-SNE can’t be set). When using t-SNE however, it is important to tune the perplexity and max iterations parameters. See the Dimensionality reduction section in the pRoloc vignette for details.

The algorithm performs a phenotype discovery analysis as described in Breckels et al. Using this approach one can identify putative subcellular groupings in organelle proteomics experiments for more comprehensive validation in an unbiased fashion. The method is based on the work of Yin et al. and used iterated rounds of Gaussian Mixture Modelling using the Expectation Maximisation algorithm combined with a non-parametric outlier detection test to identify new phenotype clusters.

One requires 2 or more classes to be labelled in the data and at a very minimum of 6 markers per class to run the algorithm. The function will check and remove features with missing values using the filterNA method.

A parallel implementation, relying on the BiocParallel package, has been added in version 1.3.9. See the BPPARAM argument for details.

Important: Prior to version 1.1.2 the row order in the output was different from the row order in the input. This has now been fixed and row ordering is now the same in both input and output objects.
Value

An instance of class MSnSet containing the phenoDisco predictions.

Author(s)

Lisa M. Breckels <lms79@cam.ac.uk>

References

Examples

```r
## Not run:
library(pRolocdata)
data(tan2009r1)
pdres <- phenoDisco(tan2009r1, fcol = "PLSDA")
getPredictions(pdres, fcol = "pd", scol = NULL)
plot2D(pdres, fcol = "pd")

## to pre-process the data with t-SNE instead of PCA
pdres <- phenoDisco(tan2009r1, fcol = "PLSDA", dimred = "t-SNE")

## End(Not run)
```

plot2D

Plot organelle assignment data and results.

Description

Generate 2 or 3 dimensional feature distribution plots to illustrate localistation clusters. Rows/features containing NA values are removed prior to dimension reduction except for the "nipals" method. For this method, it is advised to set the method argument ‘ncomp’ to a low number of dimensions to avoid computing all components when analysing large datasets.

Usage

```r
plot2D(object, fcol = "markers", fpch, unknown = "unknown",
dims = 1:2, score = 1, method = "PCA", methargs,
axsSwitch = FALSE, mirrorX = FALSE, mirrorY = FALSE, col, pch, cex,
index = FALSE, idx.cex = 0.75, addLegend, identify = FALSE,
plot = TRUE, grid = TRUE, ...)
```

S4 method for signature 'MSnSet'

```r
plot3D(object, fcol = "markers", dims = c(1, 2, 3),
       radius1 = 0.1, radius2 = radius1 * 2, plot = TRUE, ...)
```
Arguments

object
An instance of class `MSnSet`.

fcol
Feature meta-data label (fData column name) defining the groups to be differentiated using different colours. Default is `markers`. Use `NULL` to suppress any colouring.

fpch
Feature meta-data label (fData column name) defining the groups to be differentiated using different point symbols.

unknown
A character (default is "unknown") defining how proteins of unknown/unlabelled localisation are labelled.

dims
A numeric of length 2 (or 3 for `plot3D`) defining the dimensions to be plotted. Defaults are `c(1,2)` and `c(1,2,3)`. Always 1:2 for MDS.

score
A numeric specifying the minimum organelle assignment score to consider features to be assigned an organelle. (not yet implemented).

method
A character describe how to transform the data or what to plot. One of "PCA" (default), "MDS", "kpca", "nipals", "t-SNE" or "lda", defining what dimensionality reduction is applied: principal component analysis (see `prcomp`), classical multidimensional scaling (see `cmdscale`), kernel PCA (see `kpca`), nipals (principal component analysis by NIPALS, non-linear iterative partial least squares which support missing values; see `nipals`) t-SNE (see `Rtsne`) or linear discriminant analysis (see `lda`). The last method uses `fcol` to defined the subcellular clusters so that the ration between within ad between cluster variance is maximised. All the other methods are unsupervised and make use `fcol` only to annotate the plot. Prior to t-SNE, duplicated features are removed and a message informs the user if such filtering is needed.

"scree" can also be used to produce a scree plot. "hexbin" applies PCA to the data and uses bivariate binning into hexagonal cells from `hexbin` to emphasise cluster density.

If none is used, the data is plotted as is, i.e. without any transformation. In this case, object can either be an `MSnSet` or a matrix (as invisibly returned by `plot2D`). This enables to re-generate the figure without computing the dimensionality reduction over and over again, which can be time consuming for certain methods. If `object` is a matrix, an `MSnSet` containing the feature meta-data must be provided in `methargs` (see below for details).

Available methods are listed in `plot2Dmethods`.

methargs
A list of arguments to be passed when `method` is called. If missing, the data will be scaled and centred prior to PCA and t-SNE (i.e. `Rtsne`'s arguments `pca_center` and `pca_scale` are set to TRUE). If `method` = "none" and `object` is a matrix, then the first and only argument of `methargs` must be an `MSnSet` with matching features with `object`.

axisSwitch
A logical indicating whether the axes should be switched.

mirrorX
A logical indicating whether the x axis should be mirrored?

mirrorY
A logical indicating whether the y axis should be mirrored?

col
A character of appropriate length defining colours.

pch
A character of appropriate length defining point character.

cex
Character expansion.

index
A logical (default is `FALSE`, indicating of the feature indices should be plotted on top of the symbols.)
idx.cex A numeric specifying the character expansion (default is 0.75) for the feature indices. Only relevant when index is TRUE.

addLegend A character indicating where to add the legend. See addLegend for details. If missing (default), no legend is added.

identify A logical (default is TRUE) defining if user interaction will be expected to identify individual data points on the plot. See also identify.

plot A logical defining if the figure should be plotted. Useful when retrieving data only. Default is TRUE.

grid A logical indicating whether a grid should be plotted. Default is TRUE.

... Additional parameters passed to plot and points.

radius1 A numeric specifying the radius of feature of unknown localisation. Default is 0.1, which is specified on the data scale. See plot3d for details.

radius2 A numeric specifying the radius of marker feature. Default is radius * 2.

Details

plot3D relies on the #rgl package, that will be loaded automatically.

- Note that plot2D has been update in version 1.3.6 to support more organelle classes than colours defined in getStockcol. In such cases, the default colours are recycled using the default plotting characters defined in getStockpch. See the example for an illustration. The alpha argument is also depreciated in version 1.3.6. Use setStockcol to set colours with transparency instead. See example below.

- Version 1.11.3: to plot data as is, i.e. without any transformation, method can be set to "none" (as opposed to passing pre-computed values to method as a matrix, in previous versions). If object is an MSnSet, the untransformed values in the assay data will be plotted. If object is a matrix with coordinates, then a matching MSnSet must be passed to methargs.

Value

Used for its side effects of generating a plot. Invisibly returns the 2 or 3 dimensions that are plotted.

Author(s)

Laurent Gatto <lg390@cam.ac.uk>

See Also

addLegend to add a legend to plot2D figures (the legend is added by default on plot3D) and plotDist for alternative graphical representation of quantitative organelle proteomics data. plot2Ds to overlay 2 data sets on the same PCA plot. The plotEllipse function can be used to visualise TAGM models on PCA plots with ellipses.

Examples

library("pRolocdata")
data(dunkley2006)
plot2D(dunkley2006, fcol = NULL)
plot2D(dunkley2006, fcol = NULL, col = "black")
plot2D(dunkley2006, fcol = "markers")
addLegend(dunkley2006,
 fcol = "markers",

library("pRolocdata")
data(dunkley2006)
plot2D(dunkley2006, fcol = NULL)
plot2D(dunkley2006, fcol = NULL, col = "black")
plot2D(dunkley2006, fcol = "markers")
addLegend(dunkley2006,
 fcol = "markers",

Draw 2 data sets on one PCA plot

Description

Takes 2 \linkS4class{MSnSet} instances as input to plot the two data sets on the same PCA plot. The second data points are projected on the PC1 and PC2 dimensions calculated for the first data set.

Usage

\code{plot2Ds(object, pcol, fcol = "markers", cex.x = 1, cex.y = 1, pch.x = 21, pch.y = 23, col, mirrorX = FALSE, mirrorY = FALSE, plot = TRUE, ...)}

Arguments

\code{object} An \link{MSnSet} or a \link{MSnSetList}. In the latter case, only the two first elements of the list will be used for plotting and the others will be silently ignored.

\code{pcol} If \code{object} is an \link{MSnSet}, a \code{factor} or the name of a phenotype variable (\code{phenoData} slot) defining how to split the single \link{MSnSet} into two or more data sets. Ignored if \code{object} is a \link{MSnSetList}.

available methods
plot2Dmethods
plot2D(dunkley2006, fcol = NULL, method = "kpca", col = "black")
plot2D(dunkley2006, fcol = NULL, method = "kpca", col = "black",
methargs = list(kpar = list(sigma = 1)))
plot2D(dunkley2006, method = "lda")
plot2D(dunkley2006, method = "hexbin")
Only use transparent colours
setStockcol(paste0(getStockcol(), "80"))
plot2D(dunkley2006, fcol = "markers")
New behaviour in 1.3.6 when not enough colours
setStockcol(c("blue", "red", "green"))
getStockcol() ## Only 3 colours to be recycled
getMarkers(dunkley2006)
plot2D(dunkley2006)
reset colours
setStockcol(NULL)
plot2D(dunkley2006, method = "none") ##plotting along 2 first fractions
plot2D(dunkley2006, dims = c(3, 5), method = "none") ##plotting along fractions 3 and 5
Pre-calculate PC1 and PC2 coordinates
pca <- plot2D(dunkley2006, plot=FALSE)
head(pca)
plot2D(pca, method = "none", methargs = list(dunkley2006))
plotting in 3 dimensions
plot3D(dunkley2006)
plot3D(dunkley2006, radius2 = 0.3)
plot3D(dunkley2006, dims = c(2, 4, 6))
plot2Ds

fcol Feature meta-data label (fData column name) defining the groups to be differentiated using different colours. Default is markers. Use NULL to suppress any colouring.
cex.x Character expansion for the first data set. Default is 1.
cex.y Character expansion for the second data set. Default is 1.
pch.x Plotting character for the first data set. Default is 21.
pch.y Plotting character for the second data set. Default is 23.
col A vector of colours to highlight the different classes defined by fcol. If missing (default), default colours are used (see getStockcol).
mirrorX A logical indicating whether the x axis should be mirrored?
mirrorY A logical indicating whether the y axis should be mirrored?
plot If TRUE (default), a plot is produced.
... Additional parameters passed to plot and points.

Value

Used for its side effects of producing a plot. Invisibly returns an object of class plot2Ds, which is a list with the PCA analyses results (see prcomp) of the first data set and the new coordinates of the second data sets, as used to produce the plot and the respective point colours. Each of these elements can be accessed with data1, data2, col1 and code2 respectively.

Author(s)

Laurent Gatto

See Also

See plot2D to plot a single data set and move2Ds for a animation.

Examples

library("pRolocdata")
data(tan2009r1)
data(tan2009r2)
msn1 <- MSnSetList(list(tan2009r1, tan2009r2))
plot2Ds(msn1)
tweaking the parameters
plot2Ds(list(tan2009r1, tan2009r2),
 fcol = NULL, cex.x = 1.5)
input is 1 MSnSet containing 2 data sets
data(dunkley2006)
plot2Ds(dunkley2006, pcol = "replicate")
no plot, just the data
res <- plot2Ds(dunkley2006, pcol = "replicate",
 plot = FALSE)
res
head(data1(res))
head(col1(res))
plotConsProfiles
Plot marker consenses profiles.

Description
The function plots marker consensus profiles obtained from mrkConsProfile

Usage
plotConsProfiles(object, order = NULL, plot = TRUE)

Arguments
object A matrix containing marker consensus profiles as output from mrkConsProfiles().
order Order for markers (optional).
plot A logical(1) defining whether the heatmap should be plotted. Default is TRUE.

Value
Invisibly returns ggplot2 object.

Author(s)
Tom Smith

Examples
library("pRolocdata")
data(E14TG2aS1)
hc <- mrkHClust(E14TG2aS1, plot = FALSE)
mm <- getMarkerClasses(E14TG2aS1)
ord <- levels(factor(mm))[order.dendrogram(hc)]
fmat <- mrkConsProfiles(E14TG2aS1)
plotConsProfiles(fmat, order = ord)

plotDist
Plots the distribution of features across fractions

Description
Produces a line plot showing the feature abundances across the fractions.

Usage
plotDist(object, markers, fcol = NULL, mcol = "steelblue",
 pcol = getUnknowncol(), alpha = 0.3, type = "b", lty = 1,
 fractions = sampleNames(object), ylab = "Intensity",
 xlab = "Fractions", ylim, ...)
Arguments

object
An instance of class MSnSet.

markers
A character, numeric or logical of appropriate length and or content used to subset object and define the organelle markers.

fcol
Feature meta-data label (fData column name) defining the groups to be differentiated using different colours. If NULL (default) ignored and mcol and pcol are used.

mcol
A character define the colour of the marker features. Default is “steelblue”.

pcol
A character define the colour of the non-markers features. Default is the colour used for features of unknown localisation, as returned by getUnknowncol.

alpha
A numeric defining the alpha channel (transparency) of the points, where 0 <= alpha <= 1, 0 and 1 being completely transparent and opaque.

type
Character string defining the type of lines. For example "p" for points, "l" for lines, "b" for both. See plot for all possible types.

lty
Vector of line types for the marker profiles. Default is 1 (solid). See par for details.

fractions
A character defining the phenoData variable to be used to label the fraction along the x axis. Default is to use sampleNames(object).

ylab
y-axis label. Default is "Intensity".

xlab
x-axis label. Default is "Fractions".

ylim
A numeric vector of length 2, giving the y coordinates range.

...
Additional parameters passed to plot.

Value

Used for its side effect of producing a feature distribution plot. Invisibly returns the data matrix.

Author(s)

Laurent Gatto

Examples

```r
library("pRolocdata")
data(tan2009r1)
j <- which(fData(tan2009r1)$markers == "mitochondrion")
i <- which(fData(tan2009r1)$PLSDA == "mitochondrion")
plotDist(tan2009r1[i, ], markers = featureNames(tan2009r1)[j])
plotDist(tan2009r1[i, ], markers = featureNames(tan2009r1)[j],
        fractions = "Fractions")
## plot and colour all marker profiles
tanmrk <- markerMSnSet(tan2009r1)
plotDist(tanmrk, fcol = "markers")
```
plotEllipse

A function to plot probability ellipses on marker PCA plots to visualise and assess TAGM models.

Description

Note that when running PCA, this function does not scale the data (centring is performed), as opposed to [plot2D()]. Only marker proteins are displayed; the protein of unknown location, that are not used to estimate the MAP parameters, are filtered out.

Usage

plotEllipse(object, params, dims = c(1, 2), method = "MAP", ...)

Arguments

object An ['MSnbase::MSnset'] containing quantitative spatial proteomics data.
params An ['MAPParams'] with the TAGM-MAP parameters, as generated by 'tagmMapTrain'.
dims A 'numeric(2)' with the principal components along which to project the data. Default is 'c(1, 2)'.
method The method used. Currently "MAP" only.
... Additional parameters passed to [plot2D()].

Value

A PCA plot of the marker data with probability ellipses. The outer ellipse contains 99 probability whilst the middle and inner ellipses contain 95 and 90 clusters are represented by black circumpunct (circled dot).

See Also

[plot2D()] to visualise spatial proteomics data using various dimensionality reduction methods. For details about TAGM models, see [tagmPredict()](#) and the *pRoloc-bayesian* vignette.

plsdaClassification

plsda classification

Description

Classification using the partial least square discriminant analysis algorithm.

Usage

plsdaClassification(object, assessRes, scores = c("prediction", "all", "none"), ncomp, fcol = "markers", ...)

Arguments

object An instance of class "MSnSet".
assessRes An instance of class "GenRegRes", as generated by plsdaOptimisation.
scores One of "prediction", "all" or "none" to report the score for the predicted class only, for all classes or none.
ncomp If assessRes is missing, a ncomp must be provided.
fcol The feature meta-data containing marker definitions. Default is markers.
... Additional parameters passed to plsda from package caret.

Value

An instance of class "MSnSet" with plsda and plsda.scores feature variables storing the classification results and scores respectively.

Author(s)

Laurent Gatto

Examples

not running this one for time considerations
library(pRolocdata)
data(dunkley2006)
reducing parameter search space and iterations
params <- plsdaOptimisation(dunkley2006, ncomp = c(3, 10), times = 2)
plot(params)
plotCount(params)
levelPlot(params)
getParam(params)
res <- plsdaClassification(dunkley2006, params)
getPredictions(res, fcol = "plsda")
getPredictions(res, fcol = "plsda", t = 0.9)
plot2D(res, fcol = "plsda")

plfsdaOptimisation

plfsda parameter optimisation

Description

Classification parameter optimisation for the partial least square discriminant analysis algorithm.

Usage

plfsdaOptimisation(object, fcol = "markers", ncomp = 2:6, times = 100,
test.size = 0.2, xval = 5, fun = mean, seed, verbose = TRUE,...)
Arguments

- **object**: An instance of class "MSnSet".
- **fcol**: The feature meta-data containing marker definitions. Default is markers.
- **ncomp**: The hyper-parameter. Default values are 2:6.
- **times**: The number of times internal cross-validation is performed. Default is 100.
- **test.size**: The size of test data. Default is 0.2 (20 percent).
- **xval**: The n-cross validation. Default is 5.
- **fun**: The function used to summarise the xval macro F1 matrices.
- **seed**: The optional random number generator seed.
- **verbose**: A logical defining whether a progress bar is displayed.
- **...**: Additional parameters passed to plsda from package caret.

Details

Note that when performance scores precision, recall and (macro) F1 are calculated, any NA values are replaced by 0. This decision is motivated by the fact that any class that would have either a NA precision or recall would result in an NA F1 score and, eventually, a NA macro F1 (i.e. mean(F1)). Replacing NAs by 0s leads to F1 values of 0 and a reduced yet defined final macro F1 score.

Value

An instance of class "GenRegRes".

Author(s)

Laurent Gatto

See Also

`plsdaClassification` and example therein.

\[\text{pRolocmarkers} \quad \text{Organelle markers} \]

Description

This function retrieves a list of organelle markers or, if no species is provided, prints a description of available marker sets. The markers can be added to and MSnSet using the addMarkers function.

Usage

```
pRolocmarkers(species)
```

Arguments

- **species**: The species of interest.
Details

The markers have been contributed by various members of the Cambridge Centre for Proteomics, in particular Dr Dan Nightingale for yeast, Dr Andy Christoforou and Dr Claire Mulvey for human, Dr Arnoud Groen for Arabodopsis and Dr Claire Mulvey for mouse. In addition, original (curated) markers from the pRolocdata datasets have been extracted (see pRolocdata for details and references). Curation involved verification of publicly available subcellular localisation annotation based on the curators knowledge of the organelles/proteins considered and tracing the original statement in the literature.

These markers are provided as a starting point to generate reliable sets of organelle markers but still need to be verified against any new data in the light of the quantitative data and the study conditions.

Value

Prints a description of the available marker lists if species is missing or a named character with organelle markers.

Author(s)

Laurent Gatto

See Also

addMarkers to add markers to an MSnSet and markers for more information about marker encoding.

Examples

pRolocmarkers()
table(pRolocmarkers("atha"))
table(pRolocmarkers("hsap"))

QSep-class

Quantify resolution of a spatial proteomics experiment

Description

The QSep infrastructure provide a way to quantify the resolution of a spatial proteomics experiment, i.e. to quantify how well annotated sub-cellular clusters are separated from each other.

The QSep function calculates all between and within cluster average distances. These distances are then divided column-wise by the respective within cluster average distance. For example, for a dataset with only 2 spatial clusters, we would obtain

\[
\begin{array}{ccc}
c_1 & c_2 \\
c_1 & d_{11} & d_{12} \\
c_2 & d_{21} & d_{22} \\
\end{array}
\]

Normalised distance represent the ratio of between to within average distances, i.e. how much bigger the average distance between cluster \(c_i\) and \(c_j\) is compared to the average distance within cluster \(c_i\).

\[
\begin{array}{cc}
c_1 & c_2 \\
\end{array}
\]
Note that the normalised distance matrix is not symmetric anymore and the normalised distances are proportional to the tightness of the reference cluster (along the columns).

Missing values only affect the fractions containing the NA when the distance is computed (see the example below) and further used when calculating mean distances. Few missing values are expected to have negligible effect, but data with a high proportion of missing data will produce skewed distances. In QSep, we take a conservative approach, using the data as provided by the user, and expect that the data missingness is handled before proceeding with this or any other analysis.

Objects from the Class

Objects can be created by calls using the constructor `QSep` (see below).

Slots

- `x`: Object of class "matrix" containing the pairwise distance matrix, accessible with `qseq(. , norm = FALSE)`.
- `xnorm`: Object of class "matrix" containing the normalised pairwise distance matrix, accessible with `qsep(. , norm = TRUE)` or `qsep(.)`.
- `object`: Object of class "character" with the variable name of `MSnSet` object that was used to generate the `QSep` object.
- `__classVersion__`: Object of class "Versions" storing the class version of the object.

Extends

Class "Versioned", directly.

Methods and functions

- `QSeq signature(object = "MSnSet", fcol = "character")`: constructor for `QSep` objects. The `fcol` argument defines the name of the feature variable that annotates the sub-cellular clusters. Non-marker proteins, that are marked as "unknown" are automatically removed prior to distance calculation.
- `qsep signature(object = "QSep", norm = "logical")`: accessor for the normalised (when `norm` is TRUE, which is default) and raw (when `norm` is FALSE) pairwise distance matrices.
- `names signature(object = "QSep")`: method to retrieve the names of the sub-cellular clusters originally defined in `QSep`’s `fcol` argument. A replacement method `names(.) <-` is also available.
- `summary signature(object = "QSep", ... , verbose = "logical")`: Invisible return all between cluster average distances and prints (when `verbose` is TRUE, default) a summary of those.
- `levelPlot signature(object = "QSep", norm = "logical", ...)`: plots an annotated heatmap of all normalised pairwise distances. `norm` (default is TRUE) defines whether normalised distances should be plotted. Additional arguments `...` are passed to the `levelplot`.
- `plot signature(object = "QSep", norm = "logical", ...)`: produces a boxplot of all normalised pairwise distances. The red points represent the within average distance and black points between average distances. `norm` (default is TRUE) defines whether normalised distances should be plotted.
Author(s)

Laurent Gatto <lg390@cam.ac.uk>

References

Assessing sub-cellular resolution in spatial proteomics experiments Laurent Gatto, Lisa M Breckels, Kathryn S Lilley bioRxiv 377630; doi: https://doi.org/10.1101/377630

Examples

```r
## Test data from Christoforou et al. 2016
library("pRolocdata")
data(hyperLOPIT2015)

## Create the object and get a summary
hlq <- QSep(hyperLOPIT2015)
hlq
summary(hlq)

## mean distance matrix
qsep(hlq, norm = FALSE)

## normalised average distance matrix
qsep(hlq)

## Update the organelle cluster names for better
## rendering on the plots
names(hlq) <- sub("/", "\n", names(hlq))
names(hlq) <- sub(" - ", "\n", names(hlq))
names(hlq)

## Heatmap of the normalised intensities
levelPlot(hlq)

## Boxplot of the normalised intensities
par(mar = c(3, 10, 2, 1))
plot(hlq)

## Boxplot of all between cluster average distances
x <- summary(hlq, verbose = FALSE)
boxplot(x)

## Missing data example, for 4 proteins and 3 fractions
x <- rbind(c(1.1, 1.2, 1.3), rep(1, 3), c(NA, 1, 1), c(1, 1, NA))
rownames(x) <- paste0("P", 1:4)
colnames(x) <- paste0("F", 1:3)

## P1 is the reference, against which we will calculate distances. P2
## has a complete profile, producing the *real* distance. P3 and P4 have
## missing values in the first and last fraction respectively.

## If we drop P1 in P3, which represents a small difference of 0.1, the
## distance only considers F2 and F3, and increases. If we drop F3 in
## P4, which represents a large distance of 0.3, the distance only
## considers F1 and F2, and decreases. dist(x)
```

rfClassification

Description

Classification using the random forest algorithm.

Usage

```r
rfClassification(object, assessRes, scores = c("prediction", "all", "none"), mtry, fcol = "markers", ...)
```

Arguments

- `object` An instance of class "MSnSet".
- `assessRes` An instance of class "GenRegRes", as generated by `rfOptimisation`.
- `scores` One of "prediction", "all" or "none" to report the score for the predicted class only, for all classes or none.
- `mtry` If `assessRes` is missing, a `mtry` must be provided.
- `fcol` The feature meta-data containing marker definitions. Default is markers.
- `...` Additional parameters passed to `randomForest` from package `randomForest`.

Value

An instance of class "MSnSet" with `rf` and `rf.scores` feature variables storing the classification results and scores respectively.

Author(s)

Laurent Gatto

Examples

```r
library(pRolocdata)
data(dunkley2006)
## reducing parameter search space and iterations
params <- rfOptimisation(dunkley2006, mtry = c(2, 5, 10), times = 3)
params
plot(params)
f1Count(params)
levelPlot(params)
getParam(params)
res <- rfClassification(dunkley2006, params)
getPredictions(res, fcol = "rf")
getPredictions(res, fcol = "rf", t = 0.75)
plot2D(res, fcol = "rf")
```
Description

Classification parameter optimisation for the random forest algorithm.

Usage

rfOptimisation(object, fcol = "markers", mtry = NULL, times = 100, test.size = 0.2, xval = 5, fun = mean, seed, verbose = TRUE, ...)

Arguments

- `object`: An instance of class "MSnSet".
- `fcol`: The feature meta-data containing marker definitions. Default is markers.
- `mtry`: The hyper-parameter. Default value is NULL.
- `times`: The number of times internal cross-validation is performed. Default is 100.
- `test.size`: The size of test data. Default is 0.2 (20 percent).
- `xval`: The n-cross validation. Default is 5.
- `fun`: The function used to summarise the xval macro F1 matrices.
- `seed`: The optional random number generator seed.
- `verbose`: A logical defining whether a progress bar is displayed.
- `...`: Additional parameters passed to randomForest from package randomForest.

Details

Note that when performance scores precision, recall and (macro) F1 are calculated, any NA values are replaced by 0. This decision is motivated by the fact that any class that would have either a NA precision or recall would result in an NA F1 score and, eventually, a NA macro F1 (i.e. mean(F1)). Replacing NAs by 0s leads to F1 values of 0 and a reduced yet defined final macro F1 score.

Value

An instance of class "GenRegRes".

Author(s)

Laurent Gatto

See Also

rfClassification and example therein.
sampleMSnSet

Extract a stratified sample of an MSnSet

Description

This function extracts a stratified sample of an MSnSet.

Usage

sampleMSnSet(object, fcol = "markers", size = 0.2, seed)

Arguments

- **object**: An instance of class MSnSet
- **fcol**: The feature meta-data column name containing the marker (vector or matrix) definitions on which the MSnSet will be stratified. Default is markers.
- **size**: The size of the stratified sample to be extracted. Default is 0.2 (20 percent).
- **seed**: The optional random number generator seed.

Value

A stratified sample (according to the defined fcol) which is an instance of class "MSnSet".

Author(s)

Lisa Breckels

See Also

testMSnSet unknownMSnSet markerMSnSet. See markers for details about markers encoding.

Examples

```r
library(pRolocdata)
data(tan2009r1)
dim(tan2009r1)
smp <- sampleMSnSet(tan2009r1, fcol = "markers")
dim(smp)
getMarkers(tan2009r1)
getMarkers(smp)
```
setLisacol

Manage default colours and point characters

Description
These functions allow to get/set the colours and point character that are used when plotting organelle clusters and unknown features. These values are parametrised at the session level. Two palettes are available: the default palette (previously Lisa’s colours) containing 30 colours and the old (original) palette, containing 13 colours.

Usage

setLisacol()
getLisacol()
getOldcol()
setOldcol()
getStockcol()
setStockcol(cols)
getStockpch()
setStockpch(pchs)
getUnknowncol()
setUnknowncol(col)
getUnknownpch()
setUnknownpch(pch)

Arguments

cols A vector of colour characters or NULL, which sets the colours to the default values.
pchs A vector of numeric or NULL, which sets the point characters to the default values.
col A colour character or NULL, which sets the colour to #E7E7E7 (grey91), the default colour for unknown features.
pch A numeric vector of length 1 or NULL, which sets the point character to 21, the default.

Value
The set functions set (and invisibly returns) colours. The get functions returns a character vector of colours. For the pch functions, numerics rather than characters.
Author(s)
Laurent Gatto

Examples

```
## defaults for clusters
getStockcol()
getStockpch()
## unknown features
getUnknownpch()
getUnknowncol()
## an example
library(pRolocdata)
data(dunkley2006)
par(mfrow = c(2, 1))
plot2D(dunkley2006, fcol = “markers”, main = "Default colours")
setUnknowncol(“black”)
plot2D(dunkley2006, fcol = "markers", main = 'setUnknowncol("black")'
getUnknowncol()
setUnknowncol(NULL)
getUnknowncol()
getStockcol()
getOldcol()
```

showGOEvidenceCodes

GO Evidence Codes

Description
This function prints a textual description of the Gene Ontology evidence codes.

Usage

```
showGOEvidenceCodes()
getGOEvidenceCodes()
```

Value
These functions are used for their side effects of printing evidence codes and their description.

Author(s)
Laurent Gatto

Examples

```
showGOEvidenceCodes()
getGOEvidenceCodes()
```
Description
A class for spatial proteomics visualisation, that upon instantiation, pre-computes all defined visualisations. Objects can be created with the SpatProtVis constructor and visualised with the plot method.

The class is essentially a wrapper around several calls to plot2D that stores the dimensionality reduction outputs, and is likely to be updated in the future.

Usage
SpatProtVis(x, methods, dims, methargs, ...)

Arguments
 x An instance of class MSnSet to visualise.
 methods Dimensionality reduction methods to be used to visualise the data. Must be contained in plot2Dmethods (except "scree"). See plot2D for details.
 dims A list of numerics defining dimensions used for plotting. Default are 1 and 2. If provided, the length of this list must be identical to the length of methods.
 methargs A list of additional arguments to be passed for each visualisation method. If provided, the length of this list must be identical to the length of methods.
 ... Additional arguments. Currently ignored.

Slots
 vismats: A "list" of matrices containing the feature projections in 2 dimensions.
 data: The original spatial proteomics data stored as an "MSnSet".
 methargs: A "list" of additional plotting arguments.
 objname: A "character" defining how to name the dataset. By default, this is set using the variable name used at object creation.

Methods
 plot: Generates the figures for the respective methods and additional arguments defined in the constructor. If used in an interactive session, the user is prompted to press 'Return' before new figures are displayed.
 show: A simple textual summary of the object.

Author(s)
Laurent Gatto <lg390@cam.ac.uk>

See Also
The data for the individual visualisations is created by plot2D.
Examples

```r
library("pRolocdata")
data(dunkley2006)
## Default parameters for a set of methods
## (in the interest of time, don't use t-SNE)
m <- c("PCA", "MDS", "kpca")
vis <- SpatProtVis(dunkley2006, methods = m)
vis
plot(vis)
plot(vis, legend = "topleft")

## Setting method arguments
margs <- c(list(kpar = list(sigma = 0.1)),
   list(kpar = list(sigma = 1.0)),
   list(kpar = list(sigma = 10)),
   list(kpar = list(sigma = 100)))
vis <- SpatProtVis(dunkley2006,
   methods = rep("kpca", 4),
   methargs = margs)
par(mfrow = c(2, 2))
plot(vis)

## Multiple PCA plots but different PCs
dims <- list(c(1, 2), c(3, 4))
vis <- SpatProtVis(dunkley2006, methods = c("PCA", "PCA"),
   dims = dims)
plot(vis)
```

subsetMarkers

Subsets markers

Description

Subsets a matrix of markers by specific terms

Usage

```r
subsetMarkers(object, fcol = "GOAnnotations", keep)
```

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>object</td>
<td>An instance of class MSnSet.</td>
</tr>
<tr>
<td>fcol</td>
<td>The name of the markers matrix. Default is GOAnnotations.</td>
</tr>
<tr>
<td>keep</td>
<td>Integer or character vector specifying the columns to keep in the markers matrix, as defined by fcol.</td>
</tr>
</tbody>
</table>

Value

A updated MSnSet

Author(s)

Lisa M Breckels
svmClassification

See Also

addGoAnnotations and example therein.

svmClassification svm classification

Description

Classification using the support vector machine algorithm.

Usage

```
svmClassification(object, assessRes, scores = c("prediction", "all", "none"), cost, sigma, fcol = "markers", ...)
```

Arguments

- **object**: An instance of class "MSnSet".
- **assessRes**: An instance of class "GenRegRes", as generated by `svmOptimisation`.
- **scores**: One of "prediction", "all" or "none" to report the score for the predicted class only, for all classes or none.
- **cost**: If `assessRes` is missing, a cost must be provided.
- **sigma**: If `assessRes` is missing, a sigma must be provided.
- **fcol**: The feature meta-data containing marker definitions. Default is markers.
- **...**: Additional parameters passed to `svm` from package e1071.

Value

An instance of class "MSnSet" with `svm` and `svm.scores` feature variables storing the classification results and scores respectively.

Author(s)

Laurent Gatto

Examples

```
library(pRolocdata)
data(dunkley2006)
## reducing parameter search space and iterations
params <- svmOptimisation(dunkley2006, cost = 2^seq(-2,2,2), sigma = 10^seq(-1, 1, 1), times = 3)
params
plot(params)
fiCount(params)
levelPlot(params)
getParam(params)
res <- svmClassification(dunkley2006, params)
getPredictions(res, fcol = "svm")
getPredictions(res, fcol = "svm", t = 0.75)
plot2D(res, fcol = "svm")
```
svmOptimisation svm parameter optimisation

Description

Classification parameter optimisation for the support vector machine algorithm.

Usage

```r
svmOptimisation(object, fcol = "markers", cost = 2^-4:4,
                 sigma = 10^-3:2, times = 100, test.size = 0.2, xval = 5,
                 fun = mean, seed, verbose = TRUE, ...)```

Arguments

- `object`: An instance of class "MSnSet".
- `fcol`: The feature meta-data containing marker definitions. Default is `markers`.
- `cost`: The hyper-parameter. Default values are `2^-4:4`.
- `sigma`: The hyper-parameter. Default values are `10^-2:3`.
- `times`: The number of times internal cross-validation is performed. Default is 100.
- `test.size`: The size of test data. Default is 0.2 (20 percent).
- `xval`: The n-cross validation. Default is 5.
- `fun`: The function used to summarise the xval macro F1 matrices.
- `seed`: The optional random number generator seed.
- `verbose`: A logical defining whether a progress bar is displayed.
- `...`: Additional parameters passed to `svm` from package `e1071`.

Details

Note that when performance scores precision, recall and (macro) F1 are calculated, any NA values are replaced by 0. This decision is motivated by the fact that any class that would have either a NA precision or recall would result in an NA F1 score and, eventually, a NA macro F1 (i.e. mean(F1)). Replacing NAs by 0s leads to F1 values of 0 and a reduced yet defined final macro F1 score.

Value

An instance of class "GenRegRes".

Author(s)

Laurent Gatto

See Also

`svmClassification` and example therein.
**tagmMapTrain**  
*Localisation of proteins using the TAGM MAP method*

**Description**

These functions implement the T augmented Gaussian mixture (TAGM) model for mass spectrometry-based spatial proteomics datasets using the maximum a posteriori (MAP) optimisation routine.

**Usage**

```r
tagmMapTrain(object, fcol = "markers", method = "MAP", numIter = 100,
 mu0 = NULL, lambda0 = 0.01, nu0 = NULL, S0 = NULL,
 beta0 = NULL, u = 2, v = 10, seed = NULL)
tagmMapPredict(object, params, fcol = "markers", probJoint = FALSE,
 probOutlier = TRUE)
```

```r
S4 method for signature 'MAPPars'
show(object)
logPosteriors(x)
```

**Arguments**

- **object**
  - An `MSnbase::MSnSet` containing the spatial proteomics data to be passed to `tagmMapTrain` and `tagmPredict`.

- **fcol**  
  - The feature meta-data containing marker definitions. Default is `markers`.

- **method**
  - A `character()` describing the inference method for the TAGM algorithm. Default is "MAP".

- **numIter**
  - The number of iterations of the expectation-maximisation algorithm. Default is 100.

- **mu0**
  - The prior mean. Default is `colMeans` of the expression data.

- **lambda0**
  - The prior shrinkage. Default is 0.01.

- **nu0**
  - The prior degree of freedom. Default is `ncol(exprs(object)) + 2`

- **S0**
  - The prior inverse-wishary scale matrix. Empirical prior used by default.

- **beta0**
  - The prior Dirichlet distribution concentration. Default is 1 for each class.

- **u**
  - The prior shape parameter for Beta(u, v). Default is 2

- **v**
  - The prior shape parameter for Beta(u, v). Default is 10.

- **seed**
  - The optional random number generator seed.

- **params**
  - An instance of class `MAPPars`, as generated by `tagmMapTrain()`.

- **probJoint**
  - A `logical(1)` indicating whether to return the joint probability matrix, i.e. the probability for all classes as a new `tagm.map.joint` feature variable.

- **probOutlier**
  - A `logical(1)` indicating whether to return the probability of being an outlier as a new `tagm.map.outlier` feature variable. A high value indicates that the protein is unlikely to belong to any annotated class (and is hence considered an outlier).

- **x**
  - An object of class `MAPPars`.


Details

The `tagmMapTrain` function generates the MAP parameters (object or class `MAPParams`) based on an annotated quantitative spatial proteomics dataset (object of class `MSnbase::MSnSet`). Both are then passed to the `tagmPredict` function to predict the sub-cellular localisation of protein of unknown localisation. See the `pRoloc-bayesian` vignette for details and examples. In this implementation, if numerical instability is detected in the covariance matrix of the data a small multiple of the identity is added. A message is printed if this conditioning step is performed.

Value

`tagmMapTrain` returns an instance of class `MAPParams()`.  
`tagmPredict` returns an instance of class `MSnbase::MSnSet` containing the localisation predictions as a new `tagm.map.allocation` feature variable.

Slots

- `method` A character() storing the TAGM method name.  
- `priors` A list() with the priors for the parameters  
- `seed` An integer() with the random number generation seed.  
- `posteriors` A list() with the updated posterior parameters and log-posterior of the model.  
- `datasize` A list() with details about size of data

Author(s)

Oliver M. Crook  
Laurent Gatto

References

*A Bayesian Mixture Modelling Approach For Spatial Proteomics* Oliver M Crook, Claire M Mulvey, Paul D. W. Kirk, Kathryn S Lilley, Laurent Gatto bioRxiv 282269; doi: https://doi.org/10.1101/282269

See Also

The `plotEllipse()` function can be used to visualise TAGM models on PCA plots with ellipses.

The `tagmMapTrain()` function to use the TAGM MAP method.

---

`tagmMcmcTrain` *Localisation of proteins using the TAGM MCMC method*

Description

These functions implement the T augmented Gaussian mixture (TAGM) model for mass spectrometry-based spatial proteomics datasets using Markov-chain Monte-Carlo (MCMC) for inference.
Usage

tagMmcmcTrain(object, fcol = "markers", method = "MCMC",
numIter = 1000L, burnin = 100L, thin = 5L, mu0 = NULL,
lambda0 = 0.01, nu0 = NULL, S0 = NULL, beta0 = NULL, u = 2,
v = 10, numChains = 4L, BPPARAM = BiocParallel::bpparam())

tagMmcmcPredict(object, params, fcol = "markers", probJoint = FALSE,
probOutlier = TRUE)

tagMmcmcPredict(object, params, fcol = "markers", probJoint = FALSE,
probOutlier = TRUE)

tagMmcmcProcess(params)

Arguments

object  An MSnbase::MSnSet containing the spatial proteomics data to be passed to
tagMmcmcTrain and tagmPredict.

fcol  The feature meta-data containing marker definitions. Default is markers.

method  A character() describing the inference method for the TAGM algorithm. De-
default is "MCMC".

numIter  The number of iterations of the MCMC algorithm. Default is 1000.

burnin  The number of samples to be discarded from the begining of the chain. Default
is 100.

thin  The thinning frequency to be applied to the MCMC chain. Default is 5.

mu0  The prior mean. Default is colMeans of the expression data.

lambda0  The prior shrinkage. Default is 0.01.

nu0  The prior degree of freedom. Default is ncol(exprs(object)) + 2

S0  The prior inverse-wishart scale matrix. Empirical prior used by default.

beta0  The prior Dirichlet distribution concentration. Default is 1 for each class.

u  The prior shape parameter for Beta(u, v). Default is 2

v  The prior shape parameter for Beta(u, v). Default is 10.

numChains  The number of parallel chains to be run. Default is 4.

BPPARAM  Support for parallel processing using the BiocParallel infrastructure. When
missing (default), the default registered BiocParallelParam parameters are used.
Alternatively, one can pass a valid BiocParallelParam parameter instance: SnowParam, MulticoreParam, DoparParam, ... see the BiocParallel package for details.

params  An instance of class MCMCParams, as generated by tagMmcmcTrain().

probJoint  A logical(1) indicating whether to return the joint probability matrix, i.e. the
probability for all classes as a new tagm.mcmc.joint feature variable.

probOutlier  A logical(1) indicating whether to return the probability of being an outlier
as a new tagm.mcmc.outlier feature variable. A high value indicates that the
protein is unlikely to belong to any annotated class (and is hence considered an
outlier).
The `tagmMcmcTrain` function generates the samples from the posterior distributions (object or class `MCMCParams`) based on an annotated quantitative spatial proteomics dataset (object of class `MSnbase::MSnSet`). Both are then passed to the `tagmPredict` function to predict the sub-cellular localisation of protein of unknown localisation. See the `pRoloc-bayesian` vignette for details and examples. In this implementation, if numerical instability is detected in the covariance matrix of the data a small multiple of the identity is added. A message is printed if this conditioning step is performed.

**Value**

`tagmMcmcTrain` returns an instance of class `MCMCParams`.

`tagmMcmcPredict` returns an instance of class `MSnbase::MSnSet` containing the localisation predictions as a new `tagm.mcmc.allocation` feature variable. The allocation probability is encoded as `tagm.mcmc.probability` (corresponding to the mean of the distribution probability). In addition, the upper and lower quantiles of the allocation probability distribution are available as `tagm.mcmc.probability.lowerquantile` and `tagm.mcmc.probability.upperquantile` feature variables. The Shannon entropy is available in the `tagm.mcmc.mean.shannon` feature variable, measuring the uncertainty in the allocations (a high value representing high uncertainty; the highest value is the natural logarithm of the number of classes).

`tagmMcmcProcess` returns an instance of class `MCMCParams` with its summary slot populated.

**References**

*A Bayesian Mixture Modelling Approach For Spatial Proteomics* Oliver M Crook, Claire M Mulvey, Paul D. W. Kirk, Kathryn S Lilley, Laurent Gatto bioRxiv 282269; doi: https://doi.org/10.1101/282269

**See Also**

The `plotEllipse()` function can be used to visualise TAGM models on PCA plots with ellipses.

---

**testMarkers**

Tests marker class sizes

**Description**

Tests if the marker class sizes are large enough for the parameter optimisation scheme, i.e. the size is greater than `xval + n`, where the default `xval` is 5 and `n` is 2. If the test is unsuccessful, a warning is thrown.

**Usage**

```r
testMarkers(object, xval = 5, n = 2, fcol = "markers", error = FALSE)
```
**Arguments**

- **object**: An instance of class "MSnSet".
- **xval**: The number cross-validation partitions. See the xval argument in the parameter optimisation function(s). Default is 5.
- **n**: Number of additional examples.
- **fcol**: The name of the prediction column in the featureData slot. Default is "markers".
- **error**: A logical specifying if an error should be thrown, instead of a warning.

**Details**

In case the test indicates that a class contains too few examples, it is advised to either add some or, if not possible, to remove the class altogether (see minMarkers) as the parameter optimisation is likely to fail or, at least, produce unreliable results for that class.

**Value**

If successful, the test invisibly returns NULL. Else, it invisibly returns the names of the classes that have too few examples.

**Author(s)**

Laurent Gatto

**See Also**

getMarkers and minMarkers

**Examples**

```r
library("pRolocdata")
data(dunkley2006)
getMarkers(dunkley2006)
testMarkers(dunkley2006)
toosmall <- testMarkers(dunkley2006, xval = 15)
toosmall
try(testMarkers(dunkley2006, xval = 15, error = TRUE))
```

---

**Description**

This function creates a stratified 'test' MSnSet which can be used for algorihtmic development. A "MSnSet" containing only the marker proteins, as defined in fcol, is returned with a new feature data column appended called test in which a stratified subset of these markers has been relabelled as 'unknowns'.

**Usage**

```r
testMSnSet(object, fcol = "markers", size = 0.2, seed)
```
Arguments

object An instance of class "MSnSet"
fcol The feature meta-data column name containing the marker definitions on which the data will be stratified. Default is markers.
size The size of the data set to be extracted. Default is 0.2 (20 percent).
seed The optional random number generator seed.

Value

An instance of class "MSnSet" which contains only the proteins that have a labelled localisation i.e. the marker proteins, as defined in fcol and a new column in the feature data slot called test which has part of the labels relabelled as "unknown" class (the number of proteins renamed as "unknown" is according to the parameter size).

Author(s)

Lisa Breckels

See Also

sampleMSnSet unknownMSnSet markerMSnSet

Examples

library(pRolocdata)
data(tan2009r1)
sample <- testMSnSet(tan2009r1)
getMarkers(sample, "test")
all(dim(sample) == dim(markerMSnSet(tan2009r1)))

thetas

Draw matrix of thetas to test

Description

The possible weights to be considered is a sequence from 0 (favour auxiliary data) to 1 (favour primary data). Each possible combination of weights for nclass classes must be tested. The thetas function produces a weight matrix for nclass columns (one for each class) with all possible weight combinations (number of rows).

Usage

thetas(nclass, by = 0.5, length.out, verbose = TRUE)

Arguments

nclass Number of marker classes
by The increment of the weights. One of 1, 0.5, 0.25, 2, 0.1 or 0.05.
length.out The desired length of the weight sequence.
verbose A logical indicating if the weight sequences should be printed out. Default is TRUE.
Value

A matrix with all possible theta weight combinations.

Author(s)

Lisa Breckels

Examples

dim(thetas(4, by = 0.5))
dim(thetas(4, by = 0.2))
dim(thetas(5, by = 0.2))
dim(thetas(5, length.out = 5))
dim(thetas(6, by = 0.2))

Description

This is just a dummy entry for methods from unexported classes that generate warnings during package checking.

Author(s)

Laurent Gatto <lg390@cam.ac.uk>

zerosInBinMSnSet

Compute the number of non-zero values in each marker classes

Description

The function assumes that its input is a binary MSnSet and computes, for each marker class, the number of non-zero expression profiles. The function is meant to be used to produce heatmaps (see the example) and visualise binary (such as GO) MSnSet objects and assess their utility: all zero features/classes will not be informative at all (and can be filtered out with filterBinMSnSet) while features/classes with many annotations (GO terms) are likely not be be informative either.

Usage

zerosInBinMSnSet(object, fcol = "markers", as.matrix = TRUE, percent = TRUE)

Arguments

object An instance of class MSnSet with binary data.
fcol A character defining the feature data variable to be used as markers. Default is "markers".
as.matrix If TRUE (default) the data is formatted and returned as a matrix. Otherwise, a list is returned.
percent If TRUE, percentages are returned. Otherwise, absolute values.
Value

A matrix or a list indicating the number of non-zero value per marker class.

Author(s)

Laurent Gatto

See Also

filterBinMSnSet

Examples

library(pRolocdata)
data(hyperLOPIT2015goCC)
zerosInBinMSnSet(hyperLOPIT2015goCC)
zerosInBinMSnSet(hyperLOPIT2015goCC, percent = FALSE)
pal <- colorRampPalette(c("white", "blue"))
library(lattice)
levelplot(zerosInBinMSnSet(hyperLOPIT2015goCC),
    xlab = "Number of non-0s",
    ylab = "Marker class",
    col.regions = pal(140))
Index

*Topic classes

AnnotationParams-class, 7
ClustDist-class, 13
ClustDistList-class, 14
GenRegRes-class, 21
QSep-class, 69
SpatProtVis-class, 77

*Topic methods

chi2-methods, 10
exprsToRatios-methods, 17
MLearn-methods, 43
nndist-methods, 50
.MCMCCChains (MCMCChains-class), 39
.MCMChains (MCMCChains-class), 39
.MCMCPrams (MCMCChains-class), 39
.MCMCSummary (MCMCChains-class), 39
[,ClustDistList,ANY,ANY,ANY-method (ClustDistList-class), 14
[,ClustDistList,ANY,missing,missing-method (ClustDistList-class), 14
[,MCMChains,ANY,ANY,ANY-method (MCMChains-class), 39
[,MCMCPrams,ANY,ANY,ANY-method (MCMChains-class), 39
[,MartInstanceList,ANY,ANY,ANY-method (MartInstance-class), 39
[,MartInstanceList,ANY,ANY-method (MartInstance-class), 39
[,MartInstanceList-method (MartInstance-class), 39
[[,ClustDistList,ANY,ANY-method (ClustDistList-class), 14
[[,ClustDistList,ANY,missing-method (ClustDistList-class), 14
[[,MCMChains,ANY,ANY-method (MCMChains-class), 39
[[,MCMCPrams,ANY,ANY-method (MCMChains-class), 39
[[,MartInstanceList,ANY,ANY-method (MartInstance-class), 39
[[,MartInstanceList-method (MartInstance-class), 39

addGoAnnotations, 4
addLegend, 5, 61
addMarkers, 6, 37, 48, 68, 69
andy2011params (AnnotationParams-class), 7
AnnotationParams, 23, 37
AnnotationParams (AnnotationParams-class), 7
AnnotationParams-class, 7
as.data.frame.MartInstance (AnnotationParams-class), 39
as.data.frame.MartInstanceList (AnnotationParams-class), 39
chains (MCMChains-class), 39
checkFeatureNamesOverlap, 8
ccheckFvarOverlap, 9
chi2, 16
chi2 (chi2-methods), 10
chi2, matrix, matrix-method (chi2-methods), 10
chi2, matrix, numeric-method (chi2-methods), 10
chi2, numeric, matrix-method (chi2-methods), 10
chi2, numeric, numeric-method (chi2-methods), 10
chi2-methods, 10
chol2inv, 55, 56
class: :QSep (QSep-class), 69
class: AnnotationParams (AnnotationParams-class), 7
class: ClustDist (ClustDist-class), 13
class: ClustDistList (ClustDist-class), 14
class: GenRegRes (GenRegRes-class), 21
class: MAPParams (tagmMapTrain), 81
class: MCMChains (MCMChains-class), 39
class: SpatProtVis (SpatProtVis-class), 77
class: ThetaRegRes (GenRegRes-class), 21
classWeights, 11
INDEX

ClustDist, 12–14, 25
ClustDist (ClustDist-class), 13
clustDist, 12
ClustDist-class, 13
ClustDistList, 12, 13, 25
ClustDistList (ClustDistList-class), 14
ClustDistList-class, 14
cmdscale, 60
coda::mcmc, 42
coll (plot2Ds), 62
coll (plot2Ds), 62
combineThetaRegRes (GenRegRes-class), 21
data1 (plot2Ds), 62
data2 (plot2Ds), 62
dendrogram, 46
dist, 46
dunkley2006params
   (AnnotationParams-class), 7
empPValues, 10, 16
estimateMasterFdr, 36
exprsToRatios (exprsToRatios-methods), 17
exprsToRatios, MsnSet-method
   (exprsToRatios-methods), 17
exprsToRatios-methods, 17
f1Count (GenRegRes-class), 21
f1Count, GenRegRes-method
   (GenRegRes-class), 21
f1Count, ThetaRegRes-method
   (GenRegRes-class), 21
favourPrimary (GenRegRes-class), 21
fDataToUnknown, 17
FeaturesOfInterest, 28
filterAttrs (MartInstance-class), 39
filterBinMsnSet, 18, 87, 88
filterMaxMarkers, 19
filterMinMarkers, 20
filterNA, 58
filterZeroCols, 18, 20
filterZeroRows, 18
filterZeroRows (filterZeroCols), 20
flipGoTermId (goIdToTerm), 27
GenRegRes, 29, 31, 34, 35, 48, 50–52, 55, 57, 67, 68, 72, 73, 79, 80
GenRegRes (GenRegRes-class), 21
GenRegRes-class, 21
getAnnotationParams, 4
getAnnotationParams
   (AnnotationParams-class), 7
getF1Scores (GenRegRes-class), 21
getF1Scores, GenRegRes-method
   (GenRegRes-class), 21
getF1Scores, ThetaRegRes-method
   (GenRegRes-class), 21
getFilterList (MartRegRes-class), 39
getGOEvidenceCodes
   (showGOEvidenceCodes), 76
getGoFromFeatures, 7, 8, 22
getList (setList), 75
getMarkerClasses, 23, 25, 48
getMarkers, 24, 24, 48, 85
getMartInstanceList
   (MartInstance-class), 39
getMartTab (MartInstance-class), 39
getNormDist, 25
getOldcol (setList), 75
getParams (GenRegRes-class), 21
getParams, ClustRegRes-method
   (undocumented), 87
getParams, GenRegRes-method
   (GenRegRes-class), 21
getParams, ThetaRegRes-method
   (GenRegRes-class), 21
getPredictions, 26, 43, 54
getRegularisedParams (GenRegRes-class), 21
getRegularisedParams, GenRegRes-method
   (GenRegRes-class), 21
getRegularisedParams (GenRegRes-class), 21
getRegularizedParams, GenRegRes-method
   (GenRegRes-class), 21
getSeed (GenRegRes-class), 21
getSeed, GenRegRes-method
   (GenRegRes-class), 21
getStockcol, 46, 61, 63
getStockcol (setList), 75
getStockpch, 61
getUnknowncol, 65
getUnknowncol (setList), 75
getUnknownpch (setList), 75
getWarnings (GenRegRes-class), 21
getWarnings, GenRegRes-method
   (GenRegRes-class), 21
geweke_test (mcmc::get_outliers), 41
ginv, 55, 56
goIdToTerm, 27
goTermToId (goIdToTerm), 27
hclust, 46
hexbin, 60

90
highlightOnPlot, 28
highlightOnPlot3D (highlightOnPlot), 28
identify, 61
isMrkMat (mrkVecToMat), 47
isMrkVec (mrkVecToMat), 47
knn, 30, 31
knnClassification, 29, 31
knnOptimisation, 21, 29, 30
knnPrediction (knnOptimisation), 30
knnRegularisation (knnOptimisation), 29
knn1Classification, 31, 34
knn1Optimisation, 21, 32, 32
kpca, 60
ksvm, 34, 35
ksvmClassification, 34, 35
ksvmOptimisation, 34, 35
ksvmPrediction (ksvmOptimisation), 35
ksvmRegularisation (ksvmOptimisation), 35
lapply, ClustDistList-method
(ClustDistList-class), 14
lapply, MartInstanceList, ANY-method
(MartInstance-class), 39
lapply, MartInstanceList-method
(MartInstance-class), 39
lda, 60
legend, 5
length, ClustDistList-method
(ClustDistList-class), 14
length, MCMCChains-method
(MCMCChains-class), 39
length, MCMCParams-method
(MCMCChains-class), 39
levelPlot (GenRegRes-class), 21
levelPlot, 70
levelPlot, GenRegRes-method
(undocumented), 87
levelPlot, GenRegRes-method
(GenRegRes-class), 21
levelPlot, OSeq-method (OSeq-class), 69
logPosteriors (tagmMapTrain), 81
lopims, 36
lopims1 (lopims), 36
lopims2 (lopims), 36
lopims3 (lopims), 36
lopims4 (lopims), 36
lopims5 (lopims), 36
makeGoSet, 7, 8, 37
makeMaster, 36
MAPParams, 81
MAPParams (tagmMapTrain), 81
MAPParams, 82
MAPParams-class (tagmMapTrain), 81
markerMSnSet, 38, 48, 74, 86
markers, 6, 24, 25, 38, 69, 74
markers (mrkVecToMat), 47
MartInstance (MartInstance-class), 39
MartInstance-class, 39
MartInstanceList (MartInstance-class), 39
MartInstanceList-class
(MartInstance-class), 39
mcmc_burn_chains (mcmc_get_outliers), 41
mcmc_get_meanComponent
(mcmc_get_outliers), 41
mcmc_get_meanoutliersProb
(mcmc_get_outliers), 41
mcmc_get_outliers, 41
mcmc_pool_chains (mcmc_get_outliers), 41
mcmc_thin_chains (mcmc_get_outliers), 41
MCMCChain (MCMCChains-class), 39
MCMCChain-class (MCMCChains-class), 39
MCMCClaims (MCMCChains-class), 39
MCMCClaims-class, 39
MCMCPrams-class (MCMCChains-class), 39
MCMCSummary (MCMCChains-class), 39
MCMCSummary-class (MCMCChains-class), 39
minMarkers, 42, 85
MLearn, 43
MLearn, formula, MSnSet, clusteringSchema, missing-method
(MLearn-methods), 43
MLearn, formula, MSnSet, learnerSchema, numeric-method
(MLearn-methods), 43
MLearn, formula, MSnSet, learnerSchema, xvalSpec-method
(MLearn-methods), 43
MLearn-methods, 43
MLearnMSnSet (MLearn-methods), 43
move2Ds, 44, 63
mrkConsProfiles, 45
mrkConsProfiles, 64
mrkEncoding (mrkVecToMat), 47
mrkHClust, 45, 46
mrkMatAndVec (mrkVecToMat), 47
mrkMatToVec (mrkVecToMat), 47
mrkVecToMat, 47
MSnbase:: MSnSet, 81–84
MSnSet, 12, 16, 17, 22, 24, 26, 29–31, 33–37, 43, 48, 49, 51, 52, 54–56, 62, 67, 68, 70,
72–74, 77, 79, 80, 85, 86
MSnSetList, 44, 62
INDEX

MSnSetMLean (MLean-methods), 43
naiveBayes, 49
names, ClustDistList-method
(ClustDistList-class), 14
names, QSep-method (QSep-class), 69
names<-, ClustDistList, ANY-method
(ClustDistList-class), 14
names<-, QSep, character-method
(QSep-class), 69

nbClassification, 48, 50
nbOptimisation, 48, 49

plot, QSep, missing-method (QSep-class), 69
plot, QSep-method (QSep-class), 69
plot, SpatProtVis, missing-method
(SpatProtVis-class), 77
plot, ThetaRegRes, missing-method
(GenRegRes-class), 21
plot2D, 5, 46, 59, 63, 77
plot2Dmethods, 77
plot2Dmethods (plot2D), 59
plot2Ds, 44, 61, 62
plot3d, 61

Rtsne, 60

randomForest, 72, 73
rfClassification, 72, 73
rfOptimisation, 72, 73
rfOptimization (rfOptimisation), 73
rfPrediction (rfClassification), 72
rfRegularisation (rfOptimisation), 73

QSep (QSep-class), 69
qsep (QSep-class), 69
QSep-class, 69

sampleMSnSet, 38, 74, 86

sapply, ClustDistList-method
(ClustDistList-class), 14
sapply, MartInstanceList, ANY-method
(MartInstance-class), 39
sapply, MartInstanceList-method
(MartInstance-class), 39

setAnnotationParams
(AnnotationParams-class), 7

setLisacol, 75
setOldcol (setLisacol), 75
setStockcol (setLisacol), 75
setStockpch (setLisacol), 75
setUnknowncol (setLisacol), 75
setUnknownpch (setLisacol), 75
show, AnnotationParams-method
  (AnnotationParams-class), 7
show, ClustDist-method
  (ClustDist-class), 13
show, ClustDistList-method
  (ClustDistList-class), 14
show, ComponentParam-method
  (MCMCChains-class), 39
show, GenRegRes-method
  (GenRegRes-class), 21
show, MAPParams-method (tagmMapTrain), 81
show, MartInstance-method
  (MartInstance-class), 39
show, MCMCChain-method
  (MCMCChains-class), 39
show, MCMCChains-method
  (MCMCChains-class), 39
show, MCMCPars-method
  (MCMCChains-class), 39
show, QSep-method (QSep-class), 69
show, SpatProtVis-method
  (SpatProtVis-class), 77
show, ThetaRegRes-method
  (GenRegRes-class), 21
show GOEvidenceCodes, 76
show MarkMat (mrkVecToMat), 47
solve, 55, 56
SpatProtVis (SpatProtVis-class), 77
SpatProtVis-class, 77
sub, 17
subsetMarkers, 78
summary, QSep-method (QSep-class), 69
svd, 55, 56
svm, 79, 80
svmClassification, 11, 79, 80
svmOptimisation, 11, 21, 79, 80
svmPrediction (svmClassification), 80
tagmMcmcPredict (tagmMcmcTrain), 82
tagmMcmcProcess (tagmMcmcTrain), 82
tagmMcmcTrain, 82
tagmMcmcTrain(), 83
tagmPredict (tagmMcmcTrain), 82
testMarkers, 84
testMSnSet, 38, 74, 85
ThetaRegRes (GenRegRes-class), 21
ThetaRegRes-class (GenRegRes-class), 21
thetas, 33, 86
unknownMSnSet, 74, 86
unknownMSnSet (markerMSnSet), 38
Versioned, 70
xvalSpec, 43
zerosInBinMSnSet, 18, 87