Package ‘metagenomeSeq’

February 7, 2021

Title Statistical analysis for sparse high-throughput sequencing

Version 1.32.0

Date 2019-07-12

Author Joseph Nathaniel Paulson, Nathan D. Olson, Domenick J. Braccia, Justin Wagner, Hisham Talukder, Mihai Pop, Hector Corrada Bravo

Maintainer Joseph N. Paulson <jpaulson@jimmy.harvard.edu>

Description metagenomeSeq is designed to determine features (be it Operational Taxonomic Unit (OTU), species, etc.) that are differentially abundant between two or more groups of multiple samples. metagenomeSeq is designed to address the effects of both normalization and under-sampling of microbial communities on disease association detection and the testing of feature correlations.

License Artistic-2.0

Depends R(>= 3.0), Biobase, limma, glmnet, methods, RColorBrewer

Suggests annotate, BiocGenerics, biomformat, knitr, gss, testthat (>= 0.8), vegan, interactiveDisplay, IHW

Imports parallel, matrixStats, foreach, Matrix, gplots, graphics, grDevices, stats, utils, Wrench

VignetteBuilder knitr

URL https://github.com/nosson/metagenomeSeq/

BugReports https://github.com/nosson/metagenomeSeq/issues

biocViews ImmunoOncology, Classification, Clustering, GeneticVariability, DifferentialExpression, Microbiome, Metagenomics, Normalization, Visualization, MultipleComparison, Sequencing, Software

RoxygenNote 7.1.0

git_url https://git.bioconductor.org/packages/metagenomeSeq

git_branch RELEASE_3_12

git_last_commit 22ffea0

git_last_commit_date 2020-10-27

Date/Publication 2021-02-06
R topics documented:

```
metagenomeSeq-package ........................................... 3
aggregateBySample ............................................ 4
aggregateByTaxonomy ........................................... 5
biom2MRexperiment ............................................ 6
calcNormFactors .................................................. 7
calcPosComponent .............................................. 7
calcShrinkParameters .......................................... 8
calcStandardError ................................................ 8
calculateEffectiveSamples ..................................... 9
calcZeroAdjustment ............................................. 9
calcZeroComponent .............................................. 10
correctIndices ................................................... 10
correlationTest ................................................... 11
cumNorm ............................................................ 12
cumNormMat ........................................................ 13
cumNormStat ........................................................ 14
cumNormStatFast .................................................. 14
doCountMStep ..................................................... 15
doEStep ............................................................. 16
doZeroMStep ........................................................ 17
exportMat .......................................................... 17
exportStats ........................................................ 18
expSummary ........................................................ 19
extractMR .......................................................... 19
filterData .......................................................... 20
fitDO ................................................................. 21
fitFeatureModel .................................................... 22
fitFeatureModelResults-class ................................. 23
fitLogNormal ....................................................... 23
fitMultipleTimeSeries ......................................... 24
fitPA ................................................................. 25
fitSSTimeSeries ................................................... 26
fitTimeSeries ...................................................... 27
fitZeroLogNormal ............................................... 29
fitZig ............................................................... 30
fitZigResults-class .............................................. 31
countDensity ........................................................ 31
geneExp ............................................................. 32
geneExpLogLikelihoods ......................................... 33
geneExpPi ............................................................ 34
geneExpZ ............................................................ 34
isItStillActive .................................................... 35
libSize ............................................................... 36
libSize<= .............................................................. 36
loadBiom ............................................................. 37
loadMeta ............................................................. 38
loadMetaQ ............................................................ 38
loadPhenoData ...................................................... 39
lungData .............................................................. 40
makeLabels .......................................................... 40
```
metagenomeSeq-package

Description

metagenomeSeq is designed to determine features (be it Operational Taxonomic Unit (OTU), species, etc.) that are differentially abundant between two or more groups of multiple samples. metagenomeSeq is designed to address the effects of both normalization and under-sampling of microbial communities on disease association detection and the testing of feature correlations.

A user’s guide is available, and can be opened by typing vignette("metagenomeSeq")

The metagenomeSeq package implements novel normalization and statistical methodology in the following papers.
aggregateBySample

Description

Using the phenoData information in the MRexperiment, calling aggregateBySample on a MRexperiment and a particular phenoData column (i.e. 'diet') will aggregate counts using the aggfun function (default rowMeans). Possible aggfun alternatives include rowMeans and rowMedians.

Usage

aggregateBySample(obj, fct, aggfun = rowMeans, out = "MRexperiment")

aggSamp(obj, fct, aggfun = rowMeans, out = "MRexperiment")

Arguments

obj A MRexperiment object or count matrix.

fct phenoData column name from the MRexperiment object or if count matrix object a vector of labels.

aggfun Aggregation function.

out Either 'MRexperiment' or 'matrix'

Value

An aggregated count matrix or MRexperiment object where the new pData is a vector of 'fct' levels.

Examples

data(mouseData)
aggregateBySample(mouseData[1:100,],fct="diet",aggfun=rowSums)
not run
aggregateBySample(mouseData,fct="diet",aggfun=matrixStats::rowMedians)
aggSamp(mouseData,fct='diet',aggfun=rowMaxs)
aggregateByTaxonomy

Aggregates a MRexperiment object or counts matrix to a particular level.

Description

Using the featureData information in the MRexperiment, calling aggregateByTaxonomy on a MRexperiment and a particular featureData column (i.e. 'genus') will aggregate counts to the desired level using the aggfun function (default colSums). Possible aggfun alternatives include colMeans and colMedians.

Usage

```r
aggregateByTaxonomy(
  obj,  # A MRexperiment object or count matrix.
  lvl,  # featureData column name from the MRexperiment object or if count matrix object a vector of labels.
  alternate = FALSE,  # Use the rowname for undefined OTUs instead of aggregating to "no_match".
  norm = FALSE,  # Whether to aggregate normalized counts or not.
  log = FALSE,  # Whether or not to log2 transform the counts - if MRexperiment object.
  aggfun = colSums,  # Aggregation function.
  sl = 1000,  # scaling value, default is 1000.
  featureOrder = NULL,  # Whether to aggregate normalized counts or not.
  returnFullHierarchy = TRUE,  # Whether to aggregate normalized counts or not.
  out = "MRexperiment"  # Whether to aggregate normalized counts or not.
)

aggTax(
  obj,  # A MRexperiment object or count matrix.
  lvl,  # featureData column name from the MRexperiment object or if count matrix object a vector of labels.
  alternate = FALSE,  # Use the rowname for undefined OTUs instead of aggregating to "no_match".
  norm = FALSE,  # Whether to aggregate normalized counts or not.
  log = FALSE,  # Whether or not to log2 transform the counts - if MRexperiment object.
  aggfun = colSums,  # Aggregation function.
  sl = 1000,  # scaling value, default is 1000.
  featureOrder = NULL,  # Whether to aggregate normalized counts or not.
  returnFullHierarchy = TRUE,  # Whether to aggregate normalized counts or not.
  out = "MRexperiment"  # Whether to aggregate normalized counts or not.
)
```

Arguments

- **obj**: A MRexperiment object or count matrix.
- **lvl**: featureData column name from the MRexperiment object or if count matrix object a vector of labels.
- **alternate**: Use the rowname for undefined OTUs instead of aggregating to "no_match".
- **norm**: Whether to aggregate normalized counts or not.
- **log**: Whether or not to log2 transform the counts - if MRexperiment object.
- **aggfun**: Aggregation function.
- **sl**: scaling value, default is 1000.
biom2MRexperiment

featureOrder
Hierarchy of levels in taxonomy as fData colnames

returnFullHierarchy
Boolean value to indicate return single column of fData or all columns of hierarchy

out
Either 'MRexperiment' or 'matrix'

Value

An aggregated count matrix.

Examples

```r
data(mouseData)
aggregateByTaxonomy(mouseData[1:100,], lvl="class", norm=TRUE, aggfun=colSums)
# not run
# aggregateByTaxonomy(mouseData, lvl="class", norm=TRUE, aggfun=colMedians)
# aggTax(mouseData, lvl=’phyllum’, norm=FALSE, aggfun=colSums)
```

biom2MRexperiment
Bioinformatic Interface to MRexperiment objects

Description

Wrapper to convert biom files to MRexperiment objects.

Usage

```r
biom2MRexperiment(obj)
```

Arguments

obj
The biom object file.

Value

A MRexperiment object.

See Also

loadMeta, loadPhenoData, newMRexperiment, loadBiom

Examples

```r
library(biomformat)
rich_dense_file = system.file("extdata", "rich_dense_otu_table.biom", package = "biomformat")
x = biomformat::read_biom(rich_dense_file)
biom2MRexperiment(x)
```
calcNormFactors
Cumulative sum scaling (css) normalization factors

Description
Return a vector of the sum up to and including a quantile.

Usage
calcNormFactors(obj, p = cumNormStatFast(obj))

Arguments
obj An MRexperiment object or matrix.
p The pth quantile.

Value
Vector of the sum up to and including a sample’s pth quantile.

See Also
fitZig cumNormStatFast cumNorm

Examples

```r
data(mouseData)
head(calcNormFactors(mouseData))
```

calcPosComponent Positive component

Description
Fit the positive (log-normal) component

Usage
calcPosComponent(mat, mod, weights)

Arguments
mat A matrix of normalized counts
mod A model matrix
weights Weight matrix for samples and counts

See Also
fitZeroLogNormal fitFeatureModel
calcShrinkParameters
Calculate shrinkage parameters

Description

Calculate the shrunken variances and variance of parameters of interest across features.

Usage

```r
calcShrinkParameters(fit, coef, mins2, exclude = NULL)
```

Arguments

- `fit`: A matrix of fits as outputted by `calcZeroComponent` or `calcPosComponent`
- `coef`: Coefficient of interest
- `mins2`: Minimum variance estimate
- `exclude`: Vector of features to exclude when shrinking

See Also

`fitZeroLogNormal` `fitFeatureModel`

calcStandardError
Calculate the zero-inflated log-normal statistic's standard error

Description

Calculate the se for the model. Code modified from "Adjusting for covariates in zero-inflated gamma and zero-inflated log-normal models for semicontinuous data", ED Mills.

Usage

```r
calcStandardError(mod, fitln, fitzero, coef = 2, exclude = NULL)
```

Arguments

- `mod`: The zero component model matrix
- `fitln`: A matrix with parameters from the log-normal fit
- `fitzero`: A matrix with parameters from the logistic fit
- `coef`: Coefficient of interest
- `exclude`: List of features to exclude

See Also

`fitZeroLogNormal` `fitFeatureModel`
calculateEffectiveSamples

Estimated effective samples per feature

Description

Calculates the number of estimated effective samples per feature from the output of a fitZig run. The estimated effective samples per feature is calculated as the sum_1^n (n = number of samples) 1-z_i where z_i is the posterior probability a feature belongs to the technical distribution.

Usage

```r
calculateEffectiveSamples(obj)
```

Arguments

- **obj**

 The output of fitZig run on a MRexperiment object.

Value

A list of the estimated effective samples per feature.

See Also

- `fitZig`
- `MRcoefs`
- `MRfulltable`

calcZeroAdjustment

Calculate the zero-inflated component's adjustment factor

Description

Calculate the log ratio of average marginal probabilities for each sample having a positive count. This becomes the adjustment factor for the log fold change.

Usage

```r
calcZeroAdjustment(fitln, fitzero, mod, coef, exclude = NULL)
```

Arguments

- **fitln**

 A matrix with parameters from the log-normal fit

- **fitzero**

 A matrix with parameters from the logistic fit

- **mod**

 The zero component model matrix

- **coef**

 Coefficient of interest

- **exclude**

 List of features to exclude

See Also

- `fitZeroLogNormal`
- `fitFeatureModel`
calcZeroComponent Zero component

Description
Fit the zero (logistic) component

Usage
calcZeroComponent(mat, mod, weights)

Arguments
mat A matrix of normalized counts
mod A model matrix
weights Weight matrix for samples and counts

See Also
fitZeroLogNormal fitFeatureModel

correctIndices Calculate the correct indices for the output of correlationTest

Description
Consider the upper triangular portion of a matrix of size nxn. Results from the correlationTest are output as the combination of two vectors, correlation statistic and p-values. The order of the output is 1vs2, 1vs3, 1vs4, etc. The correctIndices returns the correct indices to fill a correlation matrix or correlation-pvalue matrix.

Usage
correctIndices(n)

Arguments
n The number of features compared by correlationTest (nrow(mat)).

Value
A vector of the indices for an upper triangular matrix.

See Also
correlationTest
correlationTest

Examples

```r
data(mouseData)
mat = MRcounts(mouseData)[55:60,]
cors = correlationTest(mat)
ind = correctIndices(nrow(mat))

cormat = as.matrix(dist(mat))
cormat[cormat>0] = 0
cormat[upper.tri(cormat)][ind] = cors[,1]
table(cormat[1,-1] - cors[1:5,1])
```

correlationTest Correlation of each row of a matrix or MRexperiment object

Description

Calculates the (pairwise) correlation statistics and associated p-values of a matrix or the correlation of each row with a vector.

Usage

```r
correlationTest(
  obj, 
  y = NULL, 
  method = "pearson", 
  alternative = "two.sided", 
  norm = TRUE, 
  log = TRUE, 
  cores = 1, 
  override = FALSE, 
  ...
)
```

Arguments

- `obj` A MRexperiment object or count matrix.
- `y` Vector of length ncol(obj) to compare to.
- `method` One of 'pearson', 'spearman', or 'kendall'.
- `alternative` Indicates the alternative hypothesis and must be one of 'two.sided', 'greater' (positive) or 'less'(negative). You can specify just the initial letter.
- `norm` Whether to aggregate normalized counts or not - if MRexperiment object.
- `log` Whether or not to log2 transform the counts - if MRexperiment object.
- `cores` Number of cores to use.
- `override` If the number of rows to test is over a thousand the test will not commence (unless override==TRUE).
- `...` Extra parameters for mclapply.
cumNorm

Value

A matrix of size choose(number of rows, 2) by 2. The first column corresponds to the correlation value. The second column the p-value.

See Also
correctIndices

Examples

Pairwise correlation of raw counts
data(mouseData)
cors = correlationTest(mouseData[1:10,],norm=FALSE,log=FALSE)
head(cors)

mat = MRcounts(mouseData)[1:10,]
cormat = as.matrix(dist(mat)) # Creating a matrix
cormat[cormat>0] = 0 # Creating an empty matrix
ind = correctIndices(nrow(mat))
cormat[upper.tri(cormat)][ind] = cors[,1]
table(cormat[1,-1] - cors[1:9,1])

Correlation of raw counts with a vector (library size in this case)
data(mouseData)
cors = correlationTest(mouseData[1:10,],libSize(mouseData),norm=FALSE,log=FALSE)
head(cors)

cumNorm Cumulative sum scaling normalization

Description

Calculates each column's quantile and calculates the sum up to and including that quantile.

Usage

cumNorm(obj, p = cumNormStatFast(obj))

Arguments

obj An MReperiment object.
p The pth quantile.

Value

Object with the normalization factors stored as a vector of the sum up to and including a sample's pth quantile.

See Also

fitZig cumNormStat
cumNormMat

Examples

data(mouseData)
mouseData <- cumNorm(mouseData)
head(normFactors(mouseData))

cumNormMat Cumulative sum scaling factors.

Description

Calculates each column’s quantile and calculates the sum up to and including that quantile.

Usage

cumNormMat(obj, p = cumNormStatFast(obj), sl = 1000)

Arguments

- obj: A matrix or MRexperiment object.
- p: The pth quantile.
- sl: The value to scale by (default=1000).

Value

Returns a matrix normalized by scaling counts up to and including the pth quantile.

See Also

fitZig cumNorm

Examples

data(mouseData)
head(cumNormMat(mouseData))
cumNormStatFast

Description

Calculates the percentile for which to sum counts up to and scale by. Faster version than available in cumNormStat. Deviates from methods described in Nature Methods by making use of row means for reference.

Usage

cumNormStatFast(obj, pFlag = FALSE, rel = 0.1, ...)

Arguments

obj A matrix or MReperiment object.
qFlag Flag to either calculate the proper percentile using R's step-wise quantile function or approximate function.
pFlag Plot the relative difference of the median deviance from the reference.
rel Cutoff for the relative difference from one median difference from the reference to the next
... Applicable if pFlag == TRUE. Additional plotting parameters.

Value

Percentile for which to scale data

See Also

fitZig cumNorm cumNormStatFast

Examples

data(mouseData)
p = round(cumNormStatFast(mouseData,pFlag=FALSE),digits=2)
Arguments

- **obj**: A matrix or MRexperiment object.
- **pFlag**: Plot the median difference quantiles.
- **rel**: Cutoff for the relative difference from one median difference from the reference to the next.
- **...**: Applicable if pFlag == TRUE. Additional plotting parameters.

Value

Percentile for which to scale data

See Also

`fitZig`, `cumNorm`, `cumNormStat`

Examples

```r
data(mouseData)
p = round(cumNormStatFast(mouseData,pFlag=FALSE),digits=2)
```

doCountMStep

Compute the Maximization step calculation for features still active.

Description

Maximization step is solved by weighted least squares. The function also computes counts residuals.

Usage

```r
doCountMStep(z, y, mmCount, stillActive, fit2 = NULL, dfMethod = "modified")
```

Arguments

- **z**: Matrix (m x n) of estimate responsibilities (probabilities that a count comes from a spike distribution at 0).
- **y**: Matrix (m x n) of count observations.
- **mmCount**: Model matrix for the count distribution.
- **stillActive**: Boolean vector of size M, indicating whether a feature converged or not.
- **fit2**: Previous fit of the count model.
- **dfMethod**: Either 'default' or 'modified' (by responsibilities)

Details

Maximum-likelihood estimates are approximated using the EM algorithm where we treat mixture membership δ_{ij} = 1 if y_{ij} is generated from the zero point mass as latent indicator variables. The density is defined as $f_{zig}(y_{ij} = \pi_j(S_j)*f_0(y_{ij}) + (1-\pi_j(S_j)) * f_{count}(y_{ij};\mu_i,\sigma_i^2)$. The log-likelihood in this extended model is $\log f_{count}(y;\mu_i,\sigma_i^2) + \delta_{ij} \log \pi_j(S_j)$.

The responsibilities are defined as $z_{ij} = pr(\delta_{ij}=1 | data)$.
doEStep

Value
Update matrix (m x n) of estimate responsibilities (probabilities that a count comes from a spike distribution at 0).

See Also
fitZig

doEStep

Description
Estimates the responsibilities $z_{ij} = \frac{\pi_j}{1 + (1 - \pi_j) f_{\text{count}}(y_{ij})}$.

Usage
doEStep(countResiduals, zeroResiduals, zeroIndices)

Arguments
- countResiduals: Residuals from the count model.
- zeroResiduals: Residuals from the zero model.
- zeroIndices: Index (matrix m x n) of counts that are zero/non-zero.

Details
Maximum-likelihood estimates are approximated using the EM algorithm where we treat mixture membership $\delta_{ij} = 1$ if y_{ij} is generated from the zero point mass as latent indicator variables. The density is defined as $f_z(y_{ij} = \pi_j(S_j) f_0(y_{ij}) + (1 - \pi_j(S_j)) f_{\text{count}}(y_{ij}; \mu_i, \sigma_i^2)$. The likelihood in this extended model is $L(\delta_{ij}) = \log f_z(y_{ij}; \mu_i, \sigma_i^2) + \delta_{ij} \log \pi_j(S_j) + (1 - \delta_{ij}) \log (1 - \pi_j(S_j))$. The responsibilities are defined as $z_{ij} = \Pr(\delta_{ij} = 1 | \text{data})$.

Value
Updated matrix (m x n) of estimate responsibilities (probabilities that a count comes from a spike distribution at 0).

See Also
fitZig
doZeroMStep

Compute the zero Maximization step.

Description

Performs Maximization step calculation for the mixture components. Uses least squares to fit the parameters of the mean of the logistic distribution. $$ \pi_j = \sum_i^M \frac{1}{M} z_{ij} $$ Maximum-likelihood estimates are approximated using the EM algorithm where we treat mixture membership \(\delta_{ij} = 1 \) if \(y_{ij} \) is generated from the zero point mass as latent indicator variables. The density is defined as $$ f_{\text{zig}}(y_{ij} = \pi_j(S_j) \cdot f_0(y_{ij}) + (1 - \pi_j(S_j)) \cdot f_{\text{count}}(y_{ij}; \mu_i, \sigma_i^2) \). $$ The log-likelihood in this extended model is $$ (1 - \delta_{ij}) \log f_{\text{count}}(y; \mu_i, \sigma_i^2) + \delta_{ij} \log \pi_j(s_j) + (1 - \delta_{ij}) \log (1 - \pi_j(s_j)). $$ The responsibilities are defined as $$ z_{ij} = \Pr(\delta_{ij} = 1|\text{data}). $$

Usage

\[\text{doZeroMStep}(z, \text{zeroIndices}, \text{mmZero}) \]

Arguments

- **z**
 - Matrix (m x n) of estimate responsibilities (probabilities that a count comes from a spike distribution at 0).
- **zeroIndices**
 - Index (matrix m x n) of counts that are zero/non-zero.
- **mmZero**
 - The zero model, the model matrix to account for the change in the number of OTUs observed as a linear effect of the depth of coverage.

Value

List of the zero fit (zero mean model) coefficients, variance - scale parameter (scalar), and normalized residuals of length sum(\text{zeroIndices}).

See Also

- `fitZig`

exportMat

Export the normalized MRexperiment dataset as a matrix.

Description

This function allows the user to take a dataset of counts and output the dataset to the user’s workspace as a tab-delimited file, etc.

Usage

\[\text{exportMat}(\text{obj}, \log = \text{TRUE}, \text{norm} = \text{TRUE}, \text{sep} = "\t", \text{file} = "~/Desktop/matrix.tsv") \]
exportStats

Arguments

obj A MRexperiment object or count matrix.
log Whether or not to log transform the counts - if MRexperiment object.
norm Whether or not to normalize the counts - if MRexperiment object.
sep Separator for writing out the count matrix.
file Output file name.

Value

NA

See Also

cumNorm

Examples

data(lungData)
dataDirectory <- system.file("extdata", package="metagenomeSeq")
exportMat(lungData[,1:5],file=file.path(dataDirectory,"tmp.tsv"))
head(read.csv(file=file.path(dataDirectory,"tmp.tsv"),sep="\t"))

exportStats Various statistics of the count data.

Description

A matrix of values for each sample. The matrix consists of sample ids, the sample scaling factor, quantile value, the number identified features, and library size (depth of coverage).

Usage

exportStats(obj, p = cumNormStat(obj), file = "/Desktop/res.stats.tsv")

Arguments

obj A MRexperiment object with count data.
p Quantile value to calculate the scaling factor and quantiles for the various samples.
file Output file name.

Value

None.

See Also

cumNorm quantile
expSummary

Examples

```r
data(lungData)
dataDirectory <- system.file("extdata", package="metagenomeSeq")
exportStats(lungData[,1:5],file=file.path(dataDirectory,"tmp.tsv"))
head(read.csv(file=file.path(dataDirectory,"tmp.tsv"),sep="\t"))
```

Description

The `expSummary` vectors represent the column (sample specific) sums of features, i.e. the total number of reads for a sample, `libSize` and also the normalization factors, `normFactor`.

Usage

```r
expSummary(obj)
```

Arguments

- `obj` a `MRexperiment` object.

Value

Experiment summary table

Author(s)

Joseph N. Paulson, jpaulson@umiacs.umd.edu

Examples

```r
data(mouseData)
expSummary(mouseData)
```

extractMR

Extract the essentials of an MRexperiment.

Description

Extract the essentials of an MRexperiment.

Usage

```r
extractMR(obj)
```
Arguments

obj MRexperiment-class object.

Value

A list containing:
 counts : Count data
 • librarySize : The column sums / library size / sequencing depth
 • normFactors : The normalization scaling factors
 • pheno : phenotype table
 • feat : feature table

Examples

data(mouseData)
head(metagenomeSeq:::extractMR(mouseData))

filterData Filter datasets according to no. features present in features with at least a certain depth.

Description

Filter the data based on the number of present features after filtering samples by depth of coverage. There are many ways to filter the object, this is just one way.

Usage

filterData(obj, present = 1, depth = 1000)

Arguments

obj A MRexperiment object or count matrix.

present Features with at least 'present' postive samples.

depth Samples with at least this much depth of coverage

Value

A MRexperiment object.

Examples

data(mouseData)
filterData(mouseData)
fitDO

Wrapper to calculate Discovery Odds Ratios on feature values.

Description

This function returns a data frame of p-values, odds ratios, lower and upper confidence limits for every row of a matrix. The discovery odds ratio is calculated as using Fisher’s exact test on actual counts. The test’s hypothesis is whether or not the discovery of counts for a feature (of all counts) is found in greater proportion in a particular group.

Usage

```r
fitDO(obj, cl, norm = TRUE, log = TRUE, adjust.method = "fdr", cores = 1, ...)
```

Arguments

- **obj**
 A MRexperiment object with a count matrix, or a simple count matrix.
- **cl**
 Group comparison
- **norm**
 Whether or not to normalize the counts - if MRexperiment object.
- **log**
 Whether or not to log2 transform the counts - if MRexperiment object.
- **adjust.method**
 Method to adjust p-values by. Default is "FDR". Options include "holm", "hochberg", "hommel", "bonferroni", "BH", "BY", "fdr", "none". See `p.adjust` for more details.
- **cores**
 Number of cores to use.
- **...**
 Extra options for makeCluster

Value

Matrix of odds ratios, p-values, lower and upper confidence intervals

See Also

- `cumNorm`
- `fitZig`
- `fitPA`
- `fitMeta`

Examples

```r
data(lungData)  
k = grep("Extraction.Control", pData(lungData)$SampleType)  
lungTrim = lungData[, -k]  
lungTrim = lungTrim[-which(rowSums(MRcounts(lungTrim)>0)<20),]  
res = fitDO(lungTrim, pData(lungTrim)$SmokingStatus);  
head(res)
```
fitFeatureModel

Computes differential abundance analysis using a zero-inflated log-normal model

Description

Wrapper to actually run zero-inflated log-normal model given a MRexperiment object and model matrix. User can decide to shrink parameter estimates.

Usage

fitFeatureModel(obj, mod, coef = 2, B = 1, szero = FALSE, spos = TRUE)

Arguments

obj A MRexperiment object with count data.
mod The model for the count distribution.
coef Coefficient of interest to grab log fold-changes.
B Number of bootstraps to perform if >1. If >1 performs permutation test.
szero TRUE/FALSE, shrink zero component parameters.
spos TRUE/FALSE, shrink positive component parameters.

Value

A list of objects including:

• call - the call made to fitFeatureModel
• fitZeroLogNormal - list of parameter estimates for the zero-inflated log normal model
• design - model matrix
• taxa - taxa names
• counts - count matrix
• pvalues - calculated p-values
• permuttedfits - permuted z-score estimates under the null

See Also

cumNorm

Examples

data(lungData)
lungData = lungData[,!which(is.na(pData(lungData)$SmokingStatus))]
lungData=filterData(lungData,present=30,depth=1)
lungData <- cumNorm(lungData, p=.5)
s <- normFactors(lungData)
pd <- pData(lungData)
mod <- model.matrix(~1+SmokingStatus, data=pd)
lungres1 = fitFeatureModel(lungData,mod)
fitFeatureModelResults-class

Class "fitFeatureModelResults" – a formal class for storing results from a fitFeatureModel call

Description

This class contains all of the same information expected from a fitFeatureModel call, but it is defined in the S4 style as opposed to being stored as a list.

Slots

call the call made to fitFeatureModel
fitZeroLogNormal list of parameter estimates for the zero-inflated log normal model
design model matrix
taxa taxa names
counts count matrix
cvalues calculated p-values
permuttedFits permuted z-score estimates under the null

fitLogNormal Computes a log-normal linear model and permutation based p-values.

Description

Wrapper to perform the permutation test on the t-statistic. This is the original method employed by metastats (for non-sparse large samples). We include CSS normalization though (optional) and log2 transform the data. In this method the null distribution is not assumed to be a t-dist.

Usage

fitLogNormal(obj, mod, useCSSoffset = TRUE, B = 1000, coef = 2, sl = 1000)

Arguments

obj A MRexperiment object with count data.
mod The model for the count distribution.
useCSSoffset Boolean, whether to include the default scaling parameters in the model or not.
B Number of permutations.
coef The coefficient of interest.
sl The value to scale by (default=1000).

Value

Call made, fit object from lmFit, t-statistics and p-values for each feature.
This is a simple demonstration
data(lungData)
k = grep("Extraction.Control", pData(lungData)$SampleType)
lungTrim = lungData[,-k]
k = which(rowSums(MRcounts(lungTrim)>0)<30)
lungTrim = cumNorm(lungTrim)
lungTrim = lungTrim[-k,]
smokingStatus = pData(lungTrim)$SmokingStatus
mod = model.matrix(~smokingStatus)
fit = fitLogNormal(obj = lungTrim, mod=mod, B=1)

fitMultipleTimeSeries *Discover differentially abundant time intervals for all bacteria*

Description

Calculate time intervals of significant differential abundance over all bacteria of a particularly specified level (lvl). If not lvl is specified, all OTUs are analyzed. Warning, function can take a while.

Usage

```r
fitMultipleTimeSeries(obj, lvl = NULL, B = 1, featureOrder = NULL, ...)
```

Arguments

- `obj` metagenomeSeq MRexperiment-class object.
- `lvl` Vector or name of column in featureData of MRexperiment-class object for aggregating counts (if not OTU level).
- `B` Number of permutations to perform.
- `featureOrder` Hierarchy of levels in taxonomy as fData colnames
- `...` Options for `fitTimeSeries`, except feature.

Value

List of lists of matrices of time point intervals of interest, Difference in abundance area and p-value, fit, area permutations.

A list of lists for which each includes:

- `timeIntervals` - Matrix of time point intervals of interest, area of differential abundance, and p-value.
- `data` - Data frame of abundance, class indicator, time, and id input.
- `fit` - Data frame of fitted values of the difference in abundance, standard error estimates and timepoints interpolated over.
- `perm` - Differential abundance area estimates for each permutation.
- `call` - Function call.
fitPA

See Also

cumNorm fitSSTimeSeries fitTimeSeries

Examples

data(mouseData)
res = fitMultipleTimeSeries(obj=mouseData,lvl='phylum',class="status",
 id="mouseID",time="relativeTime",B=1)

fitPA

Wrapper to run fisher’s test on presence/absence of a feature.

Description

This function returns a data frame of p-values, odds ratios, lower and upper confidence limits for every row of a matrix.

Usage

fitPA(obj, cl, thres = 0, adjust.method = "fdr", cores = 1, ...)

Arguments

obj A MRexperiment object with a count matrix, or a simple count matrix.
cl Group comparison
thres Threshold for defining presence/absence.
adjust.method Method to adjust p-values by. Default is "FDR". Options include "holm", "hochberg", "hommel", "bonferroni", "BH", "BY", "fdr", "none". See p.adjust for more details.
cores Number of cores to use.
... Extra parameters for makeCluster

Value

Matrix of odds ratios, p-values, lower and upper confidence intervals

See Also

cumNorm fitZig fitDO fitMeta

Examples

data(lungData)
k = grep("Extraction.Control",pData(lungData)$SampleType)
lungTrim = lungData[,-k]
lungTrim = lungTrim[-which(rowSums(MRcounts(lungTrim)>0)<20),]
res = fitPA(lungTrim,pData(lungTrim)$SmokingStatus);
head(res)
fitSSTimeSeries

Discover differentially abundant time intervals using SS-Anova

Description

Calculate time intervals of interest using SS-Anova fitted models. Fitting is performed uses Smoothing Spline ANOVA (SS-Anova) to find interesting intervals of time. Given observations at different time points for two groups, fitSSTimeSeries calculates a function that models the difference in abundance between two groups across all time. Using permutations we estimate a null distribution of areas for the time intervals of interest and report significant intervals of time. Use of the function for analyses should cite: "Finding regions of interest in high throughput genomics data using smoothing splines" Talukder H, Paulson JN, Bravo HC. (In preparation)

Usage

```r
fitSSTimeSeries(
  obj,
  formula,
  feature,
  class,
  time,
  id,
  lvl = NULL,
  include = c("class", "time:class"),
  C = 0,
  B = 1000,
  norm = TRUE,
  log = TRUE,
  sl = 1000,
  featureOrder = NULL,
  ...
)
```

Arguments

- **obj**: metagenomeSeq MRexperiment-class object.
- **formula**: Formula for ssanova. Of the form: abundance ~ ... where ... includes any pData slot value.
- **feature**: Name or row of feature of interest.
- **class**: Name of column in phenoData of MRexperiment-class object for class membership.
- **time**: Name of column in phenoData of MRexperiment-class object for relative time.
- **id**: Name of column in phenoData of MRexperiment-class object for sample id.
- **lvl**: Vector or name of column in featureData of MRexperiment-class object for aggregating counts (if not OTU level).
- **include**: Parameters to include in prediction.
- **C**: Value for which difference function has to be larger or smaller than (default 0).
- **B**: Number of permutations to perform.
fitTimeSeries

Discover differentially abundant time intervals

Description

Calculate time intervals of significant differential abundance. Currently only one method is imple-
mented (ssanova). fitSSTimeSeries is called with method="ssanova".

Usage

fitTimeSeries(
 obj,
 formula,
 feature,
 class,
 time,
 id,
 method = c("ssanova"),

Value

List of matrix of time point intervals of interest, Difference in abundance area and p-value, fit, area
permutations, and call.

A list of objects including:

- `timeIntervals` - Matrix of time point intervals of interest, area of differential abundance, and
 pvalue.
- `data` - Data frame of abundance, class indicator, time, and id input.
- `fit` - Data frame of fitted values of the difference in abundance, standard error estimates and
timepoints interpolated over.
- `perm` - Differential abundance area estimates for each permutation.
- `call` - Function call.

See Also

cumNorm ssFit ssIntervalCandidate ssPerm ssPermAnalysis plotTimeSeries

Examples

data(mouseData)
res = fitSSTimeSeries(obj=mouseData,feature="Actinobacteria",
class="status",id="mouseID",time="relativeTime",lvl='class',B=2)
```
lvl = NULL,
include = c("class", "time:class"),
C = 0,
B = 1000,
norm = TRUE,
log = TRUE,
sl = 1000,
featureOrder = NULL,
...
```
fitZeroLogNormal

Compute the log fold-change estimates for the zero-inflated log-normal model

Description

Run the zero-inflated log-normal model given a MRexperiment object and model matrix. Not for the average user, assumes structure of the model matrix.

Usage

fitZeroLogNormal(obj, mod, coef = 2, szero = TRUE, spos = TRUE)

Arguments

obj A MRexperiment object with count data.
mod The model for the count distribution.
coef Coefficient of interest to grab log fold-changes.
szero TRUE/FALSE, shrink zero component parameters.
spos TRUE/FALSE, shrink positive component parameters.

Value

A list of objects including:

- logFC - the log fold-change estimates
- adjFactor - the adjustment factor based on the zero component
- se - standard error estimates
- fitln - parameters from the log-normal fit
- fitzero - parameters from the logistic fit
- zeroRidge - output from the ridge regression
- posRidge - output from the ridge regression
- tauPos - estimated \(\tau^2 \) for positive component
- tauZero - estimated \(\tau^2 \) for zero component
- exclude - features to exclude for various reasons, e.g. all zeros
- zeroExclude - features to exclude for various reasons, e.g. all zeros

See Also

cumNorm fitFeatureModel
fitZig

Computes the weighted fold-change estimates and t-statistics.

Description

Wrapper to actually run the Expectation-maximization algorithm and estimate \(\text{fitZig} \) fits. Maximum-likelihood estimates are approximated using the EM algorithm where we treat mixture membership \(\delta_{ij} = 1 \) if \(y_{ij} \) is generated from the zero point mass as latent indicator variables. The density is defined as \(f_{\text{Zig}}(y_{ij} = \pi_j(S_j) f_0(y_{ij}) + (1 - \pi_j(S_j)) f_{\text{count}}(y_{ij}; \mu_i, \sigma_i^2) \delta_{ij} \). The log-likelihood in this extended model is: \((1 - \delta_{ij}) \log f_{\text{count}}(y; \mu_i, \sigma_i^2) + \delta_{ij} \log \pi_j(S_j) + (1 - \delta_{ij}) \log (1 - \pi_j(S_j)) \). The responsibilities are defined as \(z_{ij} = \text{pr} (\delta_{ij} = 1 | \text{data}) \).

Usage

```r
fitZig(
  obj,
  mod,
  zeroMod = NULL,
  useCSSoffset = TRUE,
  control = zigControl(),
  useMixedModel = FALSE,
  ...
)
```

Arguments

- `obj`: A MRexperiment object with count data.
- `mod`: The model for the count distribution.
- `zeroMod`: The zero model, the model to account for the change in the number of OTUs observed as a linear effect of the depth of coverage.
- `useCSSoffset`: Boolean, whether to include the default scaling parameters in the model or not.
- `control`: The settings for fitZig.
- `useMixedModel`: Estimate the correlation between duplicate features or replicates using duplicateCorrelation.
- `...`: Additional parameters for duplicateCorrelation.

Value

A list of objects including:

- call: the call made to fitZig
- fit: `MLArrayLM` Limma object of the weighted fit
- countResiduals: standardized residuals of the fit
- z: matrix of the posterior probabilities
- eb: output of eBayes, moderated t-statistics, moderated F-statistics, etc
- taxa: vector of the taxa names
- counts: the original count matrix input
fitZigResults-class

Class "fitZigResults" – a formal class for storing results from a fitZig call

Description

This class contains all of the same information expected from a fitZig call, but it is defined in the S4 style as opposed to being stored as a list.

Slots

call the call made to fitZig
fit 'MLArrayLM' Limma object of the weighted fit
countsResiduals standardized residuals of the fit
z matrix of the posterior probabilities. It is defined as $z_{ij} = \Pr(\delta_{ij}=1 | \text{data})$
zUsed used in getZ
eb output of eBayes, moderated t-statistics, moderated F-statistics, etc
taxa vector of the taxa names
counts the original count matrix input
zeroMod the zero model matrix
zeroCoef the zero model fitted results
stillActive convergence
stillActiveNLL nll at convergence
dupcor correlation of duplicates

See Also

cumNorm zigControl

Examples

This is a simple demonstration
data(lungData)
k = grep("Extraction.Control", pData(lungData)$SampleType)
lungTrim = lungData[, -k]
k = which(rowSums(MRcounts(lungTrim) > 0) < 30)
lungTrim = cumNorm(lungTrim)
lungTrim = lungTrim[-k,]
smokingStatus = pData(lungTrim)$SmokingStatus
mod = model.matrix(~ smokingStatus)
The maxit is not meant to be 1 - this is for demonstration/speed
settings = zigControl(maxit=1, verbose=FALSE)
fit = fitZig(obj = lungTrim, mod=mod, control=settings)
getCountDensity

Description

Compute the value of the count density function from the count model residuals.

Calculate density values from a normal:
\[f(x) = \frac{1}{\sqrt{2\pi} \sigma} e^{-\frac{(x - \mu)^2}{2 \sigma^2}} \].

Maximum-likelihood estimates are approximated using the EM algorithm where we treat mixture membership \(\delta_{ij} = 1 \) if \(y_{ij} \) is generated from the zero point mass as latent indicator variables. The density is defined as
\[f_{\text{zig}}(y_{ij} = p_{ij}(S_j) \cdot f_0(y_{ij}) + (1-p_{ij}(S_j)) \cdot f_{\text{count}}(y_{ij}; \mu_i, \sigma_i^2). \]

The log-likelihood in this extended model is
\[(1-\delta_{ij}) \log f_{\text{count}}(y_{ij}; \mu_i, \sigma_i^2) + \delta_{ij} \log p_{ij}(S_j) + (1-\delta_{ij}) \log (1-p_{ij}(S_j)). \]

The responsibilities are defined as
\[z_{ij} = \text{pr}(\delta_{ij}=1 \mid \text{data}). \]

Usage

```
getCountDensity(residuals, log = FALSE)
```

Arguments

- `residuals`: Residuals from the count model.
- `log`: Whether or not we are calculating from a log-normal distribution.

Value

Density values from the count model residuals.

See Also

- `fitZig`

getEpsilon

Description

Calculate the relative difference between iterations of the negative log-likelihoods.

Maximum-likelihood estimates are approximated using the EM algorithm where we treat mixture membership \(\delta_{ij} = 1 \) if \(y_{ij} \) is generated from the zero point mass as latent indicator variables. The log-likelihood in this extended model is
\[(1-\delta_{ij}) \log f_{\text{count}}(y_{ij}; \mu_i, \sigma_i^2) + \delta_{ij} \log p_{ij}(S_j) + (1-\delta_{ij}) \log (1-p_{ij}(S_j)). \]

The responsibilities are defined as
\[z_{ij} = \text{pr}(\delta_{ij}=1 \mid \text{data}). \]

Usage

```
getEpsilon(nll, nllOld)
```

Arguments

- `nll`: Vector of size M with the current negative log-likelihoods.
- `nllOld`: Vector of size M with the previous iterations negative log-likelihoods.
Value

Vector of size M of the relative differences between the previous and current iteration nll.

See Also

fitZig

Description

Maximum-likelihood estimates are approximated using the EM algorithm where we treat mixture membership $\delta_{ij} = 1$ if y_{ij} is generated from the zero point mass as latent indicator variables. The log-likelihood in this extended model is $(1 - \delta_{ij}) \log f_{\text{count}}(y; \mu_i, \sigma_i^2) + \delta_{ij} \log \pi_j(s_j) + (1 - \delta_{ij}) \log (1 - \pi_j(s_j))$. The responsibilities are defined as $z_{ij} = \text{pr}(\delta_{ij} = 1 \mid \text{data and current values})$.

Usage

getNegativeLogLikelihoods(z, countResiduals, zeroResiduals)

Arguments

z Matrix (m x n) of estimate responsibilities (probabilities that a count comes from a spike distribution at 0).
countResiduals Residuals from the count model.
zeroResiduals Residuals from the zero model.

Value

Vector of size M of the negative log-likelihoods for the various features.

See Also

fitZig
getPi

Calculate the mixture proportions from the zero model / spike mass model residuals.

Description

F(x) = 1 / (1 + exp(-(x-m)/s)) (the CDF of the logistic distribution). Provides the probability that a real-valued random variable X with a given probability distribution will be found at a value less than or equal to x. The output are the mixture proportions for the samples given the residuals from the zero model.

Usage

geti(residuals)

Arguments

residuals Residuals from the zero model.

Value

Mixture proportions for each sample.

See Also

fitZig

getZ

Calculate the current Z estimate responsibilities (posterior probabilities)

Description

Calculate the current Z estimate responsibilities (posterior probabilities)

Usage

geti(z, zUsed, stillActive, nll, nllUSED)

Arguments

z Matrix (m x n) of estimate responsibilities (probabilities that a count comes from a spike distribution at 0).

zUsed Matrix (m x n) of estimate responsibilities (probabilities that a count comes from a spike distribution at 0) that are actually used (following convergence).

stillActive A vector of size M booleans saying if a feature is still active or not.

nll Vector of size M with the current negative log-likelihoods.

nllUSED Vector of size M with the converged negative log-likelihoods.
isItStillActive

Value

A list of updated zUsed and nllUSED.

See Also

fitZig

Description

In the Expectation Maximization routine features posterior probabilities routinely converge based on a tolerance threshold. This function checks whether or not the feature’s negative log-likelihood (measure of the fit) has changed or not.

Usage

isItStillActive(eps, tol, stillActive, stillActiveNLL, nll)

Arguments

erps Vector of size M (features) representing the relative difference between the new nll and old nll.
tol The threshold tolerance for the difference
stillActive A vector of size M booleans saying if a feature is still active or not.
stillActiveNLL A vector of size M recording the negative log-likelihoods of the various features, updated for those still active.
nll Vector of size M with the current negative log-likelihoods.

Value

None.

See Also

fitZig
libSize<-

Access sample depth of coverage from MRexperiment object

Description

Access the `libSize` vector represents the column (sample specific) sums of features, i.e. the total number of reads for a sample or depth of coverage. It is used by `fitZig`.

Usage

```r
libSize(object)
```

Arguments

- `object` a `MRexperiment` object

Value

Library sizes

Author(s)

Joseph N. Paulson

Examples

```r
data(lungData)
head(libSize(lungData))
```

libSize<-

Replace the library sizes in a MRexperiment object

Description

Function to replace the scaling factors, aka the library sizes, of samples in a `MRexperiment` object.

Usage

```r
## S4 replacement method for signature 'MRexperiment,numeric'
libSize(object) <- value
```

Arguments

- `object` a `MRexperiment` object
- `value` vector of library sizes

Value

vector library sizes
loadBiom

Author(s)

Joseph N. Paulson

Examples

data(lungData)
head(libSize(lungData)<- rnorm(1))

loadBiom

Load objects organized in the Biom format.

Description

Wrapper to load Biom formatted object.

Usage

loadBiom(file)

Arguments

file The biom object filepath.

Value

A MRexperiment object.

See Also

loadMeta loadPhenoData newMRexperiment biom2MRexperiment

Examples

#library(biomformat)
rich_dense_file = system.file("extdata", "rich_dense.otu_table.biom", package = "biomformat")
x = loadBiom(rich_dense_file)
x
loadMeta

Load a count dataset associated with a study.

Description
Load a matrix of OTUs in a tab delimited format

Usage
loadMeta(file, sep = "\t")

Arguments
file Path and filename of the actual data file.
sep File delimiter.

Value
A list with objects 'counts' and 'taxa'.

See Also
loadPhenoData

Examples

dataDirectory <- system.file("extdata", package="metagenomeSeq")
lung = loadMeta(file.path(dataDirectory,"CHK_NAME.otus.count.csv"))

loadMetaQ

Load a count dataset associated with a study set up in a Qiime format.

Description
Load a matrix of OTUs in Qiime's format

Usage
loadMetaQ(file)

Arguments
file Path and filename of the actual data file.

Value
An list with 'counts' containing the count data, 'taxa' containing the otu annotation, and 'otus'.

loadPhenoData

See Also

`loadMeta` `loadPhenoData`

Examples

```r
# see vignette
```

Description

Load a matrix of metadata associated with a study.

Usage

```r
loadPhenoData(file, tran = TRUE, sep = "\t")
```

Arguments

- `file` Path and filename of the actual clinical file.
- `tran` Boolean. If the covariates are along the columns and samples along the rows, then `tran` should equal TRUE.
- `sep` The separator for the file.

Value

The metadata as a dataframe.

See Also

`loadMeta`

Examples

```r
dataDirectory <- system.file("extdata", package="metagenomeSeq")
clin = loadPhenoData(file.path(dataDirectory,"CHK_clinical.csv"), tran=TRUE)
```
lua

lunpData

OTU abundance matrix of samples from a smoker/non-smoker study

Description

This is a list with a matrix of OTU counts, otu names, taxa annotations for each OTU, and phenotypic data. Samples along the columns and OTUs along the rows.

Format

A list of OTU matrix, taxa, otus, and phenotypes

Value

MRexperiment-class object of 16S lung samples.

References

makeLabels

Function to make labels simpler

Description

Beginning to transition to better axes for plots

Usage

```
makeLabels(x = "samples", y = "abundance", norm, log)
```

Arguments

- `x`: string for the x-axis
- `y`: string for the y-axis
- `norm`: is the data normalized?
- `log`: is the data logged?

Value

vector of x,y labels

Examples

```
metagenomeSeq::makeLabels(norm=TRUE, log=TRUE)
```
mergeMRExperiments

Merge two MReperiment objects together

Description

This function will take two MReperiment objects and merge them together finding common OTUs. If there are OTUs not found in one of the two MReperiments then a message will announce this and values will be coerced to zero for the second table.

Usage

```r
mergeMRExperiments(x, y)
```

Arguments

- `x`: MRexperiment-class object 1.
- `y`: MRexperiment-class object 2.

Value

Merged MRexperiment-class object.

Examples

```r
data(mouseData)
newobj = mergeMRExperiments(mouseData,mouseData)
newobj

# let me know if people are interested in an option to merge by keys instead of row names.
data(lungData)
newobj = mergeMRExperiments(mouseData,lungData)
newobj
```

mergeTable

Merge two tables

Description

Merge two tables

Usage

```r
mergeTable(x, y)
```

Arguments

- `x`: Table 1.
- `y`: Table 2.

Value

Merged table
Description

These functions may be removed completely in the next release.

Usage

deprecated_metagenomeSeq_function(x, value, ...)

Arguments

x For assignment operators, the object that will undergo a replacement (object inside parenthesis).
value For assignment operators, the value to replace with (the right side of the assignment).
... For functions other than assignment operators, parameters to be passed to the modern version of the function (see table).

mouseData

OTU abundance matrix of mice samples from a diet longitudinal study

Description

This is a list with a matrix of OTU counts, taxa annotations for each OTU, otu names, and vector of phenotypic data. Samples along the columns and OTUs along the rows.

Format

A list of OTU matrix, taxa, otus, and phenotypes

Value

MRexperiment-class object of 16S mouse samples.

References

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2894525/
MRcoefs

Table of top-ranked features from fitZig or fitFeatureModel

Description

Extract a table of the top-ranked features from a linear model fit. This function will be updated soon to provide better flexibility similar to limma’s topTable.

Usage

```
MRcoefs(
  obj,  # Output of fitFeatureModel or fitZig.
  by = 2,  # Column number or column name specifying which coefficient or contrast of the
           # linear model is of interest.
  coef = NULL,  # Column number(s) or column name(s) specifying which coefficient or contrast
                # of the linear model to display.
  number = 10,  # The number of bacterial features to pick out.
  taxa = obj@taxa,  # Taxa list.
  uniqueNames = FALSE,  # Number the various taxa.
  adjustMethod = "fdr",  # Method to adjust p-values by. Default is "FDR". Options include "holm",
                         # "hochberg", "hommel", "bonferroni", "BH", "BY", "fdr", "none". See p.adjust
                         # for more details. Additionally, options using independent hypothesis weighting
                         # (IHW) are available. See MRihw for more details.
  alpha = 0.1,  # Value for p-value significance threshold when running IHW. The default is set
                 # to 0.1
  group = 0,  # One of five choices, 0, 1, 2, 3, 4. 0: the sort is ordered by a decreasing absolute
              # value coefficient fit. 1: the sort is ordered by the raw coefficient fit in decreasing
              # order. 2: the sort is ordered by the raw coefficient fit in increasing order. 3: the
              # sort is ordered by the p-value of the coefficient fit in increasing order. 4: no
              # sorting.
  eff = 0,  # Filter features to have at least a "eff" quantile or number of effective samples.
  numberEff = FALSE,  # Counts.
  counts = 0,  # file = NULL
)
```

Arguments

- `obj`: Output of fitFeatureModel or fitZig.
- `by`: Column number or column name specifying which coefficient or contrast of the linear model is of interest.
- `coef`: Column number(s) or column name(s) specifying which coefficient or contrast of the linear model to display.
- `number`: The number of bacterial features to pick out.
- `taxa`: Taxa list.
- `uniqueNames`: Number the various taxa.
- `adjustMethod`: Method to adjust p-values by. Default is "FDR". Options include "holm", "hochberg", "hommel", "bonferroni", "BH", "BY", "fdr", "none". See p.adjust for more details. Additionally, options using independent hypothesis weighting (IHW) are available. See MRihw for more details.
- `alpha`: Value for p-value significance threshold when running IHW. The default is set to 0.1
- `group`: One of five choices, 0, 1, 2, 3, 4. 0: the sort is ordered by a decreasing absolute value coefficient fit. 1: the sort is ordered by the raw coefficient fit in decreasing order. 2: the sort is ordered by the raw coefficient fit in increasing order. 3: the sort is ordered by the p-value of the coefficient fit in increasing order. 4: no sorting.
- `eff`: Filter features to have at least a "eff" quantile or number of effective samples.
numberEff
 Boolean, whether eff should represent quantile (default/\text{FALSE}) or number.

counts
 Filter features to have at least \text{`counts'} counts.

file
 Name of output file, including location, to save the table.

\textbf{Value}

Table of the top-ranked features determined by the linear fit's coefficient.

\textbf{See Also}

\text{fitZig} \text{fitFeatureModel} \text{MRtable} \text{MRfulltable}

\textbf{Examples}

\begin{verbatim}
 data(lungData)
 k = grep("Extraction.Control", pData(lungData)$SampleType)
 lungTrim = lungData[-k]
 lungTrim = filterData(lungTrim,present=30)
 lungTrim = cumNorm(lungTrim,p=0.5)
 smokingStatus = pData(lungTrim)$SmokingStatus
 mod = model.matrix(~smokingStatus)
 fit = fitZig(obj = lungTrim, mod=mod)
 head(MRcoefs(fit))
 ##
 fit = fitFeatureModel(obj = lungTrim, mod=mod)
 head(MRcoefs(fit))
\end{verbatim}

\textbf{MRcounts}

\textit{Accessor for the counts slot of a MRexperiment object}

\textbf{Description}

The counts slot holds the raw count data representing (along the rows) the number of reads annotated for a particular feature and (along the columns) the sample.

\textbf{Usage}

\textbf{MRcounts}(obj, norm = \text{FALSE}, log = \text{FALSE}, sl = 1000)

\textbf{Arguments}

\begin{itemize}
 \item \textbf{obj} \hspace{1cm} a \text{MRexperiment} object.
 \item \textbf{norm} \hspace{1cm} \text{logical} indicating whether or not to return normalized counts.
 \item \textbf{log} \hspace{1cm} \text{TRUE/FALSE} whether or not to log2 transform scale.
 \item \textbf{sl} \hspace{1cm} The value to scale by (default=1000).
\end{itemize}

\textbf{Value}

Normalized or raw counts
MRexperiment

Author(s)

Joseph N. Paulson, jpaulson@umiacs.umd.edu

Examples

```r
data(lungData)
head(MRcounts(lungData))
```

Description

This is the main class for metagenomeSeq.

Objects from the Class

Objects should be created with calls to `newMRexperiment`.

Extends

Class eSet (package 'Biobase'), directly. Class VersionedBiobase (package 'Biobase'), by class "eSet", distance 2. Class Versioned (package 'Biobase'), by class "eSet", distance 3.

Methods

Class-specific methods.

\[
\text{Subset operation, taking two arguments and indexing the sample and variable. Returns an MRexperiment object, including relevant metadata. Setting drop=TRUE generates an error. Subsetting the data, the experiment summary slot is repopulated and pData is repopulated after calling factor (removing levels not present).}
\]

Note

Note: This is a summary for reference. For an explanation of the actual usage, see the vignette.

MRexperiments are the main class in use by metagenomeSeq. The class extends eSet and provides additional slots which are populated during the analysis pipeline.

MRexperiment dataset are created with calls to `newMRexperiment`. MRexperiment datasets contain raw count matrices (integers) accessible through `MRcounts`. Similarly, normalized count matrices can be accessed (following normalization) through `MRcounts` by calling norm=TRUE. Following an analysis, a matrix of posterior probabilities for counts is accessible through `posteriorProbs`.

The normalization factors used in analysis can be recovered by `normFactors`, as can the library sizes of samples (depths of coverage), `libSize`.

Similarly to other RNASeq bioconductor packages available, the rows of the matrix correspond to a feature (be it OTU, species, gene, etc.) and each column an experimental sample. Pertinent clinical information and potential confounding factors are stored in the phenoData slot (accessed via pData).
To populate the various slots in an MRexperiment several functions are run. 1) `cumNormStat` calculates the proper percentile to calculate normalization factors. The `cumNormStat` slot is populated. 2) `cumNorm` calculates the actual normalization factors using \(p = \text{cumNormStat} \).

Other functions will place subsequent matrices (normalized counts (`cumNormMat`), posterior probabilities (`posteriorProbs`))

As mentioned above, `MRexperiment` is derived from the virtual class, eSet and thereby has a phenoData slot which allows for sample annotation. In the phenoData data frame factors are stored. The normalization factors and library size information is stored in a slot called expSummary that is an annotated data frame and is repopulated for subsetted data.

Examples

```r
# See vignette
```

Description

Wrapper to convert MRexperiment objects to biom objects.

Usage

```r
MRexperiment2biom(
  obj, 
  id = NULL, 
  norm = FALSE, 
  log = FALSE, 
  sl = 1000, 
  qiimeVersion = TRUE
)
```

Arguments

- `obj` The MRexperiment object.
- `id` Optional id for the biom matrix.
- `norm` normalize count table
- `log` log2 transform count table
- `sl` scaling factor for normalized counts.
- `qiimeVersion` Format fData according to QIIME specifications (assumes only taxonomy in fData).

Value

A biom object.

See Also

`loadMeta` `loadPhenoData` `newMRexperiment` `loadBiom` `biom2MRexperiment`
MRfulltable
Table of top microbial marker gene from linear model fit including sequence information

Description

Extract a table of the top-ranked features from a linear model fit. This function will be updated soon to provide better flexibility similar to limma’s topTable. This function differs from `link{MRcoefs}` in that it provides other information about the presence or absence of features to help ensure significant features called are moderately present.

Usage

```r
MRfulltable(
  obj,  
  by = 2, 
  coef = NULL, 
  number = 10, 
  taxa = obj@taxa, 
  uniqueNames = FALSE, 
  adjustMethod = "fdr", 
  group = 0, 
  eff = 0, 
  numberEff = FALSE, 
  ncounts = 0, 
  file = NULL
)
```

Arguments

- **obj**: Output of `fitFeatureModel` or `fitZig`.
- **by**: Column number or column name specifying which coefficient or contrast of the linear model is of interest.
- **coef**: Column number(s) or column name(s) specifying which coefficient or contrast of the linear model to display.
- **number**: The number of bacterial features to pick out.
- **taxa**: Taxa list.
- **uniqueNames**: Number the various taxa.
- **adjustMethod**: Method to adjust p-values by. Default is "FDR". Options include "holm", "hochberg", "hommel", "bonferroni", "BH", "BY", "fdr", "none". See `p.adjust` for more details.
- **group**: One of five choices: 0,1,2,3,4. 0: the sort is ordered by a decreasing absolute value coefficient fit. 1: the sort is ordered by the raw coefficient fit in decreasing order. 2: the sort is ordered by the raw coefficient fit in increasing order. 3: the sort is ordered by the p-value of the coefficient fit in increasing order. 4: no sorting.
- **eff**: Filter features to have at least a "eff" quantile or number of effective samples.
- **numberEff**: Boolean, whether eff should represent quantile (default/`FALSE`) or number.
- **ncounts**: Filter features to those with at least 'counts' counts.
- **file**: Name of output file, including location, to save the table.
Value

Table of the top-ranked features determined by the linear fit’s coefficient.

See Also

`fitZig` `fitFeatureModel` `MRcoefs` `MRtable` `fitPA`

Examples

data(lungData)
k = grep("Extraction.Control",pData(lungData)$SampleType)
lungTrim = lungData[,-k]
lungTrim = filterData(lungTrim,present=30)
lungTrim = cumNorm(lungTrim,p=0.5)
smokingStatus = pData(lungTrim)$SmokingStatus
mod = model.matrix(~smokingStatus)
fit = fitZig(obj = lungTrim,mod=mod)
head(MRfulltable(fit))
####
fit = fitFeatureModel(obj = lungTrim,mod=mod)
head(MRfulltable(fit))

MRihw
MRihw runs IHW within a MRcoefs() call

Description

Function used in MRcoefs() when "IHW" is set as the p value adjustment method

Usage

`MRihw(obj, ...)`

Arguments

- `obj`
 Either a `fitFeatureModelResults` or `fitZigResults` object
- `...`
 other parameters
MRihw, fitFeatureModelResults-method

MRihw runs IHW within a MRcoefs() call

Description
Function used in MRcoefs() when "IHW" is set as the p value adjustment method

Usage
S4 method for signature 'fitFeatureModelResults'
MRihw(obj, p, adjustMethod, alpha)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>obj</td>
<td>Either a fitFeatureModelResults or fitZigResults object</td>
</tr>
<tr>
<td>p</td>
<td>a vector of p-values extracted from obj</td>
</tr>
<tr>
<td>adjustMethod</td>
<td>Value specifying which adjustment method and which covariate to use for IHW p-value adjustment. For obj of class fitFeatureModelResults-class, options are "ihw-abundance" (median feature count per row) and "ihw-ubiquity" (number of non-zero features per row). For obj of class fitZigResults-class, options are "ihw-abundance" (weighted mean per feature) and "ihw-ubiquity" (number of non-zero features per row).</td>
</tr>
<tr>
<td>alpha</td>
<td>p-value significance level specified for IHW call. Default is 0.1</td>
</tr>
</tbody>
</table>

MRihw, fitZigResults-method

MRihw runs IHW within a MRcoefs() call

Description
Function used in MRcoefs() when "IHW" is set as the p value adjustment method

Usage
S4 method for signature 'fitZigResults'
MRihw(obj, p, adjustMethod, alpha)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>obj</td>
<td>Either a fitFeatureModelResults or fitZigResults object</td>
</tr>
<tr>
<td>p</td>
<td>a vector of p-values extracted from obj</td>
</tr>
<tr>
<td>adjustMethod</td>
<td>Value specifying which adjustment method and which covariate to use for IHW p-value adjustment. For obj of class fitFeatureModelResults-class, options are "ihw-abundance" (median feature count per row) and "ihw-ubiquity" (number of non-zero features per row). For obj of class fitZigResults-class, options are "ihw-abundance" (weighted mean per feature) and "ihw-ubiquity" (number of non-zero features per row).</td>
</tr>
<tr>
<td>alpha</td>
<td>p-value significance level specified for IHW call. Default is 0.1</td>
</tr>
</tbody>
</table>
MRtable

Table of top microbial marker gene from linear model fit including sequence information

Description

Extract a table of the top-ranked features from a linear model fit. This function will be updated soon to provide better flexibility similar to limma’s topTable. This function differs from link{MRcoefs} in that it provides other information about the presence or absence of features to help ensure significant features called are moderately present.

Usage

MRtable(
 obj,
 by = 2,
 coef = NULL,
 number = 10,
 taxa = obj@taxa,
 uniqueNames = FALSE,
 adjustMethod = "fdr",
 group = 0,
 eff = 0,
 numberEff = FALSE,
 ncounts = 0,
 file = NULL
)

Arguments

obj Output of fitFeatureModel or fitZig.
by Column number or column name specifying which coefficient or contrast of the linear model is of interest.
coef Column number(s) or column name(s) specifying which coefficient or contrast of the linear model to display.
number The number of bacterial features to pick out.
taxa Taxa list.
uniqueNames Number the various taxa.
adjustMethod Method to adjust p-values by. Default is "FDR". Options include "holm", "hochberg", "hommel", "bonferroni", "BH", "BY", "fdr", "none". See p.adjust for more details.
group One of five choices, 0,1,2,3,4. 0: the sort is ordered by a decreasing absolute value coefficient fit. 1: the sort is ordered by the raw coefficient fit in decreasing order. 2: the sort is ordered by the raw coefficient fit in increasing order. 3: the sort is ordered by the p-value of the coefficient fit in increasing order. 4: no sorting.
eff Filter features to have at least a "eff" quantile or number of effective samples.
numberEff Boolean, whether eff should represent quantile (default/TRUE) or number.
counts Filter features to have at least 'counts' of counts.
file Name of file, including location, to save the table.
newMRexperiment

Value

Table of the top-ranked features determined by the linear fit’s coefficient.

See Also

fitZig fitFeatureModel MRcoefs MRfulltable

Examples

data(lungData)
k = grep("Extraction.Control", pData(lungData)$SampleType)
lungTrim = lungData[,-k]
lungTrim=filterData(lungTrim,present=30)
lungTrim=cumNorm(lungTrim,p=0.5)
smokingStatus = pData(lungTrim)$SmokingStatus
mod = model.matrix(~smokingStatus)
fit = fitZig(obj = lungTrim,mod=mod)
head(MRtable(fit))
###
fit = fitFeatureModel(obj = lungTrim,mod=mod)
head(MRtable(fit))

newMRexperiment Create a MRexperiment object

Description

This function creates a MRexperiment object from a matrix or data frame of count data.

Usage

newMRexperiment(
counts,
phenoData = NULL,
featureData = NULL,
libSize = NULL,
normFactors = NULL
)

Arguments

counts A matrix or data frame of count data. The count data is representative of the number of reads annotated for a feature (be it gene, OTU, species, etc). Rows should correspond to features and columns to samples.

phenoData An AnnotatedDataFrame with pertinent sample information.

featureData An AnnotatedDataFrame with pertinent feature information.

libSize libSize, library size, is the total number of reads for a particular sample.

normFactors normFactors, the normalization factors used in either the model or as scaling factors of sample counts for each particular sample.
normFactors

Details

See \texttt{MRexperiment-class} and \texttt{eSet} (from the Biobase package) for the meaning of the various slots.

Value

an object of class \texttt{MRexperiment}

Author(s)

Joseph N Paulson

Examples

cnts = matrix(abs(rnorm(1000)),nc=10)
obj <- new\texttt{MRexperiment}(cnts)

data(lungData)
head(normFactors(lungData))

Description

Function to access the scaling factors, aka the normalization factors, of samples in a \texttt{MRexperiment} object.

Usage

\texttt{normFactors(object)}

Arguments

\begin{itemize}
 \item \texttt{object} \hspace{1cm} a \texttt{MRexperiment} object
\end{itemize}

Value

Normalization scaling factors

Author(s)

Joseph N. Paulson

Examples

data(lungData)
head(normFactors(lungData))
normFactors <- Replace the normalization factors in a MRexperiment object

Description

Function to replace the scaling factors, aka the normalization factors, of samples in a MRexperiment object.

Usage

```r
## S4 replacement method for signature 'MRexperiment,numeric'
normFactors(object) <- value
```

Arguments

- `object`: a MRexperiment object
- `value`: vector of normalization scaling factors

Value

Normalization scaling factors

Author(s)

Joseph N. Paulson

Examples

```r
data(lungData)
head(normFactors(lungData) <- rnorm(1))
```

plotBubble Basic plot of binned vectors.

Description

This function plots takes two vectors, calculates the contingency table and plots circles sized by the contingency table value. Optional significance vectors of the values significant will shade the circles by proportion of significance.
plotBubble

Usage

```r
plotBubble(
  yvector,
  xvector,
  sigvector = NULL,
  nb breaks = 10,
  ybreak = quantile(yvector, p = seq(0, 1, length.out = nbreaks)),
  xbreak = quantile(xvector, p = seq(0, 1, length.out = nbreaks)),
  scale = 1,
  local = FALSE,
  ...
)
```

Arguments

- `yvector`: A vector of values represented along y-axis.
- `xvector`: A vector of values represented along x-axis.
- `sigvector`: A vector of the names of significant features (names should match x/yvector).
- `nb breaks`: Number of bins to break yvector and xvector into.
- `ybreak`: The values to break the yvector at.
- `xbreak`: The values to break the xvector at.
- `scale`: Scaling of circle bin sizes.
- `local`: Boolean to shade by significant bin numbers (TRUE) or overall proportion (FALSE).
- `...`: Additional plot arguments.

Value

A matrix of features along rows, and the group membership along columns.

See Also

- `plotMRheatmap`

Examples

```r
data(mouseData)
mouseData = mouseData[which(rowSums(mouseData)>139),]
sparsity = rowMeans(MRcounts(mouseData)==0)
lor = log(fitPA(mouseData,cl=pData(mouseData)[,3])$oddsRatio)
plotBubble(lor,sparsity,main="lor ~ sparsity")
# Example 2
x = runif(100000)
y = runif(100000)
plotBubble(y,x)
```
plotClassTimeSeries
Plot abundances by class

Description
Plot the abundance of values for each class using a spline approach on the estimated full model.

Usage
plotClassTimeSeries(
 res,
 formula,
 xlab = "Time",
 ylab = "Abundance",
 color0 = "black",
 color1 = "red",
 include = c("1", "class", "time:class"),
 ...
)

Arguments
 res Output of fitTimeSeries function
 formula Formula for ssanova. Of the form: abundance ~ ... where ... includes any pData
 slot value.
 xlab X-label.
 ylab Y-label.
 color0 Color of samples from first group.
 color1 Color of samples from second group.
 include Parameters to include in prediction.
 ... Extra plotting arguments.

Value
Plot for abundances of each class using a spline approach on estimated null model.

See Also
 fitTimeSeries

Examples

data(mouseData)
res = fitTimeSeries(obj=mouseData, feature="Actinobacteria",
 class="status", id="mouseID", time="relativeTime", lvl="class", B=10)
plotClassTimeSeries(res, pch=21, bg=res$data$class, ylim=c(0,8))
plotCorr

Basic correlation plot function for normalized or unnormalized counts.

Description

This function plots a heatmap of the "n" features with greatest variance across rows.

Usage

plotCorr(obj, n, norm = TRUE, log = TRUE, fun = cor, ...)

Arguments

obj A MRexperiment object with count data.
n The number of features to plot. This chooses the "n" features with greatest variance.
norm Whether or not to normalize the counts - if MRexperiment object.
log Whether or not to log2 transform the counts - if MRexperiment object.
fun Function to calculate pair-wise relationships. Default is pearson correlation
...
Additional plot arguments.

Value

plotted correlation matrix

See Also

cumNormMat

Examples

data(mouseData)
plotCorr(obj = mouseData, n = 200, cexRow = 0.4, cexCol = 0.4, trace = "none", dendrogram = "none",
 col = colorRampPalette(brewer.pal(9, "RdBu"))(50))

plotFeature

Basic plot function of the raw or normalized data.

Description

This function plots the abundance of a particular OTU by class. The function is the typical manhattan plot of the abundances.
plotFeature

Usage

plotFeature(
 obj,
 otuIndex,
 classIndex,
 col = "black",
 sort = TRUE,
 sortby = NULL,
 norm = TRUE,
 log = TRUE,
 sl = 1000,
 ...
)

Arguments

 obj A MRexperiment object with count data.
 otuIndex The row to plot
 classIndex A list of the samples in their respective groups.
 col A vector to color samples by.
 sort Boolean, sort or not.
 sortby Default is sort by library size, alternative vector for sorting
 norm Whether or not to normalize the counts - if MRexperiment object.
 log Whether or not to log2 transform the counts - if MRexperiment object.
 sl Scaling factor - if MRexperiment and norm=TRUE.
 ... Additional plot arguments.

Value

counts and classindex

See Also

cumNorm

Examples

data(mouseData)
classIndex=list(Western=which(pData(mouseData)$diet=="Western"))
classIndex$BK=which(pData(mouseData)$diet=="BK")
otuIndex = 8770

par(mfrow=c(2,1))
dates = pData(mouseData)$date
plotFeature(mouseData,norm=FALSE,log=FALSE,otuIndex,classIndex,
col=dates,sortby=dates,ylab="Raw reads")
plotGenus

Basic plot function of the raw or normalized data.

Description

This function plots the abundance of a particular OTU by class. The function uses the estimated posterior probabilities to make technical zeros transparent.

Usage

plotGenus(
 obj,
 otuIndex,
 classIndex,
 norm = TRUE,
 log = TRUE,
 no = 1:length(otuIndex),
 labs = TRUE,
 xlab = NULL,
 ylab = NULL,
 jitter = TRUE,
 jitter.factor = 1,
 pch = 21,
 ...
)

Arguments

obj An MRexperiment object with count data.
otuIndex A list of the otus with the same annotation.
classIndex A list of the samples in their respective groups.
norm Whether or not to normalize the counts - if MRexperiment object.
log Whether or not to log2 transform the counts - if MRexperiment object.
no Which of the otuIndex to plot.
labs Whether to include group labels or not. (TRUE/FALSE)
xlab xlabel for the plot.
ylab ylabel for the plot.
jitter Boolean to jitter the count data or not.
jitter.factor Factor value for jitter
pch Standard pch value for the plot command.
... Additional plot arguments.

Value

plotted data

See Also

cumNorm
Examples

data(mouseData)
classIndex=list(controls=which(pData(mouseData)$diet=="BK"))
classIndex$cases=which(pData(mouseData)$diet=="Western")

otuIndex = grep("Strep",pData(mouseData)$family)

otuIndex=otuIndex[order(rowSums(MRcounts(mouseData)[otuIndex,,]),decreasing=TRUE)]
plotGenus(mouseData,otuIndex,classIndex,no=1:2,xaxt="n",norm=FALSE,ylab="Strep normalized log(cpt)"

plotMRheatmap
Basic heatmap plot function for normalized counts.

Description

This function plots a heatmap of the 'n' features with greatest variance across rows (or other statistic).

Usage

plotMRheatmap(obj, n, norm = TRUE, log = TRUE, fun = sd, ...)

Arguments

- **obj** A MRexperiment object with count data.
- **n** The number of features to plot. This chooses the 'n' features of greatest positive statistic.
- **norm** Whether or not to normalize the counts - if MRexperiment object.
- **log** Whether or not to log2 transform the counts - if MRexperiment object.
- **fun** Function to select top 'n' features.
- **...** Additional plot arguments.

Value

plotted matrix

See Also

cumNormMat

Examples

data(mouseData)

trials = pData(mouseData)$diet

heatmapColColors=brewer.pal(12,"Set3")[as.integer(factor(trials))];

heatmapCols = colorRampPalette(brewer.pal(9, "RdBu"))(50)

version using sd

plotMRheatmap(obj=mouseData,n=200,cexRow = 0.4,cexCol = 0.4,trace="none",
col = heatmapCols,ColSideColors = heatmapColColors)

version using MAD
The `plotOrd` function plots the PCA / MDS coordinates for the distances of normalized or unnormalized counts. It potentially uncovers batch effects or feature relationships.

Description

This function plots the PCA / MDS coordinates for the "n" features of interest. Potentially uncovering batch effects or feature relationships.

Usage

```r
plotOrd(
  obj,         # A MRexperiment object or count matrix.
  tran = TRUE, # Transpose the matrix.
  comp = 1:2,  # Which components to display.
  norm = TRUE, # Whether or not to normalize the counts - if MRexperiment object.
  log = TRUE,  # Whether or not to log2 the counts - if MRexperiment object.
  usePCA = TRUE, # TRUE/FALSE whether to use PCA or MDS coordinates (TRUE is PCA).
  useDist = FALSE, # TRUE/FALSE whether to calculate distances.
  distfun = stats::dist, # Distance function, default is stats::dist.
  dist.method = "euclidian", # If useDist==TRUE, what method to calculate distances.
  n = NULL,      # Number of features to make use of in calculating your distances.
  ...            # Additional plot arguments.
)
```

Arguments

- `obj`: A MRexperiment object or count matrix.
- `tran`: Transpose the matrix.
- `comp`: Which components to display.
- `norm`: Whether or not to normalize the counts - if MRexperiment object.
- `log`: Whether or not to log2 the counts - if MRexperiment object.
- `usePCA`: TRUE/FALSE whether to use PCA or MDS coordinates (TRUE is PCA).
- `useDist`: TRUE/FALSE whether to calculate distances.
- `distfun`: Distance function, default is stats::dist.
- `dist.method`: If useDist==TRUE, what method to calculate distances.
- `n`: Number of features to make use of in calculating your distances.
- `...`: Additional plot arguments.

Value

- `coordinates`

See Also

- `cumNormMat`
Examples

```r
data(mouseData)
c1 = pData(mouseData)[,3]
plotOrd(mouseData, tran=TRUE, useDist=TRUE, pch=21, bg=factor(c1), usePCA=FALSE)
```

Description

This function plots the abundance of a particular OTU by class. The function uses the estimated posterior probabilities to make technical zeros transparent.

Usage

```r
plotOTU(
  obj,
  otu,
  classIndex,
  log = TRUE,
  norm = TRUE,
  jitter.factor = 1,
  pch = 21,
  labs = TRUE,
  xlab = NULL,
  ylab = NULL,
  jitter = TRUE,
  ...
)
```

Arguments

- `obj`: A MRexperiment object with count data.
- `otu`: The row number/OTU to plot.
- `classIndex`: A list of the samples in their respective groups.
- `log`: Whether or not to log2 transform the counts - if MRexperiment object.
- `norm`: Whether or not to normalize the counts - if MRexperiment object.
- `jitter.factor`: Factor value for jitter.
- `pch`: Standard pch value for the plot command.
- `labs`: Whether to include group labels or not. (TRUE/FALSE)
- `xlab`: xlabel for the plot.
- `ylab`: ylabel for the plot.
- `jitter`: Boolean to jitter the count data or not.
- `...`: Additional plot arguments.
plotRare

Value
Plot of rarefaction effect

Description
This function plots the number of observed features vs. the depth of coverage.

Usage
plotRare(obj, cl = NULL, ...)

Arguments

obj A MRexperiment object with count data or matrix.
cl Vector of classes for various samples.
... Additional plot arguments.

Value
Library size and number of detected features

See Also
plotOrd, plotMRheatmap, plotCorr, plotOTU, plotGenus

Examples

data(mouseData)
classIndex=list(controls=which(pData(mouseData)$diet=="BK"))
classIndex$cases=which(pData(mouseData)$diet=="Western")
you can specify whether or not to normalize, and to what level
plotOTU(mouseData,otu=9083,classIndex,norm=FALSE,main="9083 feature abundances")
plotTimeSeries

Plot difference function for particular bacteria

Description

Plot the difference in abundance for significant features.

Usage

plotTimeSeries(
 res,
 C = 0,
 xlab = "Time",
 ylab = "Difference in abundance",
 main = "SS difference function prediction",
 ...
)

Arguments

res Output of fitTimeSeries function
C Value for which difference function has to be larger or smaller than (default 0).
xlab X-label.
ylab Y-label.
main Main label.
... Extra plotting arguments.

Value

Plot of difference in abundance for significant features.

See Also

fitTimeSeries

Examples

data(mouseData)
res = fitTimeSeries(obj=mouseData, feature="Actinobacteria",
 class="status", id="mouseID", time="relativeTime", lvl='class', B=10)
plotTimeSeries(res)
posteriorProbs Access the posterior probabilities that results from analysis

Description
Accessing the posterior probabilities following a run through `fitZig`

Usage
posteriorProbs(obj)

Arguments
obj a MRexperiment object.

Value
Matrix of posterior probabilities

Author(s)
Joseph N. Paulson

Examples
This is a simple demonstration
data(lungData)
k = grep("Extraction.Control", pData(lungData)$SampleType)
lungTrim = lungData[-k]
k = which(rowSums(MRcounts(lungTrim)>0)<30)
lungTrim = cumNorm(lungTrim)
lungTrim = lungTrim[-k,]
smokingStatus = pData(lungTrim)$SmokingStatus
mod = model.matrix(~smokingStatus)
The maxit is not meant to be 1 -- this is for demonstration/speed
settings = zigControl(maxit=1,verbose=FALSE)
fit = fitZig(obj = lungTrim, mod=mod, control=settings)
head(posteriorProbs(lungTrim))

returnAppropriateObj Check if MRexperiment or matrix and return matrix

Description
Function to check if object is a MRexperiment class or matrix

Usage
returnAppropriateObj(obj, norm, log, sl = 1000)
Arguments

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>obj</td>
<td>a MRexperiment or matrix object</td>
</tr>
<tr>
<td>norm</td>
<td>return a normalized MRexperiment matrix</td>
</tr>
<tr>
<td>log</td>
<td>return a log transformed MRexperiment matrix</td>
</tr>
<tr>
<td>sl</td>
<td>scaling value</td>
</tr>
</tbody>
</table>

Value

Matrix

Examples

data(lungData)
head(returnAppropriateObj(lungData,norm=FALSE,log=FALSE))

ssFit
smoothing-splines anova fit

Description

Sets up a data-frame with the feature abundance, class information, time points, sample ids and returns the fitted values for the fitted model.

Usage

```r
ssFit(
  formula,
  abundance,
  class,
  time,
  id,
  include = c("class", "time:class"),
  pd,
  ...
)
```

Arguments

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>formula</td>
<td>Formula for ssanova. Of the form: abundance ~ ... where ... includes any pData slot value.</td>
</tr>
<tr>
<td>abundance</td>
<td>Numeric vector of abundances.</td>
</tr>
<tr>
<td>class</td>
<td>Class membership (factor of group membership).</td>
</tr>
<tr>
<td>time</td>
<td>Time point vector of relative times (same length as abundance).</td>
</tr>
<tr>
<td>id</td>
<td>Sample / patient id.</td>
</tr>
<tr>
<td>include</td>
<td>Parameters to include in prediction.</td>
</tr>
<tr>
<td>pd</td>
<td>Extra variable.</td>
</tr>
<tr>
<td>...</td>
<td>Extra parameters for ssanova function (see ?ssanova).</td>
</tr>
</tbody>
</table>
ssIntervalCandidate

Value
A list containing:

- data: Inputed data
- fit: The interpolated / fitted values for timePoints
- se: The standard error for CI intervals
- timePoints: The time points interpolated over

See Also
cumNorm fitTimeSeries ssPermAnalysis ssPerm ssIntervalCandidate

Examples

Not run

ssIntervalCandidate calculate interesting time intervals

Description
Calculates time intervals of interest using SS-Anova fitted confidence intervals.

Usage
ssIntervalCandidate(fit, standardError, timePoints, positive = TRUE, C = 0)

Arguments

fit SS-Anova fits.
standardError SS-Anova se estimates.
timePoints Time points interpolated over.
positive Positive region or negative region (difference in abundance is positive/negative).
C Value for which difference function has to be larger or smaller than (default 0).

Value
Matrix of time point intervals of interest

See Also
cumNorm fitTimeSeries ssFit ssPerm ssPermAnalysis

Examples

Not run
ssPerm

class permutations for smoothing-spline time series analysis

Description

Creates a list of permuted class memberships for the time series permutation tests.

Usage

ssPerm(df, B)

Arguments

df
Data frame containing class membership and sample/patient id label.

B
Number of permutations.

Value

A list of permuted class memberships

See Also

cumNorm fitTimeSeries ssFit ssPermAnalysis ssIntervalCandidate

Examples

Not run

ssPermAnalysis

smoothing-splines anova fits for each permutation

Description

Calculates the fit for each permutation and estimates the area under the null (permuted) model for interesting time intervals of differential abundance.

Usage

ssPermAnalysis(
 data,
 formula,
 permList,
 intTimes,
 timePoints,
 include = c("class", "time:class"),
 ...
)

trapz

Trapezoidal Integration

Description
Compute the area of a function with values \(y \) at the points \(x \). Function comes from the pracma package.

Usage
\[
\text{trapz}(x, y)
\]

Arguments
- \(x \) : x-coordinates of points on the x-axis
- \(y \) : y-coordinates of function values

Value
Approximated integral of the function from \(\min(x) \) to \(\max(x) \). Or a matrix of the same size as \(y \).
Examples

Calculate the area under the sine curve from 0 to pi:
 n <- 101
 x <- seq(0, pi, len = n)
 y <- sin(x)
 trapz(x, y) #=> 1.999835504

Use a correction term at the boundary: \(-h^2/12*(f'(b)-f'(a))\)
 h <- x[2] - x[1]
 ca <- (y[2]-y[1]) / h
 cb <- (y[n]-y[n-1]) / h
 trapz(x, y) - h^2/12 * (cb - ca) #=> 1.999999969

ts2MReperiment

With a list of fitTimeSeries results, generate an MRexperiment that can be plotted with metavizr

Usage

```r
ts2MReperiment(
  obj,
  sampleNames = NULL,
  sampleDescription = "timepoints",
  taxonomyLevels = NULL,
  taxonomyHierarchyRoot = "bacteria",
  taxonomyDescription = "taxonomy",
  featuresOfInterest = NULL,
  featureDataOfInterest = NULL
)
```

Arguments

- **obj**: Output of fitMultipleTimeSeries
- **sampleNames**: Sample names for plot
- **sampleDescription**: Description of samples for plot axis label
- **taxonomyLevels**: Feature names for plot
- **taxonomyHierarchyRoot**: Root of feature hierarchy for MRexperiment
- **taxonomyDescription**: Description of features for plot axis label
- **featuresOfInterest**: The features to select from the fitMultipleTimeSeries output
- **featureDataOfInterest**: featureData for the resulting MRexperiment
uniqueFeatures

Value

MRexperiment that contains fitTimeSeries data, featureData, and phenoData

See Also

fitTimeSeries fitMultipleTimeSeries

Examples

data(mouseData)
res = fitMultipleTimeSeries(obj=mouseData,lvl='phylum',class="status",
 id="mouseID",time="relativeTime",B=1)
obj = ts2MRexperiment(res)
obj

uniqueFeatures Table of features unique to a group

Description

Creates a table of features, their index, number of positive samples in a group, and the number of
reads in a group. Can threshold features by a minimum no. of reads or no. of samples.

Usage

uniqueFeatures(obj, cl, nsamples = 0, nreads = 0)

Arguments

obj Either a MRexperiment object or matrix.
cl A vector representing assigning samples to a group.
nsamples The minimum number of positive samples.
nreads The minimum number of raw reads.

Value

Table of features unique to a group

Examples

data(mouseData)
head(uniqueFeatures(mouseData[1:100,],cl=pData(mouseData)[,3])))
wrenchNorm

Computes normalization factors using wrench instead of cumNorm

Description
Calculates normalization factors using method published by M. Sentil Kumar et al. (2018) to compute normalization factors which considers compositional bias introduced by sequencers.

Usage
wrenchNorm(obj, condition)

Arguments
obj an MRexperiment object
condition case control label that wrench uses to calculate normalization factors

Value
an MRexperiment object with updated normalization factors. Accessible by normFactors.

See Also
cumNorm fitZig

Examples

data(mouseData)
mouseData <- wrenchNorm(mouseData, condition = mouseData$diet)
head(normFactors(mouseData))

zigControl

Settings for the fitZig function

Description
Settings for the fitZig function

Usage
zigControl(
 tol = 1e-04,
 maxit = 10,
 verbose = TRUE,
 dfMethod = "modified",
 pvalMethod = "default"
)

Arguments

- **tol**: The tolerance for the difference in negative log likelihood estimates for a feature to remain active.
- **maxit**: The maximum number of iterations for the expectation-maximization algorithm.
- **verbose**: Whether to display iterative step summary statistics or not.
- **dfMethod**: Either 'default' or 'modified' (by responsibilities).
- **pvalMethod**: Either 'default' or 'bootstrap'.

Value

The value for the tolerance, maximum no. of iterations, and the verbose warning.

Note

fitZig makes use of *zigControl*.

See Also

- *fitZig*
- *cumNorm*
- *plotOTU*

Examples

```
control = zigControl(tol=1e-10,maxit=10,verbose=FALSE)
```
Index

* package
 metagenomeSeq-package, 3
 [,MRexperiment,ANY,ANY,ANY-method (MRexperiment), 45
 [,MRexperiment-method (MRexperiment), 45
aggregateBySample, 4
aggregateByTaxonomy, 5
aggSamp (aggregateBySample), 4
aggTax (aggregateByTaxonomy), 5
biom2MRexperiment, 6, 37, 46
calcNormFactors, 7
calcPosComponent, 7
calcShrinkParameters, 8
calculateEffectiveSamples, 9
calcZeroAdjustment, 9
calcZeroComponent, 10
colMeans,MRexperiment-method (MRexperiment), 45
colSums,MRexperiment-method (MRexperiment), 45
correctIndices, 10, 12
correlationTest, 10, 11
corTest (correlationTest), 11
cumNorm, 7, 12, 13–15, 18, 21, 22, 25, 27, 29, 31, 46, 57, 58, 62, 66–68, 71, 72
cumNormMat, 13, 46, 56, 59, 60
cumNormStat, 12, 14, 15, 46
cumNormStatFast, 7, 14, 14
deprecated_metagenomeSeq_function (metagenomeSeq-deprecated), 42
doCountMStep, 15
doEStep, 16
doZeroMStep, 17
exportMat, 17
eexportMatrix (exportMat), 17
exportStats, 18
expSummary, 19
expSummary,MRexperiment-method (expSummary), 19
extractMR, 19
filterData, 20
fitDO, 21, 25
fitFeatureModel, 7–10, 22, 29, 44, 48, 51
fitFeatureModelResults-class, 23
fitLogNormal, 23
fitMeta, 21, 25
fitMeta (metagenomeSeq-deprecated), 42
fitMultipleTimeSeries, 24, 70
fitPA, 21, 25, 48
fitSSTimeSeries, 25, 26, 29
fitTimeSeries, 24, 25, 27, 53, 63, 66–68, 70
fitZeroLogNormal, 7–10, 29
fitZig, 7, 9, 12–17, 21, 25, 30, 32–36, 44, 48, 51, 64, 71, 72
fitZigResults-class, 31
genusPlot (plotGenus), 58
getCountDensity, 32
getEpsilon, 32
getNegativeLogLikelihoods, 33
getPi, 34
getZ, 31, 34
isItStillActive, 35
libSize, 36, 45
libSize,MRexperiment-method (MRexperiment), 45
libSize<-, 36
libSize<-,MRexperiment,numeric-method (libSize<-, 36
load_biom (metagenomeSeq-deprecated), 42
load_meta (metagenomeSeq-deprecated), 42
load_metaQ (metagenomeSeq-deprecated), 42
load_phenoData (metagenomeSeq-deprecated), 42
loadBiom, 6, 37, 46
loadMeta, 6, 37, 38, 39, 46
loadMetaQ, 38
loadPhenoData, 6, 37–39, 39, 46
lungData, 40
makeLabels, 40
mergeMRexperiments, 41
mergeTable, 41
metagenomeSeq (metagenomeSeq-package), 3
metagenomeSeq-deprecated, 42
metagenomicLoader (loadMeta), 38
mouseData, 42
MRcoefs, 9, 43, 48, 51
MRcounts, 44, 45
MRcounts,MRexperiment-method (MRcounts), 44
MRexperiment, 45
MRexperiment-class (MRexperiment), 45
MRfulltable, 9, 44, 47, 51
MRihw, 43, 48
MRihw,fitFeatureModelResults-method, 49
MRihw,fitZigResults-method, 49
MRtable, 44, 48, 50
newMRexperiment, 6, 37, 45, 46, 51
normFactors, 45, 52, 71
normFactors,MRexperiment-method (MRexperiment), 45
normFactors<-, 53
normFactors<-,MRexperiment,numERIC-method (normFactors<->), 53
p.adjust, 21, 25, 43, 47, 50
phenoData (loadPhenoData), 39
plotBubble, 53
plotClassTimeSeries, 55
plotCorr, 56, 62
plotFeature, 56
plotGenus, 58, 62
plotMRheatmap, 54, 59, 62
plotOrd, 60, 62
plotOTU, 61, 62, 72
plotRare, 62
plotTimeSeries, 27, 29, 63
posteriorProbs, 45, 46, 64
posteriorProbs,MRexperiment-method (posteriorProbs), 64
qiimeLoader (loadMetaQ), 38
quantile, 18
returnAppropriateObj, 64
rowMeans,MRexperiment-method (MRexperiment), 45
rowSums,MRexperiment-method (MRexperiment), 45
settings2 (zigControl), 71
ssFit, 27, 65, 66–68
ssIntervalCandidate, 27, 66, 66, 67, 68
ssPerm, 27, 66, 67, 68
ssPermAnalysis, 27, 66, 67, 67
trapz, 68
ts2MRexperiment, 69
uniqueFeatures, 70
wrenchNorm, 71
zigControl, 31, 71