Package ‘diffcyt’

June 22, 2019

Version 1.4.3

Title Differential discovery in high-dimensional cytometry via high-resolution clustering

Description Statistical methods for differential discovery analyses in high-dimensional cytometry data (including flow cytometry, mass cytometry or CyTOF, and oligonucleotide-tagged cytometry), based on a combination of high-resolution clustering and empirical Bayes moderated tests adapted from transcriptomics.

URL https://github.com/lmweber/diffcyt

BugReports https://github.com/lmweber/diffcyt/issues

License MIT + file LICENSE

biocViews ImmunoOncology, FlowCytometry, Proteomics, SingleCell, CellBasedAssays, CellBiology, Clustering, FeatureExtraction, Software

Depends R (>= 3.4.0)

Imports flowCore, FlowSOM, SummarizedExperiment, S4Vectors, limma, edgeR, lme4, multcomp, dplyr, tidyr, reshape2, magrittr, stats, methods, utils, grDevices, graphics, ComplexHeatmap, circlize, grid

VignetteBuilder knitr

Suggests BiocStyle, knitr, rmarkdown, testthat, HDCytoData, CATALYST

RoxygenNote 6.1.1

git_url https://git.bioconductor.org/packages/diffcyt

git_branch RELEASE_3_9

git_last_commit 1f78c59

git_last_commit_date 2019-05-09

Date/Publication 2019-06-21

Author Lukas M. Weber [aut, cre] (<https://orcid.org/0000-0002-3282-1730>)

Maintainer Lukas M. Weber <lukmweber@gmail.com>

R topics documented:
calcCounts ... 2
calcMedians ... 3
calcCounts

Calculate cluster cell counts

Description

Calculate number of cells per cluster-sample combination

Usage

`calcCounts(d_se)`

Arguments

`d_se` Data object from previous steps, in `SummarizedExperiment` format, containing cluster labels as a column in the row meta-data (from `generateClusters`).

Details

Calculate number of cells per cluster-sample combination (referred to as cluster cell 'counts', 'abundances', or 'frequencies').

The cluster cell counts are required for testing for differential abundance of cell populations, and are also used for weights and filtering when testing for differential states within cell populations.

Results are returned as a new `SummarizedExperiment` object, where rows = clusters, columns = samples, assay = values (counts). (Note that this structure differs from the input data object.)

Value

`d_counts`: `SummarizedExperiment` object, where rows = clusters, columns = samples, assay = values (counts).
Examples

For a complete workflow example demonstrating each step in the 'diffcyt' pipeline,
see the package vignette.

Function to create random data (one sample)
d_random <- function(n = 20000, mean = 0, sd = 1, ncol = 20, cofactor = 5) {
 d <- sinh(matrix(rnorm(n, mean, sd), ncol = ncol)) * cofactor
 colnames(d) <- paste0("marker", sprintf("%02d", 1:ncol))
 d
}

Create random data (without differential signal)
set.seed(123)
d_input <- list(
 sample1 = d_random(),
 sample2 = d_random(),
 sample3 = d_random(),
 sample4 = d_random()
)

experiment_info <- data.frame(
 sample_id = factor(paste0("sample", 1:4)),
 group_id = factor(c("group1", "group1", "group2", "group2")),
 stringsAsFactors = FALSE
)

marker_info <- data.frame(
 channel_name = paste0("channel", sprintf("%03d", 1:20)),
 marker_name = paste0("marker", sprintf("%02d", 1:20)),
 marker_class = factor(c(rep("type", 10), rep("state", 10)),
 levels = c("type", "state", "none")),
 stringsAsFactors = FALSE
)

Prepare data
d_se <- prepareData(d_input, experiment_info, marker_info)

Transform data
d_se <- transformData(d_se)

Generate clusters
d_se <- generateClusters(d_se)

Calculate counts
d_counts <- calcCounts(d_se)

calcMedians

Calculate cluster medians

Description

Calculate cluster medians (median expression for each cluster-sample-marker combination)
Usage

```
calcMedians(d_se)
```

Arguments

- **d_se**: Data object from previous steps, in `SummarizedExperiment` format, containing cluster labels as a column in the row meta-data (from `generateClusters`). Column meta-data is assumed to contain a factor `marker_class`.

Details

Calculate median marker expression for each cluster and sample (i.e. medians for each cluster-sample-marker combination).

The data object is assumed to contain a factor `marker_class` in the column meta-data (see `prepareData`), which indicates the protein marker class for each column of data ("type", "state", or "none").

The cluster medians are required for testing for differential states within cell populations, and for plotting purposes.

Variables `id_type_markers` and `id_state_markers` are saved in the metadata slot of the output object. These can be used to identify the 'cell type' and 'cell state' markers in the list of assays in the output `SummarizedExperiment` object, which is useful in later steps of the 'diffcyt' pipeline.

Results are returned as a new `SummarizedExperiment` object, where rows = clusters, columns = samples, sheets (assays slot) = markers. Note that there is a separate table of values (assay) for each marker. The metadata slot also contains variables `id_type_markers` and `id_state_markers`, which can be used to identify the sets of cell type and cell state markers in the list of assays.

Value

- **d_medians**: `SummarizedExperiment` object, where rows = clusters, columns = samples, sheets (assays slot) = markers. The metadata slot contains variables `id_type_markers` and `id_state_markers`, which can be accessed with `metadata(d_medians)$id_type_markers` and `metadata(d_medians)$id_state_markers`.

Examples

```
# For a complete workflow example demonstrating each step in the 'diffcyt' pipeline,
# see the package vignette.

# Function to create random data (one sample)
d_random <- function(n = 20000, mean = 0, sd = 1, ncol = 20, cofactor = 5) {
  d <- sinh(matrix(rnorm(n, mean, sd), ncol = ncol)) * cofactor
  colnames(d) <- paste0("marker", sprintf("%02d", 1:ncol))
  d
}

# Create random data (without differential signal)
set.seed(123)
d_input <- list(
  sample1 = d_random(),
  sample2 = d_random(),
  sample3 = d_random(),
  sample4 = d_random()
)

experiment_info <- data.frame(
calcMediansByClusterMarker

Calculate medians (by cluster and marker)

Description

Calculate medians for each cluster-marker combination

Usage

calcMediansByClusterMarker(d_se)

Arguments

d_se Data object from previous steps, in SummarizedExperiment format, containing cluster labels as a column in the row meta-data (from generateClusters). Column meta-data is assumed to contain a factor marker_class.

Details

Calculate median marker expression for each cluster, across all samples (i.e. medians for each cluster-marker combination).

The data object is assumed to contain a factor marker_class in the column meta-data (see prepareData), which indicates the protein marker class for each column of data ("type", "state", or "none"). Cluster medians are calculated for all markers.

The medians by cluster and marker are required for plotting purposes.
Variables `id_type_markers` and `id_state_markers` are saved in the metadata slot of the output object. These can be used to identify the 'cell type' and 'cell state' markers in the sequence of markers (columns) in the output object, which is useful in later steps of the 'diffcyt' pipeline.

Results are returned as a new `SummarizedExperiment` object, where rows = clusters, columns = markers, assay = values (marker expression values). The metadata slot also contains variables `id_type_markers` and `id_state_markers`, which can be used to identify the sets of cell type and cell state markers in the columns.

Value

`d_medians_by_cluster_marker`: `SummarizedExperiment` object, where rows = clusters, columns = markers, assay = values (marker expression values). The metadata slot contains variables `id_type_markers` and `id_state_markers`, which can be accessed with `metadata(d_medians)$id_type_markers` and `metadata(d_medians)$id_state_markers`.

Examples

```r
For a complete workflow example demonstrating each step in the 'diffcyt' pipeline,
see the package vignette.

Function to create random data (one sample)
d_random <- function(n = 20000, mean = 0, sd = 1, ncol = 20, cofactor = 5) {
 d <- sinh(matrix(rnorm(n, mean, sd), ncol = ncol)) * cofactor
 colnames(d) <- paste0("marker", sprintf("%02d", 1:ncol))
 d
}

Create random data (without differential signal)
set.seed(123)
d_input <- list(
sample1 = d_random(),
sample2 = d_random(),
sample3 = d_random(),
sample4 = d_random()
)

experiment_info <- data.frame(
sample_id = factor(paste0("sample", 1:4)),
group_id = factor(c("group1", "group1", "group2", "group2")),
stringsAsFactors = FALSE
)

marker_info <- data.frame(
 channel_name = paste0("channel", sprintf("%03d", 1:20)),
 marker_name = paste0("marker", sprintf("%02d", 1:20)),
 marker_class = factor(c(rep("type", 10), rep("state", 10)),
 levels = c("type", "state", "none"),
 stringsAsFactors = FALSE
)

Prepare data
d_se <- prepareData(d_input, experiment_info, marker_info)

Transform data
d_se <- transformData(d_se)
```
calcMediansBySampleMarker

# Generate clusters
d_se <- generateClusters(d_se)

# Calculate medians (by cluster and marker)
d_medians_by_cluster_marker <- calcMediansByClusterMarker(d_se)

calcMediansBySampleMarker

*Calculate medians (by sample and marker)*

**Description**

Calculate medians for each sample-marker combination

**Usage**

calcMediansBySampleMarker(d_se)

**Arguments**

- **d_se**: Data object from previous steps, in SummarizedExperiment format, containing cluster labels as a column in the row meta-data (from generateClusters). Column meta-data is assumed to contain a factor marker_class.

**Details**

Calculate overall median marker expression for each sample (i.e. medians for each sample-marker combination).

The data object is assumed to contain a factor marker_class in the column meta-data (see prepareData), which indicates the protein marker class for each column of data ("type", "state", or "none"). Cluster medians are calculated for all markers.

The medians by sample and marker are required for plotting purposes.

Variables id_type_markers and id_state_markers are saved in the metadata slot of the output object. These can be used to identify the 'cell type' and 'cell state' markers in the sequence of markers (columns) in the output object, which is useful in later steps of the 'diffcyt' pipeline.

Results are returned as a new SummarizedExperiment object, where rows = samples, columns = markers, assay = values (marker expression values). The metadata slot also contains variables id_type_markers and id_state_markers, which can be used to identify the sets of cell type and cell state markers in the columns.

**Value**

- **d_medians_by_sample_marker**: SummarizedExperiment object, where rows = samples, columns = markers, assay = values (marker expression values). The metadata slot contains variables id_type_markers and id_state_markers, which can be accessed with metadata(d_medians)$id_type_markers and metadata(d_medians)$id_state_markers.
(createContrast)

### Examples

# For a complete workflow example demonstrating each step in the 'diffcyt' pipeline, # see the package vignette.

# Function to create random data (one sample)
d_random <- function(n = 20000, mean = 0, sd = 1, ncol = 20, cofactor = 5) {
  d <- sinh(matrix(rnorm(n, mean, sd), ncol = ncol)) * cofactor
  colnames(d) <- paste0("marker", sprintf("%02d", 1:ncol))
  d
}

# Create random data (without differential signal)
set.seed(123)
d_input <- list(
  sample1 = d_random(),
  sample2 = d_random(),
  sample3 = d_random(),
  sample4 = d_random()
)

eperiment_info <- data.frame(
  sample_id = factor(paste0("sample", 1:4)),
  group_id = factor(c("group1", "group1", "group2", "group2")),
  stringsAsFactors = FALSE
)

marker_info <- data.frame(
  channel_name = paste0("channel", sprintf("%03d", 1:20)),
  marker_name = paste0("marker", sprintf("%02d", 1:20)),
  marker_class = factor(c(rep("type", 10), rep("state", 10)),
                        levels = c("type", "state", "none"),
                        stringsAsFactors = FALSE
)

# Prepare data
d_se <- prepareData(d_input, experiment_info, marker_info)

# Transform data
d_se <- transformData(d_se)

# Generate clusters
d_se <- generateClusters(d_se)

# Calculate medians (by sample and marker)
d_medians_by_sample_marker <- calcMediansBySampleMarker(d_se)

---

createContrast  Create contrast matrix

### Description

Create contrast matrix for differential testing
createDesignMatrix

Usage

createContrast(contrast)

Arguments

contrast Vector defining the contrast of interest. This should be a numeric vector specifying the combination of model parameters to test whether they are equal to zero. The entries correspond to the columns of the design matrix, or the levels of the fixed effect terms in the model formula. For example, using a design matrix: c(0,1,0,0,0) to test whether a single parameter corresponding to the second column in the design matrix is equal to zero.

Details

Creates a contrast matrix specifying the comparison of interest, in the correct format for the differential testing functions. This can then be provided to the differential testing functions, together with either a design matrix or model formula, and the data object.

The argument contrast defines the contrast of interest. This should be a numeric vector specifying the combination of model parameters to test whether they are equal to zero. In many cases, this will simply be a vector of zeros and a single entry equal to one; this will test whether a single parameter is equal to zero (e.g. c(0, 1, 0, 0, 0)).

If a design matrix has been used, the entries of contrast correspond to the columns of the design matrix; and the length of contrast equals the number of columns in the design matrix. If a model formula has been used, the entries correspond to the levels of the fixed effect terms; and the length equals the number of levels of the fixed effect terms.

The contrast matrix is formatted as a matrix with a single column containing the contrast of interest. To perform tests for multiple contrasts, run this function and the corresponding differential testing function multiple times.

Value

contrast: Returns a contrast matrix containing the contrast of interest, formatted as a matrix with a single column.

Examples

# For a complete workflow example demonstrating each step in the 'diffcyt' pipeline,
# see the package vignette.

# Example: contrast matrix
createContrast(c(0, 1, 0, 0, 0))

createDesignMatrix Create design matrix

Description

Create design matrix for model fitting
createDesignMatrix

Usage

createDesignMatrix(experiment_info, cols_design = NULL)

Arguments

experiment_info
data.frame, DataFrame, or tbl_df of experiment information (which was also previously provided to prepareData). This should be a data frame containing all factors and covariates of interest; e.g. group IDs, block IDs, batch IDs, and continuous covariates.

cols_design
Argument specifying the columns of experiment_info to include in the design matrix. This can be provided as a character vector of column names, a numeric vector of column indices, or a logical vector. Default = all columns.

Details

Creates a design matrix specifying the models to be fitted. (Alternatively, createFormula can be used to generate a model formula instead of a design matrix.)

The design matrix can then be provided to the differential testing functions, together with the data object and contrast matrix.

The experiment_info input (which was also previously provided to prepareData) should be a data frame containing all factors and covariates of interest. For example, depending on the experimental design, this may include the following columns:

- group IDs (e.g. groups for differential testing)
- block IDs (e.g. patient IDs in a paired design)
- batch IDs (batch effects)
- continuous covariates

The argument cols_design specifies which columns in experiment_info to include in the design matrix. (For example, there may be an additional column of sample IDs, which should not be included.) This can be provided as a character vector of column names, a numeric vector of column indices, or a logical vector. By default, all columns are included.

Columns of indicator variables (e.g. group IDs, block IDs, and batch IDs) in experiment_info must be formatted as factors (otherwise they will be treated as numeric values). The indicator columns will be expanded into the design matrix format. The names for each parameter are taken from the column names of experiment_info.

All factors provided here will be included as fixed effect terms in the design matrix. Alternatively, to use random effects for some factors (e.g. for block IDs), see createFormula; or, depending on the method used, provide them directly to the differential testing function (testDA_voom and testDS_limma).

Value

design: Returns a design matrix (numeric matrix), with one row per sample, and one column per model parameter.
Examples

# For a complete workflow example demonstrating each step in the 'diffcyt' pipeline, # see the package vignette.

# Example: simple design matrix
experiment_info <- data.frame(
  sample_id = factor(paste0("sample", 1:4)),
  group_id = factor(c("group1", "group1", "group2", "group2")),
  stringsAsFactors = FALSE
)  
createDesignMatrix(experiment_info, cols_design = "group_id")

# Example: more complex design matrix: patient IDs and batch IDs
experiment_info <- data.frame(
  sample_id = factor(paste0("sample", 1:8)),
  group_id = factor(rep(paste0("group", 1:2), each = 4)),
  patient_id = factor(rep(paste0("patient", 1:4), 2)),
  batch_id = factor(rep(paste0("batch", 1:2), 4)),
  stringsAsFactors = FALSE
)  
createDesignMatrix(experiment_info, cols_design = c("group_id", "patient_id", "batch_id"))

# Example: more complex design matrix: continuous covariate
experiment_info <- data.frame(
  sample_id = factor(paste0("sample", 1:4)),
  group_id = factor(c("group1", "group1", "group2", "group2")),
  age = c(52, 35, 71, 60),
  stringsAsFactors = FALSE
)  
createDesignMatrix(experiment_info, cols_design = c("group_id", "age"))

createFormula

Create model formula and corresponding data frame of variables

Description

Create model formula and corresponding data frame of variables for model fitting

Usage

createFormula(experiment_info, cols_fixed = NULL, cols_random = NULL)

Arguments

experiment_info

- `data.frame`, `DataFrame`, or `tbl_df` of experiment information (which was also previously provided to `prepareData`). This should be a data frame containing all factors and covariates of interest; e.g. group IDs, block IDs, batch IDs, and continuous covariates.

cols_fixed

- Argument specifying columns of `experiment_info` to include as fixed effect terms in the model formula. This can be provided as a character vector of column names, a numeric vector of column indices, or a logical vector.
createFormula

cols_random  Argument specifying columns of experiment_info to include as random intercept terms in the model formula. This can be provided as a character vector of column names, a numeric vector of column indices, or a logical vector. Default = none.

Details

Creates a model formula and corresponding data frame of variables specifying the models to be fitted. (Alternatively, createDesignMatrix can be used to generate a design matrix instead of a model formula.)

The output is a list containing the model formula and corresponding data frame of variables (one column per formula term). These can then be provided to differential testing functions that require a model formula, together with the main data object and contrast matrix.

The experiment_info input (which was also previously provided to prepareData) should be a data frame containing all factors and covariates of interest. For example, depending on the experimental design, this may include the following columns:

- group IDs (e.g. groups for differential testing)
- block IDs (e.g. patient IDs in a paired design; these may be included as either fixed effect or random effects)
- batch IDs (batch effects)
- continuous covariates
- sample IDs (e.g. to include random intercept terms for each sample, to account for overdispersion typically seen in high-dimensional cytometry data; this is known as an 'observation-level random effect' (OLRE); see see Nowicka et al., 2017, F1000Research for more details)

The arguments cols_fixed and cols_random specify the columns in experiment_info to include as fixed effect terms and random intercept terms respectively. These can be provided as character vectors of column names, numeric vectors of column indices, or logical vectors. The names for each formula term are taken from the column names of experiment_info.

Note that for some methods, random effect terms (e.g. for block IDs) must be provided directly to the differential testing function instead (testDA_voom and testDS_limma).

If there are no random effect terms, it will usually be simpler to use a design matrix instead of a model formula; see createDesignMatrix.

Value

formula: Returns a list with three elements:

- formula: model formula
- data: data frame of variables corresponding to the model formula
- random_terms: TRUE if model formula contains any random effect terms

Examples

# For a complete workflow example demonstrating each step in the 'diffcyt' pipeline,
# see the package vignette.

# Example: model formula
experiment_info <- data.frame(
  sample_id = factor(paste0("sample", 1:8)),
)
diffcyt

```r

group_id = factor(rep(paste0("group", 1:2), each = 4)),
patient_id = factor(rep(paste0("patient", 1:4), 2)),
stringsAsFactors = FALSE
)
createFormula(experiment_info, cols_fixed = "group_id", cols_random = c("sample_id", "patient_id"))
```

---

**diffcyt**

*Run 'diffcyt' pipeline*

**Description**

Wrapper function to run complete 'diffcyt' pipeline

**Usage**

```r
diffcyt(d_input, experiment_info = NULL, marker_info = NULL,
design = NULL, formula = NULL, contrast, analysis_type = c("DA",
"DS"), method_DA = c("diffcyt-DA-edgeR", "diffcyt-DA-voom",
"diffcyt-DA-GLMM"), method_DS = c("diffcyt-DS-limma",
"diffcyt-DS-LMM"), markers_to_test = NULL, clustering_to_use = NULL,
cols_to_include = NULL, subsampling = FALSE, n_sub = NULL,
seed_sub = NULL, transform = TRUE, cofactor = 5,
cols_clustering = NULL, xdim = 10, ydim = 10,
meta_clustering = FALSE, meta_k = 40, seed_clustering = NULL,
min_cells = 3, min_samples = NULL, normalize = FALSE,
norm_factors = "TMM", trend_method = "none", block_id = NULL,
trend = TRUE, weights = TRUE, plot = TRUE, path = ".",
verbose = TRUE)
```

**Arguments**

- **d_input** Input data. Must be either: (i) a flowSet or list of flowFrames, DataFrames, data.frames, or matrices as input (one flowFrame or list item per sample) (see `prepareData`); or (ii) a CATALYST daFrame (containing cluster labels in rowData; see vignette for an example).
- **experiment_info** data.frame, DataFrame, or tbl_df of experiment information, for example sample IDs and group IDs. Must contain a column named sample_id. See `prepareData`. (Not required when providing a CATALYST daFrame for d_input.)
- **marker_info** data.frame, DataFrame, or tbl_df of marker information for each column of data. This should contain columns named marker_name and marker_class. The columns contain: (i) marker names (and any other column names); and (ii) a factor indicating the marker class for each column (with entries "type", "state", or "none"). See `prepareData`. (Not required when providing a CATALYST daFrame for d_input.)
- **design** Design matrix, created with `createDesignMatrix`. See `createDesignMatrix`.
- **formula** Model formula object, created with `createFormula`. See `createFormula`.
- **contrast** Contrast matrix, created with `createContrast`. See `createContrast`.
**analysis_type**
Type of differential analysis to perform: differential abundance (DA) of cell populations, or differential states (DS) within cell populations. Options are "DA" and "DS". See `testDA_edgeR`, `testDA_voom`, `testDA_GLMM`, `testDS_limma`, or `testDS_LMM`.

**method_DA**
Method to use for calculating differential abundance (DA) tests. Options are "diffcyt-DA-edgeR", "diffcyt-DA-voom", and "diffcyt-DA-GLMM". Default = "diffcyt-DA-edgeR". See `testDA_edgeR`, `testDA_voom`, or `testDA_GLMM`.

**method_DS**
Method to use for calculating differential state (DS) tests. Options are "diffcyt-DS-limma" and "diffcyt-DS-LMM". Default = "diffcyt-DS-limma". See `testDS_limma` or `testDS_LMM`.

**markers_to_test**
(Optional) Logical vector specifying which markers to test for differential expression (from the set of markers stored in the assays of `d_medians`; for method `testDS_limma` or `testDS_LMM`). Default = all 'cell state' markers, which are identified by the logical vector `id_state_markers` stored in the meta-data of `d_medians`. See `testDS_limma` or `testDS_LMM`.

**clustering_to_use**
(Optional) Column name indicating which set of cluster labels to use for differential testing, when input data are provided as a CATALYST daFrame object containing multiple sets of cluster labels. (In this case, the metadata of the daFrame object is assumed to contain a data frame named `cluster_codes`; `clustering_to_use` is the column name of the selected column in `cluster_codes`. If `clustering_to_use` is provided, an identifier `clustering_name` to identify this column will also be saved in the metadata of the output object.) Default = NULL, in which case cluster labels stored in column named `cluster_id` in the rowData of the daFrame object are used.

**cols_to_include**
Logical vector indicating which columns to include from the input data. Default = all columns. See `prepareData`.

**subsampling**
Whether to use random subsampling to select an equal number of cells from each sample. Default = FALSE. See `prepareData`.

**n_sub**
Number of cells to select from each sample by random subsampling, if subsampling = TRUE. Default = number of cells in smallest sample. See `prepareData`.

**seed_sub**
Random seed for subsampling. Set to an integer value to generate reproducible results. Default = NULL. See `prepareData`.

**transform**
Whether to apply 'arcsinh' transform. This may be set to FALSE if the input data has already been transformed. Default = TRUE. See `transformData`.

**cofactor**
Cofactor parameter for 'arcsinh' transform. Default = 5, which is appropriate for mass cytometry (CyTOF) data. For fluorescence flow cytometry, we recommend cofactor = 150 instead. See `transformData`.

**cols_clustering**
Columns to use for clustering. Default = NULL, in which case markers identified as 'cell type' markers (with entries "type") in the vector `marker_class` in the column meta-data of `d_se` will be used. See `generateClusters`.

**xdim**
Horizontal length of grid for self-organizing map for FlowSOM clustering (number of clusters = xdim * ydim). Default = 10 (i.e. 100 clusters). See `generateClusters`.

**ydim**
Vertical length of grid for self-organizing map for FlowSOM clustering (number of clusters = xdim * ydim). Default = 10 (i.e. 100 clusters). See `generateClusters`.
diffcyt

meta_clustering
Whether to include FlowSOM 'meta-clustering' step. Default = FALSE. See generateClusters.

meta_k
Number of meta-clusters for FlowSOM, if meta-clustering = TRUE. Default = 40. See generateClusters.

seed_clustering
Random seed for clustering. Set to an integer value to generate reproducible results. Default = NULL. See generateClusters.

min_cells
Filtering parameter. Default = 3. Clusters are kept for differential testing if they have at least min_cells cells in at least min_samples samples. See testDA_edgeR, testDA_voom, testDA_GLMM, testDS_limma, or testDS_LMM.

min_samples
Filtering parameter. Default = number of samples / 2, which is appropriate for two-group comparisons (of equal size). Clusters are kept for differential testing if they have at least min_cells cells in at least min_samples samples. See testDA_edgeR, testDA_voom, testDA_GLMM, testDS_limma, or testDS_LMM.

normalize
Whether to include optional normalization factors to adjust for composition effects. Default = FALSE. See testDA_edgeR, testDA_voom, or testDA_GLMM.

norm_factors
Normalization factors to use, if normalize = TRUE. Default = "TMM", in which case normalization factors are calculated automatically using the 'trimmed mean of M-values' (TMM) method from the edgeR package. Alternatively, a vector of values can be provided (the values should multiply to 1). See testDA_edgeR, testDA_voom, or testDA_GLMM.

trend_method
Method for estimating dispersion trend; passed to function estimateDisp from edgeR package (for method testDA_edgeR). Default = "none". (See estimateDisp help file from edgeR package for other options.) See testDA_edgeR.

block_id
(Optional) Vector or factor of block IDs (e.g. patient IDs) for paired experimental designs, to be included as random effects (for method testDA_voom or testDS_limma). If provided, the block IDs will be included as random effects using the limma duplicateCorrelation methodology. Alternatively, block IDs can be included as fixed effects in the design matrix (createDesignMatrix). See testDA_voom or testDS_limma.

trend
(Optional) Whether to fit a mean-variance trend when calculating moderated tests with function eBayes from limma package (for method testDS_limma). When trend = TRUE, this is known as the limma-trend method (Law et al., 2014; Phipson et al., 2016). Default = TRUE. See testDS_limma.

weights
(Optional) Whether to include precision weights (for method testDS_limma or testDS_LMM). For method testDS_limma, cluster cell counts will be used as precision weights (across all samples and clusters); this allows the limma model fitting functions to account for uncertainty due to the total number of cells per sample (library sizes) and total number of cells per cluster. For methods testDS_LMM, cluster cell counts will be used as precision weights within each model (across samples, i.e. within the model for each cluster); these represent the relative uncertainty in calculating each median value (within each model). Default = TRUE. See testDS_limma or testDS_LMM.

plot
Whether to save diagnostic plots (for method testDA_voom or testDS_limma). Default = TRUE. See testDA_voom or testDS_limma.

path
Path for diagnostic plots (for method testDA_voom or testDS_limma). Default = current working directory. See testDA_voom or testDS_limma.

verbose
Whether to print status messages during each step of the pipeline. Default = TRUE.
Details

This wrapper function runs the complete `diffcyt` analysis pipeline, by calling the functions for the individual steps in the pipeline in the correct sequence.

For more details about the functions for the individual steps, see the package vignette and the function help pages. Running the individual functions may provide additional flexibility, especially for complex analyses.

The input data can be provided as a `flowSet` or a list of `flowFrames, DataFrames, data.frames, or matrices` (one `flowFrame` or list item per sample). Alternatively, it is also possible to provide the input as a `daFrame` object from the CATALYST Bioconductor package (Chevrier, Crowell, Zanotelli et al., 2018). This can be useful when initial exploratory analyses and clustering have been performed using CATALYST; the `daFrame` object from CATALYST (containing cluster labels in the `rowData`) can then be provided directly to the `diffcyt` functions for differential testing.

Minimum required arguments when not providing a `flowSet` or list of `flowFrames, DataFrames, data.frames, or matrices`:

- `d_input`
- `experiment_info`
- `marker_info`
- either `design` or `formula` (depending on the differential testing method used)
- `contrast`
- `analysis_type`

Minimum required arguments when providing a CATALYST `daFrame` object:

- `d_input`
- either `design` or `formula` (depending on the differential testing method used)
- `contrast`
- `analysis_type`

Value

Returns a list containing the results object `res`, as well as the data objects `d_se, d_counts, d_medians, d_medians_by_cluster_marker, and d_medians_by_sample_marker`. (If a CATALYST `daFrame` object was used as input, the output list contains objects `res, d_counts, and d_medians`.) The structure of `res` depends on the differential testing method used. See `testDA_edgeR, testDA_voom, testDA_GLMM, testDS_limma, or testDS_LMM`.

Examples

# For a complete workflow example demonstrating each step in the 'diffcyt' pipeline,
# see the package vignette.

# Function to create random data (one sample)
d_random <- function(n = 20000, mean = 0, sd = 1, ncol = 20, cofactor = 5) {
 d <- sinh(matrix(rnorm(n, mean, sd), ncol = ncol)) * cofactor
 colnames(d) <- paste0("marker", sprintf("%02d", 1:ncol))
 d
}

# Create random data (without differential signal)
```R
set.seed(123)
d_input <- list(
 sample1 = d_random(),
 sample2 = d_random(),
 sample3 = d_random(),
 sample4 = d_random()
)

Add differential abundance (DA) signal
ix_DA <- 801:900
d_input[[3]][ix_DA, ix_cols_type] <- d_random(n = 1000, mean = 2, ncol = 10)
d_input[[4]][ix_DA, ix_cols_type] <- d_random(n = 1000, mean = 2, ncol = 10)

Add differential states (DS) signal
ix_DS <- 901:1000
dx_cols_DS <- 19:20
d_input[[1]][ix_DS, ix_cols_type] <- d_random(n = 1000, mean = 3, ncol = 10)
d_input[[2]][ix_DS, ix_cols_type] <- d_random(n = 1000, mean = 3, ncol = 10)
d_input[[3]][ix_DS, c(ix_cols_type, ix_cols_DS)] <- d_random(n = 1200, mean = 3, ncol = 12)
d_input[[4]][ix_DS, c(ix_cols_type, ix_cols_DS)] <- d_random(n = 1200, mean = 3, ncol = 12)

experiment_info <- data.frame(
 sample_id = factor(paste0("sample", 1:4)),
 group_id = factor(c("group1", "group1", "group2", "group2"),
 levels = c("type", "state", "none")),
 stringsAsFactors = FALSE
)

marker_info <- data.frame(
 channel_name = paste0("channel", sprintf("%03d", 1:20)),
 marker_name = paste0("marker", sprintf("%02d", 1:20)),
 marker_class = factor(rep("type", 10), rep("state", 10)),
 stringsAsFactors = FALSE
)

Create design matrix
design <- createDesignMatrix(experiment_info, cols_design = "group_id")

Create contrast matrix
contrast <- createContrast(c(0, 1))

Test for differential abundance (DA) of clusters (using default method 'diffcyt-DA-edgeR')
out_DA <- diffcyt(d_input, experiment_info, marker_info, design = design, contrast = contrast,
 analysis_type = "DA", method_DA = "diffcyt-DA-edgeR",
 seed_clustering = 123, verbose = FALSE)

Test for differential states (DS) within clusters (using default method 'diffcyt-DS-limma')
out_DS <- diffcyt(d_input, experiment_info, marker_info, design = design, contrast = contrast,
 analysis_type = "DS", method_DS = "diffcyt-DS-limma",
 seed_clustering = 123, plot = FALSE, verbose = FALSE)

Display results for top DA clusters
topTable(out_DA, format_vals = TRUE)
```
generateClusters

Generate clusters

Description
Generate high-resolution clusters for diffcyt analysis

Usage
generateClusters(d_se, cols_clustering = NULL, xdim = 10, ydim = 10,
meta_clustering = FALSE, meta_k = 40, seed_clustering = NULL, ...)

Arguments
d_se Transformed input data, from prepareData and transformData.
cols_clustering Columns to use for clustering. Default = NULL, in which case markers identified as `cell type` markers (with entries "type") in the vector marker_class in the column meta-data of d_se will be used.
xdim Horizontal length of grid for self-organizing map for FlowSOM clustering (number of clusters = xdim * ydim). Default = 10 (i.e. 100 clusters).
ydim Vertical length of grid for self-organizing map for FlowSOM clustering (number of clusters = xdim * ydim). Default = 10 (i.e. 100 clusters).
meta_clustering Whether to include FlowSOM `meta-clustering` step. Default = FALSE.
meta_k Number of meta-clusters for FlowSOM, if meta_clustering = TRUE. Default = 40.
seed_clustering Random seed for clustering. Set to an integer value to generate reproducible results. Default = NULL.
... Other parameters to pass to the FlowSOM clustering algorithm (through the function BuildSOM).

Details
Performs clustering to group cells into clusters representing cell populations or subsets, which can then be further analyzed by testing for differential abundance of cell populations or differential states within cell populations. By default, we use high-resolution clustering or over-clustering (i.e. we generate a large number of small clusters), which helps ensure that rare populations are adequately separated from larger ones.
Data is assumed to be in the form of a `SummarizedExperiment` object generated with `prepareData` and transformed with `transformData`.

The input data object `d_se` is assumed to contain a vector `marker_class` in the column meta-data. This vector indicates the marker class for each column ("type", "state", or "none"). By default, clustering is performed using the 'cell type' markers only. For example, in immunological data, this may be the lineage markers. The choice of cell type markers is an important design choice for the user, and will depend on the underlying experimental design and research questions. It may be made based on prior biological knowledge or using data-driven methods. For an example of a data-driven method of marker ranking and selection, see Nowicka et al. (2017), *F1000Research*.

By default, we use the `FlowSOM` clustering algorithm (Van Gassen et al. 2015, *Cytometry Part A*, available from Bioconductor) to generate the clusters. We previously showed that FlowSOM gives very good clustering performance for high-dimensional cytometry data, for both major and rare cell populations, and is extremely fast (Weber and Robinson, 2016, *Cytometry Part A*).

The clustering is run at high resolution to give a large number of small clusters (i.e. over-clustering). This is done by running only the initial 'self-organizing map' clustering step in the FlowSOM algorithm, i.e. without the final 'meta-clustering' step. This ensures that small or rare populations are adequately separated from larger populations, which is crucial for detecting differential signals for extremely rare populations.

The minimum spanning tree (MST) object from `BuildMST` is stored in the experiment metadata slot in the `SummarizedExperiment` object `d_se`, and can be accessed with `metadata(d_se)$MST`.

**Value**

`d_se`: Returns the `SummarizedExperiment` input object, with cluster labels for each cell stored in an additional column of row meta-data. Row meta-data can be accessed with `rowData`. The minimum spanning tree (MST) object is also stored in the metadata slot, and can be accessed with `metadata(d_se)$MST`.

**Examples**

```r
For a complete workflow example demonstrating each step in the 'diffcyt' pipeline,
see the package vignette.

Function to create random data (one sample)
d_random <- function(n = 20000, mean = 0, sd = 1, ncol = 20, cofactor = 5) {
 d <- sinh(matrix(rnorm(n, mean, sd), ncol = ncol)) * cofactor
 colnames(d) <- paste0("marker", sprintf("%02d", 1:ncol))
 d
}

Create random data (without differential signal)
set.seed(123)
d_input <- list(
 sample1 = d_random(),
 sample2 = d_random(),
 sample3 = d_random(),
 sample4 = d_random()
)

experiment_info <- data.frame(
 sample_id = factor(paste0("sample", 1:4)),
 group_id = factor(c("group1", "group1", "group2", "group2")),
 stringsAsFactors = FALSE
)
```
marker_info <- data.frame(
  channel_name = paste0("channel", sprintf("%03d", 1:20)),
  marker_name = paste0("marker", sprintf("%02d", 1:20)),
  marker_class = factor(c(rep("type", 10), rep("state", 10)),
    levels = c("type", "state", "none")),
  stringsAsFactors = FALSE
)

# Prepare data
d_se <- prepareData(d_input, experiment_info, marker_info)

# Transform data
d_se <- transformData(d_se)

# Generate clusters
d_se <- generateClusters(d_se)

---

**plotHeatmap**

*Plot heatmap*

**Description**

Plot heatmap showing top clusters or cluster-marker combinations

**Usage**

```r
plotHeatmap(out = NULL, analysis_type = c("DA", "DS"), top_n = 20,
 threshold = 0.1, res = NULL, d_se = NULL, d_counts = NULL,
 d_medians = NULL, d_medians_by_cluster_marker = NULL,
 sample_order = NULL)
```

**Arguments**

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>out</td>
<td>Output object from <code>diffcyt</code> wrapper function, containing results object <code>res</code> and data objects <code>d_se</code>, <code>d_counts</code>, <code>d_medians</code>, and <code>d_medians_by_cluster_marker</code>. Alternatively, the results and data objects can be provided individually.</td>
</tr>
<tr>
<td>analysis_type</td>
<td>Whether to plot heatmap for differential abundance (DA) or differential state (DS) test results.</td>
</tr>
<tr>
<td>top_n</td>
<td>Number of top clusters (DA tests) or cluster-marker combinations (DS tests) to display. Default = 20.</td>
</tr>
<tr>
<td>threshold</td>
<td>Threshold for significant adjusted p-values. Default = 0.1.</td>
</tr>
<tr>
<td>res</td>
<td>Object containing differential test results. Alternatively, the combined output object from the wrapper function <code>diffcyt</code> can be provided.</td>
</tr>
<tr>
<td>d_se</td>
<td>Data object. Alternatively, the combined output object from the wrapper function <code>diffcyt</code> can be provided.</td>
</tr>
<tr>
<td>d_counts</td>
<td>Data object. Alternatively, the combined output object from the wrapper function <code>diffcyt</code> can be provided.</td>
</tr>
<tr>
<td>d_medians</td>
<td>Data object. (Required for DS tests only.) Alternatively, the combined output object from the wrapper function <code>diffcyt</code> can be provided.</td>
</tr>
</tbody>
</table>
**plotHeatmap**

- `d_medians_by_cluster_marker` Data object. Alternatively, the combined output object from the wrapper function `diffcyt` can be provided.
- `sample_order` (Optional) Custom ordering for samples (columns) in right-hand panel of heatmap. (This is useful when the default ordering does not group samples by condition; e.g. samples are ordered alphabetically by sample IDs instead.)

**Details**

Display heatmap to visualize results for the top (most highly significant) detected clusters or cluster-marker combinations.

For DA tests, the heatmap consists of the following panels:

- median (arcsinh-transformed) expression (across all samples) for 'cell type' markers
- cluster abundances by sample
- row annotation indicating significant detected clusters

For DS tests, the heatmap consists of:

- median (arcsinh-transformed) expression (across all samples) for 'cell type' markers
- median (arcsinh-transformed) expression (across all samples) for 'cell state' markers
- median (arcsinh-transformed) expression (by sample) for 'cell state' markers for the top cluster-marker combinations
- row annotation indicating significant detected cluster-marker combinations

Heatmaps are generated using the ComplexHeatmap package (Gu et al., 2016), and color scales are generated using the circlize package (Gu et al., 2014). Both packages are available from Bioconductor.

**Value**

Displays a heatmap.

**Examples**

# For a complete workflow example demonstrating each step in the 'diffcyt' pipeline, # see the package vignette.

# Function to create random data (one sample)

d_random <- function(n = 20000, mean = 0, sd = 1, ncol = 20, cofactor = 5) {
  d <- sinh(matrix(rnorm(n, mean, sd), ncol = ncol)) * cofactor
  colnames(d) <- paste0("marker", sprintf("%02d", 1:ncol))
  d
}

# Create random data (without differential signal)
set.seed(123)
d_input <- list(
  sample1 = d_random(),
  sample2 = d_random(),
  sample3 = d_random(),
  sample4 = d_random()
)

```r
```
# Add differential abundance (DA) signal
ix_DA <- 801:900
ix_cols_type <- 1:10
d_input[[3]][ix_DA, ix_cols_type] <- d_random(n = 1000, mean = 2, ncol = 10)
d_input[[4]][ix_DA, ix_cols_type] <- d_random(n = 1000, mean = 2, ncol = 10)

# Add differential states (DS) signal
ix_DS <- 901:1000
ix_cols_DS <- 19:20
d_input[[1]][ix_DS, ix_cols_type] <- d_random(n = 1000, mean = 3, ncol = 10)
d_input[[2]][ix_DS, ix_cols_type] <- d_random(n = 1000, mean = 3, ncol = 10)
d_input[[3]][ix_DS, c(ix_cols_type, ix_cols_DS)] <- d_random(n = 1200, mean = 3, ncol = 12)
d_input[[4]][ix_DS, c(ix_cols_type, ix_cols_DS)] <- d_random(n = 1200, mean = 3, ncol = 12)

experiment_info <- data.frame(
  sample_id = factor(paste0("sample", 1:4)),
  group_id = factor(c("group1", "group1", "group2", "group2")),
  stringsAsFactors = FALSE
)

marker_info <- data.frame(
  channel_name = paste0("channel", sprintf("%03d", 1:20)),
  marker_name = paste0("marker", sprintf("%02d", 1:20)),
  marker_class = factor(c(rep("type", 10), rep("state", 10)),
                        levels = c("type", "state", "none"),
                        stringsAsFactors = FALSE)
)

# Create design matrix
design <- createDesignMatrix(experiment_info, cols_design = "group_id")

# Create contrast matrix
contrast <- createContrast(c(0, 1))

# Test for differential abundance (DA) of clusters (using default method 'diffcyt-DA-edgeR')
out_DA <- diffcyt(d_input, experiment_info, marker_info,
  design = design, contrast = contrast,
  analysis_type = "DA", method_DA = "diffcyt-DA-edgeR",
  seed_clustering = 123, verbose = FALSE)

# Test for differential states (DS) within clusters (using default method 'diffcyt-DS-limma')
out_DS <- diffcyt(d_input, experiment_info, marker_info,
  design = design, contrast = contrast,
  analysis_type = "DS", method_DS = "diffcyt-DS-limma",
  seed_clustering = 123, plot = FALSE, verbose = FALSE)

# Display results for top DA clusters
topTable(out_DA, format_vals = TRUE)

# Display results for top DS cluster-marker combinations
topTable(out_DS, format_vals = TRUE)

# Plot heatmap for DA tests
plotHeatmap(out_DA, analysis_type = "DA")

# Plot heatmap for DS tests
plotHeatmap(out_DS, analysis_type = "DS")
prepareData

Prepare data

Description

Prepare data into format for diffcyt pipeline

Usage

prepareData(d_input, experiment_info, marker_info,
  cols_to_include = NULL, subsampling = FALSE, n_sub = NULL,
  seed_sub = NULL)

Arguments

d_input Input data. Must be a flowSet or list of flowFrames, DataFrames, data.frames, or matrices as input (one flowFrame or list item per sample).

experiment_info data.frame, DataFrame, or tbl_df of experiment information, for example sample IDs and group IDs. Must contain a column named sample_id.

marker_info data.frame, DataFrame, or tbl_df of marker information for each column of data. This should contain columns named marker_name and marker_class. The columns contain: (i) marker names (and any other column names); and (ii) a factor indicating the marker class for each column (with entries "type", "state", or "none").

cols_to_include Logical vector indicating which columns to include from the input data. Default = all columns.

subsampling Whether to use random subsampling to select an equal number of cells from each sample. Default = FALSE.

n_sub Number of cells to select from each sample by random subsampling, if subsampling = TRUE. Default = number of cells in smallest sample.

seed_sub Random seed for subsampling. Set to an integer value to generate reproducible results. Default = NULL.

Details

Functions in the diffcyt analysis pipeline assume that input data is provided as a SummarizedExperiment object, which contains a single matrix of expression values, together with row and column meta-data.

This function accepts a flowSet or a list of flowFrames, data.frames, or matrices as input (i.e. one flowFrame or list item per sample). The function then concatenates the data tables into a single matrix of values, and adds row and column meta-data.

Row meta-data should be provided as a data frame named experiment_info, containing columns of relevant experiment information, such as sample IDs and group IDs (for each sample). This must contain at least a column named sample_id.

Column meta-data should be provided as a data frame named marker_info, containing the following columns of marker information. The column names must be as shown.
• marker_name: protein marker names (and column names for any other columns)
• marker_class: factor indicating the protein marker class for each column of data (usually, entries will be either "type", "state", or "none")

The split into 'cell type' and 'cell state' markers is crucial for the analysis. Cell type markers are used to define cell populations by clustering, and to test for differential abundance of cell populations; while cell state markers are used to test for differential states within cell populations.

The optional argument cols_to_include allows unnecessary columns (e.g. any columns not containing protein markers) to be discarded.

Optionally, random subsampling can be used to select an equal number of cells from each sample (subsampling = TRUE). This can be useful when there are large differences in total numbers of cells per sample, since it ensures that samples with relatively large numbers of cells do not dominate the clustering. However, subsampling should generally not be used when rare cell populations are of interest, due to the significant loss of information if cells from the rare population are discarded.

Value
d_se: Returns data as a SummarizedExperiment containing a single matrix of data (expression values) in the assays slot, together with row meta-data (experiment information) and column meta-data (marker information). The metadata slot also contains the experiment_info data frame, and a vector n_cells of the number of cells per sample; these can be accessed with metadata(d_se)$experiment_info and metadata(d_se)$n_cells.

Examples

# For a complete workflow example demonstrating each step in the 'diffcyt' pipeline,
# see the package vignette.
# Function to create random data (one sample)
d_random <- function(n = 20000, mean = 0, sd = 1, ncol = 20, cofactor = 5) {
d <- sinh(matrix(rnorm(n, mean, sd), ncol = ncol)) * cofactor
colnames(d) <- paste0("marker", sprintf("%02d", 1:ncol))
d
}

# Create random data (without differential signal)
set.seed(123)
d_input <- list(
sample1 = d_random(),
sample2 = d_random(),
sample3 = d_random(),
sample4 = d_random()
)

experiment_info <- data.frame(
sample_id = factor(paste0("sample", 1:4)),
group_id = factor(c("group1", "group1", "group2", "group2")),
stringsAsFactors = FALSE
)

marker_info <- data.frame(
channel_name = paste0("channel", sprintf("%03d", 1:20)),
marker_name = paste0("marker", sprintf("%02d", 1:20)),
marker_class = factor(c(rep("type", 10), rep("state", 10)), levels = c("type", "state", "none"),
...
testDA_edgeR

stringsAsFactors = FALSE )

# Prepare data
d_se <- prepareData(d_input, experiment_info, marker_info)

testDA_edgeR

Test for differential abundance: method 'diffcyt-DA-edgeR'

Description

Calculate tests for differential abundance of cell populations using method 'diffcyt-DA-edgeR'

Usage

testDA_edgeR(d_counts, design, contrast, trend_method = "none",
min_cells = 3, min_samples = NULL, normalize = FALSE,
norm_factors = "TMM")

Arguments

d_counts SummarizedExperiment object containing cluster cell counts, from calcCounts.
design Design matrix, created with createDesignMatrix. See createDesignMatrix for details.
contrast Contrast matrix, created with createContrast. See createContrast for details.
trend_method Method for estimating dispersion trend; passed to function estimateDisp from edgeR package. Default = "none". (See estimateDisp help file from edgeR package for other options.)
min_cells Filtering parameter. Default = 3. Clusters are kept for differential testing if they have at least min_cells cells in at least min_samples samples.
min_samples Filtering parameter. Default = number of samples / 2, which is appropriate for two-group comparisons (of equal size). Clusters are kept for differential testing if they have at least min_cells cells in at least min_samples samples.
normalize Whether to include optional normalization factors to adjust for composition effects (see details). Default = FALSE.
norm_factors Normalization factors to use, if normalize = TRUE. Default = "TMM", in which case normalization factors are calculated automatically using the 'trimmed mean of M-values' (TMM) method from the edgeR package. Alternatively, a vector of values can be provided (the values should multiply to 1).

Details

Calculates tests for differential abundance of clusters, using functions from the edgeR package.

This method uses the edgeR package (Robinson et al. 2010, Bioinformatics; McCarthy et al. 2012, Nucleic Acids Research) to fit models and calculate moderated tests at the cluster level. Moderated tests improve statistical power by sharing information on variability (i.e. variance across samples for a single cluster) between clusters. By default, we use the option trend.method =
"none" to calculate dispersions, since the dispersion-mean relationship typically does not resemble RNA-sequencing data; see edgeR User’s Guide. The statistical methods implemented in the edgeR package were originally designed for the analysis of gene expression data such as RNA-sequencing counts. Here, we apply these methods to cluster cell counts.

The experimental design must be specified using a design matrix, which can be created with createDesignMatrix. Flexible experimental designs are possible, including blocking (e.g. paired designs), batch effects, and continuous covariates. See createDesignMatrix for more details.

The contrast matrix specifying the contrast of interest can be created with createContrast. See createContrast for more details.

Filtering: Clusters are kept for differential testing if they have at least min_cells cells in at least min_samples samples. This removes clusters with very low cell counts across conditions, to improve power.

Normalization for the total number of cells per sample (library sizes) and total number of cells per cluster is automatically performed by the edgeR functions. Optional normalization factors can also be included to adjust for composition effects in the cluster cell counts per sample. For example, in an extreme case, if several additional clusters are present in only one condition, while all other clusters are approximately equally abundant between conditions, then simply normalizing by the total number of cells per sample will create a false positive differential abundance signal for the non-differential clusters. (For a detailed explanation in the context of RNA sequencing gene expression, see Robinson and Oshlack, 2010.) Normalization factors can be calculated automatically using the 'trimmed mean of M-values' (TMM) method (Robinson and Oshlack, 2010), implemented in the edgeR package (see also the edgeR User’s Guide for details). Alternatively, a vector of values can be provided (the values should multiply to 1).

Value

Returns a new SummarizedExperiment object, with differential test results stored in the rowData slot. Results include raw p-values (p_val) and adjusted p-values (p_adj) from the edgeR moderated tests, which can be used to rank clusters by evidence for differential abundance. Additional output columns from the edgeR tests are also included. The results can be accessed with the rowData accessor function.

Examples

# For a complete workflow example demonstrating each step in the 'diffcyt' pipeline, # see the package vignette.

# Function to create random data (one sample)
d_random <- function(n = 20000, mean = 0, sd = 1, ncol = 20, cofactor = 5) {
  d <- sinh(matrix(rnorm(n, mean, sd), ncol = ncol)) * cofactor
  colnames(d) <- paste0("marker", sprintf("%02d", 1:ncol))
  d
}

d_random <- function(n = 20000, mean = 0, sd = 1, ncol = 20, cofactor = 5) {
  d <- sinh(matrix(rnorm(n, mean, sd), ncol = ncol)) * cofactor
  colnames(d) <- paste0("marker", sprintf("%02d", 1:ncol))
  d
}

# Create random data (without differential signal)
set.seed(123)
d_input <- list(
  sample1 = d_random(),
  sample2 = d_random(),
  sample3 = d_random(),
  sample4 = d_random()
)
```r
Add differential abundance (DA) signal
ix_DA <- 801:900
ix_cols_type <- 1:10
d_input[[3]][ix_DA, ix_cols_type] <- d_random(n = 1000, mean = 2, ncol = 10)
d_input[[4]][ix_DA, ix_cols_type] <- d_random(n = 1000, mean = 2, ncol = 10)

experiment_info <- data.frame(
 sample_id = factor(paste0("sample", 1:4)),
 group_id = factor(c("group1", "group1", "group2", "group2")),
 stringsAsFactors = FALSE
)

marker_info <- data.frame(
 channel_name = paste0("channel", sprintf("%03d", 1:20)),
 marker_name = paste0("marker", sprintf("%02d", 1:20)),
 marker_class = factor(c(rep("type", 10), rep("state", 10)),
 levels = c("type", "state", "none")),
 stringsAsFactors = FALSE
)

Prepare data
d_se <- prepareData(d_input, experiment_info, marker_info)

Transform data
d_se <- transformData(d_se)

Generate clusters
d_se <- generateClusters(d_se)

Calculate counts
d_counts <- calcCounts(d_se)

Create design matrix
design <- createDesignMatrix(experiment_info, cols_design = "group_id")

Create contrast matrix
contrast <- createContrast(c(0, 1))

Test for differential abundance (DA) of clusters
res_DA <- testDA_edgeR(d_counts, design, contrast)
```

---

**Description**

Calculate tests for differential abundance of cell populations using method ‘diffcyt-DA-GLMM’

**Usage**

```r
testDA_GLMM(d_counts, formula, contrast, min_cells = 3,
 min_samples = NULL, normalize = FALSE, norm_factors = "TMM")
```
Arguments

d_counts: SummarizedExperiment object containing cluster cell counts, from \texttt{calcCounts}.

formula: Model formula object, created with \texttt{createFormula}. This should be a list containing three elements: \texttt{formula}, \texttt{data}, and \texttt{random_terms}: the model formula, data frame of corresponding variables, and variable indicating whether the model formula contains any random effect terms. See \texttt{createFormula} for details.

contrast: Contrast matrix, created with \texttt{createContrast}. See \texttt{createContrast} for details.

min_cells: Filtering parameter. Default = 3. Clusters are kept for differential testing if they have at least \texttt{min_cells} cells in at least \texttt{min_samples} samples.

min_samples: Filtering parameter. Default = number of \texttt{samples} / 2, which is appropriate for two-group comparisons (of equal size). Clusters are kept for differential testing if they have at least \texttt{min_cells} cells in at least \texttt{min_samples} samples.

normalize: Whether to include optional normalization factors to adjust for composition effects (see details). Default = FALSE.

norm_factors: Normalization factors to use, if \texttt{normalize} = TRUE. Default = "TMM", in which case normalization factors are calculated automatically using the 'trimmed mean of M-values' (TMM) method from the \texttt{edgeR} package. Alternatively, a vector of values can be provided (the values should multiply to 1).

Details

Calculates tests for differential abundance of clusters, using generalized linear mixed models (GLMMs).

This methodology was originally developed and described by Nowicka et al. (2017), \textit{F1000Research}, and has been modified here to make use of high-resolution clustering to enable investigation of rare cell populations. Note that unlike the original method by Nowicka et al., we do not attempt to manually merge clusters into canonical cell populations. Instead, results are reported at the high-resolution cluster level, and the interpretation of significant differential clusters is left to the user via visualizations such as heatmaps (see the package vignette for an example).

This method fits generalized linear mixed models (GLMMs) for each cluster, and calculates differential tests separately for each cluster. The response variables in the models are the cluster cell counts, which are assumed to follow a binomial distribution. There is one model per cluster. We also include a filtering step to remove clusters with very small numbers of cells, to improve statistical power.

For more details on the statistical methodology, see Nowicka et al. (2017), \textit{F1000Research} (section 'Differential cell population abundance').

The experimental design must be specified using a model formula, which can be created with \texttt{createFormula}. Flexible experimental designs are possible, including blocking (e.g. paired designs), batch effects, and continuous covariates. Blocking variables can be included as either random intercept terms or fixed effect terms (see \texttt{createFormula}). For paired designs, we recommend using random intercept terms to improve statistical power; see Nowicka et al. (2017), \textit{F1000Research} for details. Batch effects and continuous covariates should be included as fixed effects. In addition, we include random intercept terms for each sample to account for overdispersion typically seen in high-dimensional cytometry count data. The sample-level random intercept terms are known as 'observation-level random effects' (OLREs); see Nowicka et al. (2017), \textit{F1000Research} for more details.

The contrast matrix specifying the contrast of interest can be created with \texttt{createContrast}. See \texttt{createContrast} for more details.
Filtering: Clusters are kept for differential testing if they have at least min_cells cells in at least min_samples samples. This removes clusters with very low cell counts across conditions, to improve power.

Normalization: Optional normalization factors can be included to adjust for composition effects in the cluster cell counts per sample. For example, in an extreme case, if several additional clusters are present in only one condition, while all other clusters are approximately equally abundant between conditions, then simply normalizing by the total number of cells per sample will create a false positive differential abundance signal for the non-differential clusters. (For a detailed explanation in the context of RNA sequencing gene expression, see Robinson and Oshlack, 2010.) Normalization factors can be calculated automatically using the ’trimmed mean of M-values’ (TMM) method (Robinson and Oshlack, 2010), implemented in the edgeR package (see also the edgeR User’s Guide for details). Alternatively, a vector of values can be provided (the values should multiply to 1).

Value

Returns a new SummarizedExperiment object, with differential test results stored in the rowData slot. Results include raw p-values (p_val) and adjusted p-values (p_adj), which can be used to rank clusters by evidence for differential abundance. The results can be accessed with the rowData accessor function.

Examples

# For a complete workflow example demonstrating each step in the 'diffcyt' pipeline,
# see the package vignette.

# Function to create random data (one sample)
d_random <- function(n = 20000, mean = 0, sd = 1, ncol = 20, cofactor = 5) {
  d <- sinh(matrix(rnorm(n, mean, sd), ncol = ncol)) * cofactor
  colnames(d) <- paste0("marker", sprintf("%02d", 1:ncol))
  d
}

# Create random data (without differential signal)
set.seed(123)
d_input <- list(
sample1 = d_random(),
sample2 = d_random(),
sample3 = d_random(),
sample4 = d_random()
)

# Add differential abundance (DA) signal
ix_DA <- 801:900
ix_cols_type <- 1:10
d_input[[3]][ix_DA, ix_cols_type] <- d_random(n = 1000, mean = 2, ncol = 10)
d_input[[4]][ix_DA, ix_cols_type] <- d_random(n = 1000, mean = 2, ncol = 10)

experiment_info <- data.frame(
sample_id = factor(paste0("sample", 1:4)),
group_id = factor(c("group1", "group1", "group2", "group2")),
stringsAsFactors = FALSE
)

marker_info <- data.frame(
  channel_name = paste0("channel", sprintf("%03d", 1:20)),

marker_name = paste0("marker", sprintf("%02d", 1:20)),
marker_class = factor(c(rep("type", 10), rep("state", 10)),
  levels = c("type", "state", "none")),
stringsAsFactors = FALSE
)

# Prepare data
d_se <- prepareData(d_input, experiment_info, marker_info)

# Transform data
d_se <- transformData(d_se)

# Generate clusters
d_se <- generateClusters(d_se)

# Calculate counts
d_counts <- calcCounts(d_se)

# Create model formula
formula <- createFormula(experiment_info, cols_fixed = "group_id", cols_random = "sample_id")

# Create contrast matrix
contrast <- createContrast(c(0, 1))

# Test for differential abundance (DA) of clusters
res_DA <- testDA_GLMM(d_counts, formula, contrast)

---

testDA_voom

**Test for differential abundance: method 'diffcyt-DA-voom'**

**Description**

Calculate tests for differential abundance of cell populations using method 'diffcyt-DA-voom'

**Usage**

testDA_voom(d_counts, design, contrast, block_id = NULL, min_cells = 3,
  min_samples = NULL, normalize = FALSE, norm_factors = "TMM",
  plot = TRUE, path = ".")

**Arguments**

d_counts: `SummarizedExperiment` object containing cluster cell counts, from `calcCounts`.
design: Design matrix, created with `createDesignMatrix`. See `createDesignMatrix` for details.
contrast: Contrast matrix, created with `createContrast`. See `createContrast` for details.
block_id: (Optional) Vector or factor of block IDs (e.g. patient IDs) for paired experimental designs, to be included as random effects. If provided, the block IDs will be included as random effects using the `limma duplicateCorrelation` methodology. Alternatively, block IDs can be included as fixed effects in the design matrix (`createDesignMatrix`). See details.
testDA_voom

**min_cells**
Filtering parameter. Default = 3. Clusters are kept for differential testing if they have at least \texttt{min_cells} cells in at least \texttt{min_samples} samples.

**min_samples**
Filtering parameter. Default = \text{number of samples} / 2, which is appropriate for two-group comparisons (of equal size). Clusters are kept for differential testing if they have at least \texttt{min_cells} cells in at least \texttt{min_samples} samples.

**normalize**
Whether to include optional normalization factors to adjust for composition effects (see details). Default = \texttt{FALSE}.

**norm_factors**
Normalization factors to use, if \texttt{normalize = TRUE}. Default = "TMM", in which case normalization factors are calculated automatically using the 'trimmed mean of M-values' (TMM) method from the \texttt{edgeR} package. Alternatively, a vector of values can be provided (the values should multiply to 1).

**plot**
Whether to save diagnostic plots for the \texttt{limma voom} transformations. Default = \texttt{TRUE}.

**path**
Path for diagnostic plots. Default = current working directory.

**Details**
Calculates tests for differential abundance of clusters, using functions from the \texttt{limma} package and \texttt{voom} method.

This method uses the \texttt{limma} package (Ritchie et al. 2015, \textit{Nucleic Acids Research}) to fit models and calculate moderated tests at the cluster level. Moderated tests improve statistical power by sharing information on variability (i.e. variance across samples for a single cluster) between clusters. Since count data are often heteroscedastic, we use the \texttt{voom} method (Law et al. 2014, \textit{Genome Biology}) to transform the raw cluster cell counts and estimate observation-level weights to stabilize the mean-variance relationship. Diagnostic plots are shown if \texttt{plot = TRUE}.

The experimental design must be specified using a design matrix, which can be created with \texttt{createDesignMatrix}. Flexible experimental designs are possible, including blocking (e.g. paired designs), batch effects, and continuous covariates. See \texttt{createDesignMatrix} for more details.

For paired designs, either fixed effects or random effects can be used. Fixed effects are simpler, but random effects may improve power in data sets with unbalanced designs or very large numbers of samples. To use fixed effects, provide the block IDs (e.g. patient IDs) to \texttt{createDesignMatrix}. To use random effects, provide the \texttt{block_id} argument here instead. This will make use of the \texttt{limma duplicateCorrelation} methodology. Note that >2 measures per sample are not possible in this case (fixed effects should be used instead). Block IDs should not be included in the design matrix if the \texttt{limma duplicateCorrelation} methodology is used.

The contrast matrix specifying the contrast of interest can be created with \texttt{createContrast}. See \texttt{createContrast} for more details.

Filtering: Clusters are kept for differential testing if they have at least \texttt{min_cells} cells in at least \texttt{min_samples} samples. This removes clusters with very low cell counts across conditions, to improve power.

Normalization for the total number of cells per sample (library sizes) and total number of cells per cluster is automatically performed by the \texttt{limma} and \texttt{voom} functions. Optional normalization factors can also be included to adjust for composition effects in the cluster cell counts per sample. For example, in an extreme case, if several additional clusters are present in only one condition, while all other clusters are approximately equally abundant between conditions, then simply normalizing by the total number of cells per sample will create a false positive differential abundance signal for the non-differential clusters. (For a detailed explanation in the context of RNA sequencing gene expression, see Robinson and Oshlack, 2010.) Normalization factors can be calculated automatically using the 'trimmed mean of M-values' (TMM) method (Robinson and Oshlack, 2010),
implemented in the edgeR package (see also the edgeR User’s Guide for details). Alternatively, a vector of values can be provided (the values should multiply to 1).

Value

Returns a new SummarizedExperiment object, with differential test results stored in the rowData slot. Results include raw p-values (p_val) and adjusted p-values (p_adj) from the limma moderated tests, which can be used to rank clusters by evidence for differential abundance. Additional output columns from the limma tests are also included. The results can be accessed with the rowData accessor function.

Examples

# For a complete workflow example demonstrating each step in the 'diffcyt' pipeline,
# see the package vignette.

# Function to create random data (one sample)
d_random <- function(n = 20000, mean = 0, sd = 1, ncol = 20, cofactor = 5) {
d <- sinh(matrix(rnorm(n, mean, sd), ncol = ncol)) * cofactor
colnames(d) <- paste0("marker", sprintf("%02d", 1:ncol))
d
}

# Create random data (without differential signal)
set.seed(123)
d_input <- list(
sample1 = d_random(),
sample2 = d_random(),
sample3 = d_random(),
sample4 = d_random()
)

# Add differential abundance (DA) signal
ix_DA <- 801:900
ix_cols_type <- 1:10
d_input[[3]][ix_DA, ix_cols_type] <- d_random(n = 1000, mean = 2, ncol = 10)
d_input[[4]][ix_DA, ix_cols_type] <- d_random(n = 1000, mean = 2, ncol = 10)

experiment_info <- data.frame(
sample_id = factor(paste0("sample", 1:4)),
group_id = factor(c("group1", "group1", "group2", "group2")),
stringsAsFactors = FALSE
)

marker_info <- data.frame(
channel_name = paste0("channel", sprintf("%03d", 1:20)),
marker_name = paste0("marker", sprintf("%02d", 1:20)),
marker_class = factor(c(rep("type", 10), rep("state", 10)),
levels = c("type", "state", "none"),
stringsAsFactors = FALSE
)

# Prepare data
d_se <- prepareData(d_input, experiment_info, marker_info)

# Transform data
d_se <- transformData(d_se)
# Generate clusters
d_se <- generateClusters(d_se)

# Calculate counts
d_counts <- calcCounts(d_se)

# Create design matrix
design <- createDesignMatrix(experiment_info, cols_design = "group_id")

# Create contrast matrix
contrast <- createContrast(c(0, 1))

# Test for differential abundance (DA) of clusters
res_DA <- testDA_voom(d_counts, design, contrast, plot = FALSE)

---

**testDS_limma**  
*Test for differential states: method 'diffcyt-DS-limma'*

**Description**

Calculate tests for differential states within cell populations using method 'diffcyt-DS-limma'

**Usage**

testDS_limma(d_counts, d_medians, design, contrast, block_id = NULL,  
trend = TRUE, weights = TRUE, markers_to_test = NULL,  
min_cells = 3, min_samples = NULL, plot = TRUE, path = ".")

**Arguments**

- **d_counts**: SummarizedExperiment object containing cluster cell counts, from calcCounts.
- **d_medians**: SummarizedExperiment object containing cluster medians (median marker expression for each cluster-sample combination), from calcMedians. Assumed to contain a logical vector `id_state_markers` in the meta-data (accessed with `metadata(d_medians)$id_state_markers`), which identifies the set of 'cell state' markers in the list of assays.
- **design**: Design matrix, created with createDesignMatrix. See createDesignMatrix for details.
- **contrast**: Contrast matrix, created with createContrast. See createContrast for details.
- **block_id**: (Optional) Vector or factor of block IDs (e.g. patient IDs) for paired experimental designs, to be included as random effects. If provided, the block IDs will be included as random effects using the limma duplicateCorrelation methodology. Alternatively, block IDs can be included as fixed effects in the design matrix (createDesignMatrix). See details.
- **trend**: (Optional) Whether to fit a mean-variance trend when calculating moderated tests with function eBayes from limma package. When trend = TRUE, this is known as the limma-trend method (Law et al., 2014; Phipson et al., 2016). Default = TRUE.
### testDS_limma

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>weights</td>
<td>(Optional) Whether to use cluster cell counts as precision weights (across all samples and clusters); this allows the limma model fitting functions to account for uncertainty due to the total number of cells per sample (library sizes) and total number of cells per cluster. Default = TRUE.</td>
</tr>
<tr>
<td>markers_to_test</td>
<td>(Optional) Logical vector specifying which markers to test for differential expression (from the set of markers stored in the assays of d_medians). Default = all <code>cell state</code> markers, which are identified by the logical vector id_state_markers stored in the meta-data of d_medians.</td>
</tr>
<tr>
<td>min_cells</td>
<td>Filtering parameter. Default = 3. Clusters are kept for differential testing if they have at least min_cells cells in at least min_samples samples.</td>
</tr>
<tr>
<td>min_samples</td>
<td>Filtering parameter. Default = number of samples / 2, which is appropriate for two-group comparisons (of equal size). Clusters are kept for differential testing if they have at least min_cells cells in at least min_samples samples.</td>
</tr>
<tr>
<td>plot</td>
<td>Whether to save diagnostic plot. Default = TRUE.</td>
</tr>
<tr>
<td>path</td>
<td>Path for diagnostic plot. Default = current working directory.</td>
</tr>
</tbody>
</table>

### Details

Calculates tests for differential states within cell populations (i.e. differential expression of cell state markers within clusters). Clusters are defined using cell type markers, and cell states are characterized by the median transformed expression of cell state markers.

This method uses the limma package (Ritchie et al. 2015, *Nucleic Acids Research*) to fit models and calculate moderated tests at the cluster level. Moderated tests improve statistical power by sharing information on variability (i.e. variance across samples for a single cluster) between clusters. By default, we provide option trend = TRUE to the limma eBayes function; this fits a mean-variance trend when calculating moderated tests, which is also known as the limma-trend method (Law et al., 2014; Phipson et al., 2016). Diagnostic plots are shown if plot = TRUE.

The experimental design must be specified using a design matrix, which can be created with createDesignMatrix. Flexible experimental designs are possible, including blocking (e.g. paired designs), batch effects, and continuous covariates. See createDesignMatrix for more details.

For paired designs, either fixed effects or random effects can be used. Fixed effects are simpler, but random effects may improve power in data sets with unbalanced designs or very large numbers of samples. To use fixed effects, provide the block IDs (e.g. patient IDs) to createDesignMatrix. To use random effects, provide the block_id argument here instead. This will make use of the limma duplicateCorrelation methodology. Note that >2 measures per sample are not possible in this case (fixed effects should be used instead). Block IDs should not be included in the design matrix if the limma duplicateCorrelation methodology is used.

The contrast matrix specifying the contrast of interest can be created with createContrast. See createContrast for more details.

By default, differential tests are performed for all cell state markers (which are identified with the vector id_state_markers stored in the meta-data of the cluster medians input object). The optional argument markers_to_test allows the user to specify a different set of markers to test (e.g. to investigate differences for cell type markers).

Filtering: Clusters are kept for differential testing if they have at least min_cells cells in at least min_samples samples. This removes clusters with very low cell counts across conditions, to improve power.

Weights: By default, cluster cell counts are used as precision weights (across all samples and clusters); allowing the limma model fitting functions to account for uncertainty due to the total number
of cells per sample (library sizes) and total number of cells per cluster. This option can also be disabled with weights = FALSE, if required.

Value

Returns a new SummarizedExperiment object, where rows = cluster-marker combinations, and columns = samples. In the rows, clusters are repeated for each cell state marker (i.e. the sheets or assays from the previous d_medians object are stacked into a single matrix). Differential test results are stored in the rowData slot. Results include raw p-values (p_val) and adjusted p-values (p_adj) from the limma moderated tests, which can be used to rank cluster-marker combinations by evidence for differential states within cell populations. Additional output columns from the limma tests are also included. The results can be accessed with the rowData accessor function.

Examples

# For a complete workflow example demonstrating each step in the 'diffcyt' pipeline, # see the package vignette.

# Function to create random data (one sample)
d_random <- function(n = 20000, mean = 0, sd = 1, ncol = 20, cofactor = 5) {
  d <- sinh(matrix(rnorm(n, mean, sd), ncol = ncol)) * cofactor
  colnames(d) <- paste0("marker", sprintf("%02d", 1:ncol))
  d
}

# Create random data (without differential signal)
set.seed(123)
d_input <- list(
  sample1 = d_random(),
  sample2 = d_random(),
  sample3 = d_random(),
  sample4 = d_random()
)

# Add differential states (DS) signal
ix_DS <- 901:1000
ix_cols_type <- 1:10
ix_cols_DS <- 19:20
d_input[[1]][ix_DS, ix_cols_type] <- d_random(n = 1000, mean = 3, ncol = 10)
d_input[[2]][ix_DS, ix_cols_type] <- d_random(n = 1000, mean = 3, ncol = 10)
d_input[[3]][ix_DS, c(ix_cols_type, ix_cols_DS)] <- d_random(n = 1200, mean = 3, ncol = 12)
d_input[[4]][ix_DS, c(ix_cols_type, ix_cols_DS)] <- d_random(n = 1200, mean = 3, ncol = 12)

experiment_info <- data.frame(
  sample_id = factor(paste0("sample", 1:4)),
  group_id = factor(c("group1", "group1", "group2", "group2")),
  stringsAsFactors = FALSE
)

marker_info <- data.frame(
  channel_name = paste0("channel", sprintf("%03d", 1:20)),
  marker_name = paste0("marker", sprintf("%02d", 1:20)),
  marker_class = factor(c(rep("type", 10), rep("state", 10)),
    levels = c("type", "state", "none")),
  stringsAsFactors = FALSE
)
# Prepare data
d_se <- prepareData(d_input, experiment_info, marker_info)

# Transform data
d_se <- transformData(d_se)

# Generate clusters
d_se <- generateClusters(d_se)

# Calculate counts
d_counts <- calcCounts(d_se)

# Calculate medians
d_medians <- calcMedians(d_se)

# Create design matrix
design <- createDesignMatrix(experiment_info, cols_design = "group_id")

# Create contrast matrix
contrast <- createContrast(c(0, 1))

# Test for differential states (DS) within clusters
res_DS <- testDS_limma(d_counts, d_medians, design, contrast, plot = FALSE)

---

**testDS_LMM**

*Test for differential states: method 'diffcyt-DS-LMM'*

**Description**

Calculate tests for differential states within cell populations using method 'diffcyt-DS-LMM'

**Usage**

testDS_LMM(d_counts, d_medians, formula, contrast, weights = TRUE, markers_to_test = NULL, min_cells = 3, min_samples = NULL)

**Arguments**

- `d_counts`: `SummarizedExperiment` object containing cluster cell counts, from `calcCounts`.
- `d_medians`: `SummarizedExperiment` object containing cluster medians (median marker expression for each cluster-sample combination), from `calcMedians`. Assumed to contain a logical vector `id_state_markers` in the meta-data (accessed with `metadata(d_medians)$id_state_markers`), which identifies the set of 'cell state' markers in the list of assays.
- `formula`: Model formula object, created with `createFormula`. This should be a list containing three elements: formula, data, and random_terms: the model formula, data frame of corresponding variables, and variable indicating whether the model formula contains any random effect terms. See `createFormula` for details.
- `contrast`: Contrast matrix, created with `createContrast`. See `createContrast` for details.
weights (Optional) Whether to include cluster cell counts as precision weights within each model (across samples, i.e. within the model for each cluster); these represent the relative uncertainty in calculating each median value (within each model). Default = TRUE.

markers_to_test (Optional) Logical vector specifying which markers to test for differential expression (from the set of markers stored in the assays of d_medians). Default = all 'cell state' markers, which are identified by the logical vector id_state_markers stored in the meta-data of d_medians.

min_cells Filtering parameter. Default = 3. Clusters are kept for differential testing if they have at least min_cells cells in at least min_samples samples.

min_samples Filtering parameter. Default = number of samples / 2, which is appropriate for two-group comparisons (of equal size). Clusters are kept for differential testing if they have at least min_cells cells in at least min_samples samples.

Details

Calculates tests for differential states within cell populations (i.e. differential expression of cell state markers within clusters), using linear mixed models (LMMs). Clusters are defined using cell type markers, and cell states are characterized by the median transformed expression of cell state markers.

This methodology was originally developed and described by Nowicka et al. (2017), *F1000Research*, and has been modified here to make use of high-resolution clustering to enable investigation of rare cell populations. Note that unlike the original method by Nowicka et al., we do not attempt to manually merge clusters into canonical cell populations. Instead, results are reported at the high-resolution cluster level, and the interpretation of significant differential clusters is left to the user via visualizations such as heatmaps (see the package vignette for an example).

This method fits linear mixed models (LMMs) for each cluster-marker combination (cell state markers only), and calculates differential tests separately for each cluster-marker combination. The response variable in each model is the median arcsinh-transformed marker expression of the cell state marker, which is assumed to follow a Gaussian distribution. There is one model per cluster per cell state marker. Within each model, sample-level weights are included (by default) for the number of cells per sample; these weights represent the relative uncertainty in calculating each median value. (Additional uncertainty exists due to variation in the total number of cells per cluster; however, it is not possible to account for this, since there are separate models for each cluster-marker combination.) We also include a filtering step to remove clusters with very small numbers of cells, to improve statistical power.

For more details on the statistical methodology, see Nowicka et al. (2017), *F1000Research* (section 'Differential analysis of marker expression stratified by cell population'.)

The experimental design must be specified using a model formula, which can be created with `createFormula`. Flexible experimental designs are possible, including blocking (e.g. paired designs), batch effects, and continuous covariates. Blocking variables can be included as either random intercept terms or fixed effect terms (see `createFormula`). For paired designs, we recommend using random intercept terms to improve statistical power; see Nowicka et al. (2017), *F1000Research* for details. Batch effects and continuous covariates should be included as fixed effects.

If no random intercept terms are included in the model formula, model fitting is performed using a linear model (LM) instead of a LMM.

The contrast matrix specifying the contrast of interest can be created with `createContrast`. See `createContrast` for more details.
By default, differential tests are performed for all cell state markers (which are identified with the vector `id_state_markers` stored in the meta-data of the cluster medians input object). The optional argument `markers_to_test` allows the user to specify a different set of markers to test (e.g. to investigate differences for cell type markers).

Filtering: Clusters are kept for differential testing if they have at least `min_cells` cells in at least `min_samples` samples. This removes clusters with very low cell counts across conditions, to improve power.

Weights: By default, cluster cell counts are used as precision weights within each model (across samples only, i.e. within the model for each cluster); these represent the relative uncertainty in calculating each median value (within each model). See above for details.

**Value**

Returns a new `SummarizedExperiment` object, where rows = cluster-marker combinations, and columns = samples. In the rows, clusters are repeated for each cell state marker (i.e. the sheets or assays from the previous `d_medians` object are stacked into a single matrix). Differential test results are stored in the `rowData` slot. Results include raw p-values (`p_val`) and adjusted p-values (`p_adj`), which can be used to rank cluster-marker combinations by evidence for differential states within cell populations. The results can be accessed with the `rowData` accessor function.

**Examples**

```r
Function to create random data (one sample)

d_random <- function(n = 20000, mean = 0, sd = 1, ncol = 20, cofactor = 5) {
 d <- sinh(matrix(rnorm(n, mean, sd), ncol = ncol)) * cofactor
 colnames(d) <- paste0("marker", sprintf("%02d", 1:ncol))
 d
}

Create random data (without differential signal)
set.seed(123)
d_input <- list(
sample1 = d_random(),
sample2 = d_random(),
sample3 = d_random(),
sample4 = d_random()
)

Add differential states (DS) signal
ix_DS <- 901:1000
ix_cols_type <- 1:10
ix_cols_DS <- 19:20
d_input[[1]][ix_DS, ix_cols_type] <- d_random(n = 1000, mean = 3, ncol = 10)
d_input[[2]][ix_DS, ix_cols_type] <- d_random(n = 1000, mean = 3, ncol = 10)
d_input[[3]][ix_DS, c(ix_cols_type, ix_cols_DS)] <- d_random(n = 1200, mean = 3, ncol = 12)
d_input[[4]][ix_DS, c(ix_cols_type, ix_cols_DS)] <- d_random(n = 1200, mean = 3, ncol = 12)

experiment_info <- data.frame(
 sample_id = factor(paste0("sample", 1:4)),
 group_id = factor(c("group1", "group1", "group2", "group2")),
 stringsAsFactors = FALSE
)
```

```r
marker_info <- data.frame(
 channel_name = paste0("channel", sprintf("%03d", 1:20)),
 marker_name = paste0("marker", sprintf("%02d", 1:20)),
 marker_class = factor(c(rep("type", 10), rep("state", 10)),
 levels = c("type", "state", "none")),
 stringsAsFactors = FALSE
)

Prepare data
d_se <- prepareData(d_input, experiment_info, marker_info)

Transform data
d_se <- transformData(d_se)

Generate clusters
d_se <- generateClusters(d_se)

Calculate counts
d_counts <- calcCounts(d_se)

Calculate medians
d_medians <- calcMedians(d_se)

Create model formula
formula <- createFormula(experiment_info, cols_fixed = "group_id")

Create contrast matrix
contrast <- createContrast(c(0, 1))

Test for differential states (DS) within clusters
res_DS <- testDS_LMM(d_counts, d_medians, formula, contrast)
```

---

**topClusters**

Alias for 'topTable' (deprecated)

**Description**

Alias for function 'topTable' (deprecated)

**Usage**

topClusters(...)

**Arguments**

... See arguments for function topTable

**Details**

The function topClusters has been renamed to topTable, to more accurately reflect the structure of the results (results are returned for either clusters or cluster-marker combinations, depending on the type of differential tests performed).
This alias is provided for backward compatibility. The new function name `topTable` should be used whenever possible.

See `topTable` for details.

---

**topTable**

*Show table of results for top clusters or cluster-marker combinations*

**Description**

Show table of results for top (most highly significant) clusters or cluster-marker combinations

**Usage**

```r
topTable(res, d_counts = NULL, d_medians = NULL, order = TRUE, order_by = "p_adj", all = FALSE, top_n = 20, show_counts = FALSE, show_props = FALSE, show_meds = FALSE, sort_cols = TRUE, format_vals = FALSE, digits = 3)
```

**Arguments**

- `res` Output object from either the `diffcyt` wrapper function or one of the individual differential testing functions (`testDA_edgeR`, `testDA_voom`, `testDA_GLMM`, `testDS_limma`, or `testDS_LMM`). If the output object is from the wrapper function, the objects `res` and `d_counts` will be automatically extracted. Alternatively, these can be provided directly.

- `d_counts` (Optional) `SummarizedExperiment` object containing cluster cell counts, from `calcCounts`. (If the output object from the wrapper function is provided, this will be automatically extracted.)

- `d_medians` (Optional) `SummarizedExperiment` object containing cluster medians (median marker expression for each cluster-sample combination), from `calcMedians`. Assumed to contain a logical vector `id_state_markers` in the meta-data (accessed with `metadata(d_medians)$id_state_markers`), which identifies the set of ‘cell state’ markers in the list of assays. (If the output object from the wrapper function is provided, this will be automatically extracted.)

- `order` Whether to order results by values in column `order_by` (default: column `p_adj` containing adjusted p-values). Default = TRUE.

- `order_by` Name of column to use to order rows by values, if `order = TRUE`. Default = "p_adj" (adjusted p-values); other options include "p_val", "cluster_id", and "marker_id".

- `all` Whether to display all clusters or cluster-marker combinations (instead of top `top_n`). Default = FALSE.

- `top_n` Number of clusters or cluster-marker combinations to display (if `all = FALSE`). Default = 20.

- `show_counts` Whether to display cluster cell counts by sample (from `d_counts`). Default = FALSE.

- `show_props` Whether to display cluster cell count proportions by sample (calculated from `d_counts`). Default = FALSE.
show_meds  Whether to display median expression values for each cluster-marker combination (from d_medians). Default = FALSE.

sort_cols  Whether to sort columns of counts, proportions, and medians; by levels of factor sample_id in colData of d_medians (requires object d_medians to be provided). Default = TRUE.

format_vals  Whether to display rounded values in numeric columns. This improves readability of the summary table, but should not be used when exact numeric values are required for subsequent steps (e.g. plotting). Default = FALSE.

digits  Number of significant digits to show, if format_vals = TRUE. Default = 3. (Note: for percentages shown if show_props = TRUE, digits = 1 is used.)

Details

Summary function to display table of results for top (most highly significant) detected clusters or cluster-marker combinations.

The differential testing functions return results in the form of p-values and adjusted p-values for each cluster (DA tests) or cluster-marker combination (DS tests), which can be used to rank the clusters or cluster-marker combinations by their evidence for differential abundance or differential states. The p-values and adjusted p-values are stored in the rowData of the output SummarizedExperiment object generated by the testing functions.

This function displays a summary table of results. By default, the top_n clusters or cluster-marker combinations are shown, ordered by adjusted p-values. Optionally, cluster counts, proportions, and median expression by cluster-marker combination can also be included. The format_vals and digits arguments can be used to display rounded values to improve readability of the summary table.

Value

Returns a DataFrame table of results for the top_n clusters or cluster-marker combinations, ordered by values in column order_by (default: adjusted p-values). Optionally, cluster counts, proportions, and median expression by cluster-marker combination are also included.

Examples

# For a complete workflow example demonstrating each step in the 'diffcyt' pipeline, # see the package vignette.

# Function to create random data (one sample)
d_random <- function(n = 20000, mean = 0, sd = 1, ncol = 20, cofactor = 5) {
  d <- sinh(matrix(rnorm(n, mean, sd), ncol = ncol)) * cofactor
  colnames(d) <- paste0("marker", sprintf("%02d", 1:ncol))
  d
}

# Create random data (without differential signal)
set.seed(123)
d_input <- list(
sample1 = d_random(),
sample2 = d_random(),
sample3 = d_random(),
sample4 = d_random()
)
# Add differential abundance (DA) signal
ix_DA <- 801:900
d_input[[3]][ix_DA, ix_cols_type] <- d_random(n = 1000, mean = 2, ncol = 10)
d_input[[4]][ix_DA, ix_cols_type] <- d_random(n = 1000, mean = 2, ncol = 10)

# Add differential states (DS) signal
ix_DS <- 901:1000
d_input[[1]][ix_DS, ix_cols_type] <- d_random(n = 1000, mean = 3, ncol = 10)
d_input[[2]][ix_DS, ix_cols_type] <- d_random(n = 1000, mean = 3, ncol = 10)
d_input[[3]][ix_DS, c(ix_cols_type, ix_cols_DS)] <- d_random(n = 1200, mean = 3, ncol = 12)
d_input[[4]][ix_DS, c(ix_cols_type, ix_cols_DS)] <- d_random(n = 1200, mean = 3, ncol = 12)

# Create design matrix
design <- createDesignMatrix(experiment_info, cols_design = "group_id")

# Create contrast matrix
contrast <- createContrast(c(0, 1))

# Test for differential abundance (DA) of clusters (using default method 'diffcyt-DA-edgeR')
out_DA <- diffcyt(d_input, experiment_info, marker_info,
  design = design, contrast = contrast,
  analysis_type = "DA", method_DA = "diffcyt-DA-edgeR",
  seed_clustering = 123, verbose = FALSE)

# Test for differential states (DS) within clusters (using default method 'diffcyt-DS-limma')
out_DS <- diffcyt(d_input, experiment_info, marker_info,
  design = design, contrast = contrast,
  analysis_type = "DS", method_DS = "diffcyt-DS-limma",
  seed_clustering = 123, plot = FALSE, verbose = FALSE)

# Display results for top DA clusters
topTable(out_DA, format_vals = TRUE)

# Display results for top DS cluster-marker combinations
topTable(out_DS, format_vals = TRUE)
**transformData**

**Description**
Transform data prior to clustering

**Usage**
transformData(d_se, cofactor = 5)

**Arguments**
- `d_se`: Input data. Assumed to be in the form of a `SummarizedExperiment`, prepared with the function `prepareData`. Column meta-data is assumed to contain a factor `marker_class`, where entries "none" indicate non-marker columns.
- `cofactor`: Cofactor parameter for 'arcsinh' transform. Default = 5, which is appropriate for mass cytometry (CyTOF) data. For fluorescence flow cytometry, we recommend cofactor = 150 instead.

**Details**
Flow and mass cytometry data should be transformed prior to clustering. The raw data follows an approximately log-normal distribution. Transforming with a log (or similar) function brings the data closer to a normal distribution, which improves clustering performance and allows positive and negative populations to be distinguished more clearly.

This function implements an inverse hyperbolic sine ('arcsinh') transform with adjustable 'cofactor' parameter. The arcsinh transform is widely used for CyTOF data. It behaves similarly to a log transform at high values, but is approximately linear near zero; so unlike the log, it can handle zeros or small negative values. The cofactor parameter controls the width of the linear region. Zero values and small negatives occur in CyTOF data when no ions are detected in a given channel (negatives are due to background subtraction and randomization of integer count values, which are performed by default by the CyTOF instrument software).

Recommended values for the cofactor parameter are 5 (mass cytometry, CyTOF) or 150 (fluorescence flow cytometry); see Bendall et al. (2011), *Science*, Supplementary Figure S2.

The transform should be applied to protein marker columns only. The `SummarizedExperiment` object created in the previous step (`prepareData`) is assumed to contain a factor `marker_class` in the column meta-data, where entries "none" indicate non-marker columns. (If this is not available, all columns will be transformed instead.)

**Value**
- `d_se`: Data with transform applied to protein marker columns.

**Examples**

```r
For a complete workflow example demonstrating each step in the 'diffcyt' pipeline, # see the package vignette.

Function to create random data (one sample)
d_random <- function(n = 20000, mean = 0, sd = 1, ncol = 20, cofactor = 5) {
 d <- sinh(matrix(rnorm(n, mean, sd), ncol = ncol)) * cofactor
 colnames(d) <- paste0("marker", sprintf("%02d", 1:ncol))
 d
}

Create random data (without differential signal)
```

```r
```
transformData

set.seed(123)
d_input <- list(
  sample1 = d_random(),
  sample2 = d_random(),
  sample3 = d_random(),
  sample4 = d_random()
)

experiment_info <- data.frame(
  sample_id = factor(paste0("sample", 1:4)),
  group_id = factor(c("group1", "group1", "group2", "group2")),
  stringsAsFactors = FALSE
)

marker_info <- data.frame(
  channel_name = paste0("channel", sprintf("%03d", 1:20)),
  marker_name = paste0("marker", sprintf("%02d", 1:20)),
  marker_class = factor(c(rep("type", 10), rep("state", 10)),
                        levels = c("type", "state", "none")),
  stringsAsFactors = FALSE
)

# Prepare data
d_se <- prepareData(d_input, experiment_info, marker_info)

# Transform data
d_se <- transformData(d_se)
Index

BuildMST, 19
BuildSOM, 18

calcCounts, 2, 25, 28, 30, 33, 36, 40
calcMedians, 3, 33, 36, 40
calcMediansByClusterMarker, 5
calcMediansBySampleMarker, 7
createContrast, 8, 13, 25, 26, 28, 30, 31, 33, 34, 36, 37
createDesignMatrix, 9, 12, 13, 15, 25, 26, 30, 31, 33, 34
createFormula, 10, 11, 13, 28, 36, 37

DataFrame, 13, 16, 23, 41
diffcyt, 13, 20, 21, 40
diffcyt-package (diffcyt), 13
duplicateCorrelation, 15, 30, 31, 33, 34
eBayes, 15, 33, 34
edgeR, 25
estimateDisp, 15, 25

flowFrame, 13, 16, 23
flowSet, 13, 16, 23
FlowSOM, 19
generateClusters, 2, 4, 5, 7, 14, 15, 18
linma, 31, 34

plotHeatmap, 20
prepareData, 4, 5, 7, 10–14, 18, 19, 23, 43

rowData, 19, 26, 29, 32, 35, 38
SummarizedExperiment, 2, 4–7, 19, 23–26, 28–30, 32, 33, 35, 36, 38, 40, 41, 43
tbl_df, 13, 23
testDA_edgeR, 14–16, 25, 40
testDA_GLMM, 14–16, 27, 40
testDA_voom, 10, 12, 14–16, 30, 40
testDS_limma, 10, 12, 14–16, 33, 40
testDS_LMM, 14–16, 36, 40
topClusters, 39
topTable, 39, 40, 40
transformData, 14, 18, 19, 42

voom, 31