Package ‘decoupleR’

November 25, 2021
Type Package

Title decoupleR: Inferring biological activities from omics data using
a collection of methods

Version 2.0.0

Description Computational methods allow the extraction of mechanistic signatures
from omics data based on prior knowledge resources, reducing the dimensionality
of the data for increased statistical power and better interpretability.

Here, we present decoupleR, a Bioconductor package containing different
statistical methods to extract these signatures within a unified framework.
decoupleR allows the user to flexibly test any method with any resource.

It incorporates methods that take into account the sign and weight of

network interactions. Using decoupleR, we evaluated the performance of
contemporary methods on transcriptomic and phospho-proteomic perturbation
experiments.

License GPL-3
URL https://saezlab.github.io/decoupleR/

BugReports https://github.com/saezlab/decoupleR/issues
Depends R (>=4.0)

Imports broom, dplyr, GSVA, magrittr, Matrix, purrr, rlang, speedglm,
stats, stringr, tibble, tidyr, tidyselect, viper, withr,
RobustRankAggreg, fgsea (>= 1.15.4), AUCell,
SummarizedExperiment, rpart, ranger

Suggests BiocStyle, covr, knitr, pkgdown, RefManageR, rmarkdown,
roxygen2, sessioninfo, testthat

VignetteBuilder knitr

biocViews DifferentialExpression, FunctionalGenomics, GeneExpression,
GeneRegulation, Network, Software, StatisticalMethod,
Transcription,

Config/testthat/edition 3
Encoding UTF-8
LazyData false

https://saezlab.github.io/decoupleR/
https://github.com/saezlab/decoupleR/issues

2 R topics documented:

Roxygen list(markdown = TRUE)

RoxygenNote 7.1.2

git_url https://git.bioconductor.org/packages/decoupleR
git_branch RELEASE_3_14

git_last commit bOOf6bf

git_last_commit_date 2021-10-26

Date/Publication 2021-11-25

Author Pau Badia-i-Mompel [aut] (<https://orcid.org/0000-0002-1004-3923>),
Jesus Vélez [cre, aut] (<https://orcid.org/0000-0001-5128-3838>),
Jana Braunger [aut] (<https://orcid.org/0000-0003-0820-9987>),
Celina Geiss [aut] (<https://orcid.org/0000-0002-8740-706X>),

Daniel Dimitrov [aut] (<https://orcid.org/0000-0002-5197-2112>),
Sophia Miiller-Dott [aut] (<https://orcid.org/0000-0002-9710-1865>),
Petr Taus [aut] (<https://orcid.org/0000-0003-3764-9033>),

Aurélien Dugourd [aut] (<https://orcid.org/0000-0002-0714-028X>),
Christian H. Holland [aut] (<https://orcid.org/0000-0002-3060-5786>),
Ricardo O. Ramirez Flores [aut]
(<https://orcid.org/0000-0003-0087-371X>),

Julio Saez-Rodriguez [aut] (<https://orcid.org/0000-0002-8552-8976>)

Maintainer Jesis Vélez <jvelezmagic@gmail.com>

R topics documented:

convert_f defaults e
CONVETE_LO_ . . o v o i e i e e e e e e e e e e e e e e e e e e
decouple e
filter_regulons L e e
intersect_regulons L. e
run_aucell L e
TUN_CONSENSUS . . v & v v v v v e e e e e e e e e e e e e e e e e s e e
run_fgsea
TUN_ZSVA . o v v v v et e
run_mdt ... L e e e e e s

Index

https://orcid.org/0000-0002-1004-3923
https://orcid.org/0000-0001-5128-3838
https://orcid.org/0000-0003-0820-9987
https://orcid.org/0000-0002-8740-706X
https://orcid.org/0000-0002-5197-2112
https://orcid.org/0000-0002-9710-1865
https://orcid.org/0000-0003-3764-9033
https://orcid.org/0000-0002-0714-028X
https://orcid.org/0000-0002-3060-5786
https://orcid.org/0000-0003-0087-371X
https://orcid.org/0000-0002-8552-8976

convert_f defaults 3

convert_f_defaults Rename columns and add defaults values if column not present

Description

convert_f_defaults() combine the dplyr: : rename () way of working and with the tibble: :add_column()
to add columns with default values in case they don’t exist after renaming data.

Usage
convert_f_defaults(.data, ..., .def_col_val = c(), .use_dots = TRUE)
Arguments
.data A data frame, data frame extension (e.g. a tibble), or a lazy data frame (e.g.

from dbplyr or dtplyr). See Methods, below, for more details.

For rename(): <tidy-select> Use new_name = old_name to rename selected
variables.

For rename_with(): additional arguments passed onto . fn.
.def_col_val Named vector with columns with default values if none exist after rename.

.use_dots Should a dot prefix be added to renamed variables? This will allow swapping of
columns.

Details

The objective of using .use_dots is to be able to swap columns which, by default, is not allowed
by the dplyr::rename() function. The same behavior can be replicated by simply using the
dplyr::select(), however, the select evaluation allows much more flexibility so that unexpected
results could be obtained. Despite this, a future implementation will consider this form of execution
to allow renaming the same column to multiple ones (i.e. extend dataframe extension).

Value

An object of the same type as .data. The output has the following properties:

* Rows are not affected.
* Column names are changed.

e Column order is the same as that of the function call.

Examples

df <- tibble::tibble(x

1
-

Rename columns
df <- tibble::tibble(x =1, y = 2)
convert_f_defaults(

.data = df,

4 convert_to_

new_x = X,
new_y =y,
new_z = NULL,
.def_col_val = c(new_z = 3)
)
convert_to_ Convert a network to run under the method of interest.
Description

Convert a long-format network to the suggested standard for the specified run_{statistic}(). If the
default parameters are not modified, then the function sets its own null values for those columns.

Usage

convert_to_(network)

convert_to_aucell(network, .source, .target)

convert_to_ulm(network, .source, .target, .mor = NULL, .likelihood = NULL)

convert_to_mlm(network, .source, .target, .mor = NULL, .likelihood = NULL)
convert_to_wsum(network, .source, .target, .mor = NULL, .likelihood = NULL)
convert_to_wmean(network, .source, .target, .mor = NULL, .likelihood = NULL)
convert_to_viper(network, .source, .target, .mor = NULL, .likelihood = NULL)
convert_to_gsva(network, .source, .target)

convert_to_ora(network, .source, .target)

convert_to_fgsea(network, .source, .target)

Arguments
network Tibble or dataframe with edges and it’s associated metadata.
.source Column with source nodes.
.target Column with target nodes.
.mor Column with edge mode of regulation (i.e. mor).

.likelihood Column with edge likelihood.

decouple 5

Value

* convert_to_ Return same as input.

* convert_to_aucell() Return a named list of sources with associated targets.

* convert_to_gsva() Return a list of sources with associated targets suitable for GSVA: : gsva().

e convert_to_wmean() Return a tibble with four columns: source, target, mor and 1ikelihood.
* convert_to_ora() Return a named list of sources with associated targets.

e convert_to_wsum() Returns a tibble with three columns: source, target and mor.

e convert_to_ulm() Returns a tibble with three columns: source, target and mor.

e convert_to_mlm() Returns a tibble with three columns: source, target and mor.

* convert_to_viper() Return alist of sources with associated targets suitable for viper: :viper()

See Also

convert_f_defaults()

Examples

inputs_dir <- system.file("testdata”, "inputs”, package = "decoupleR")
network <- readRDS(file.path(inputs_dir, "input-dorothea_genesets.rds"))

convert_to_(network)

convert_to_aucell(network, tf, target)
convert_to_gsva(network, tf, target)
convert_to_wmean(network, tf, target, mor, likelihood)
convert_to_ora(network, tf, target)
convert_to_wsum(network, tf, target, mor)
convert_to_ulm(network, tf, target, mor)
convert_to_mlm(network, tf, target, mor)
convert_to_viper(network, tf, target, mor, likelihood)

decouple Evaluate multiple statistics with same input data

Description

Calculate the source activity per sample out of a gene expression matrix by coupling a regulatory
network with a variety of statistics.

6 decouple

Usage
decouple(
mat,
network,
.source = .data$source,
.target = .data$target,
statistics = c¢("udt”, "mdt", "aucell”, "wmean"”, "wsum”, "ulm”, "mlm", "viper",
ngsvau , noran , n.f:gseau) ,
args = list(NULL),
consensus_score = TRUE,
include_time = FALSE,
show_toy_call = FALSE
)
Arguments
mat Matrix to evaluate (e.g. expression matrix). Target nodes in rows and condi-
tions in columns. rownames(mat) must have at least one intersection with the
elements in network . target column.
network Tibble or dataframe with edges and it’s associated metadata.
.source Column with source nodes.
.target Column with target nodes.
statistics Statistical methods to be coupled.
args A list of argument-lists the same length as statistics (or length 1). The default

argument, list(NULL), will be recycled to the same length as statistics, and
will call each function with no arguments (apart from mat, network, .source
and, .target).

consensus_score

Boolean whether to run a consensus score between methods. Obtained scores
are -log10(p-values).

include_time Should the time per statistic evaluated be informed?

show_toy_call The call of each statistic must be informed?

Value

A long format tibble of the enrichment scores for each source across the samples. Resulting tibble
contains the following columns:

run_id: Indicates the order in which the methods have been executed.

statistic: Indicates which method is associated with which score.

source: Source nodes of network.

condition: Condition representing each column of mat.

score: Regulatory activity (enrichment score).

statistic_time: If requested, internal execution time indicator.

N ke

p_value: p-value (if available) of the obtained score.

filter_regulons 7

See Also
Other decoupleR statistics: run_aucell(), run_fgsea(), run_gsva(), run_mdt(), run_mlm(),
run_ora(), run_udt (), run_ulm(), run_viper(), run_wmean(), run_wsum()

Examples

if (FALSE) {
inputs_dir <- system.file("testdata”, "inputs"”, package = "decoupleR")

mat <- readRDS(file.path(inputs_dir, "input-expr_matrix.rds"))
network <- readRDS(file.path(inputs_dir, "input-dorothea_genesets.rds"))

decouple(
mat = mat,
network = network,
.source = "tf",
.target = "target",
statistics = c("gsva”, "wmean”, "wsum”, "ulm”, "aucell”),
args = list(
gsva = list(verbose = FALSE),
wmean = list(.mor = "mor"”, .likelihood = "likelihood"),
wsum = list(.mor = "mor"),
ulm = list(.mor = "mor")
)
)
3
filter_regulons Filter network by size of regulons
Description

Keep only sources which satisfied the condition min_size >= n <= max_size, where n denotes the
number of targets per source.

Usage

filter_regulons(network, .source, min_size = 1, max_size = Inf)

Arguments
network Tibble or dataframe with edges and it’s associated metadata.
.source Column with source nodes.
min_size Minimum number of targets allowed per regulon.
max_size Maximum number of targets allowed per regulon.
Value

Filtered tibble.

8 intersect_regulons

Examples

inputs_dir <- system.file("testdata”, "inputs"”, package = "decoupleR")
network <- readRDS(file.path(inputs_dir, "input-dorothea_genesets.rds"))
filter_regulons(network, .source = tf, min_size = 30, max_size = 50)

intersect_regulons Intersect network target genes with expression matrix.

Description

Keep only edges which its target genes belong to the expression matrix.

Usage

intersect_regulons(mat, network, .source, .target, minsize)

Arguments
mat Matrix to evaluate (e.g. expression matrix). Target nodes in rows and condi-
tions in columns. rownames(mat) must have at least one intersection with the
elements in network . target column.
network Tibble or dataframe with edges and it’s associated metadata.
.source Column with source nodes.
.target Column with target nodes.
minsize Minimum number of targets per source allowed.
Value
Filtered tibble.
Examples

inputs_dir <- system.file("testdata”, "inputs”, package = "decoupleR")
mat <- readRDS(file.path(inputs_dir, "input-expr_matrix.rds"))

network <- readRDS(file.path(inputs_dir, "input-dorothea_genesets.rds"))
intersect_regulons(mat, network, tf, target, minsize=5)

run_aucell 9

run_aucell AUCell

Description

Calculates regulatory activities using Area Under the Curve (AUC) from AUCell

Usage

run_aucell(
mat,
network,
.source = .data$source,
.target = .data$target,
aucMaxRank = ceiling(@0.05 * nrow(rankings)),

nproc = 4,
seed = 42
)
Arguments
mat Matrix to evaluate (e.g. expression matrix). Target nodes in rows and condi-
tions in columns. rownames(mat) must have at least one intersection with the
elements in network . target column.
network Tibble or dataframe with edges and it’s associated metadata.
.source Column with source nodes.
.target Column with target nodes.
aucMaxRank Threshold to calculate the AUC.
nproc Number of cores to use for computation.
seed A single value, interpreted as an integer, or NULL for random number genera-
tion.
Details

This function is a wrapper for the method AUCell. It uses the "Area Under the Curve" (AUC) to
calculate whether a critical subset of input molecular features is enriched for each sample.
See Also

Other decoupleR statistics: decouple(), run_fgsea(), run_gsva(), run_mdt(), run_mlm(),
run_ora(), run_udt (), run_ulm(), run_viper(), run_wmean(), run_wsum()

10 run_fgsea
Examples
inputs_dir <- system.file("testdata”, "inputs”, package = "decoupleR")

mat <- readRDS(file.path(inputs_dir, "input-expr_matrix.rds"))
network <- readRDS(file.path(inputs_dir, "input-dorothea_genesets.rds"))

run_aucell(mat, network, .source='tf', nproc=1)

run_consensus Function to generate a consensus score between methods from the re-
sult of decouple

Description

Function to generate a consensus score between methods from the result of decouple

Usage

run_consensus(df, include_time = FALSE)

Arguments

df decouple data frame result

include_time Should the time per statistic evaluated be informed?

Value

Updated tibble with the computed consensus score between methods

run_fgsea Fast Gene Set Enrichment Analysis (FGSEA)

Description

Calculates regulatory activities using FGSEA.

Usage

run_fgsea(
mat,
network,
.source = .data$source,
.target = .data$target,
times = 100,
nproc = 4,
seed = 42,

run_fgsea

Arguments

mat

network
.source
.target
times
nproc

seed

Details

11

Matrix to evaluate (e.g. expression matrix). Target nodes in rows and condi-
tions in columns. rownames(mat) must have at least one intersection with the
elements in network . target column.

Tibble or dataframe with edges and it’s associated metadata.

Column with source nodes.

Column with target nodes.

How many permutations to do?

Number of cores to use for computation.

A single value, interpreted as an integer, or NULL.

Arguments passed on to fgsea: : fgseaMultilevel

sampleSize The size of a random set of genes which in turn has size = path-
waySize

minSize Minimal size of a gene set to test. All pathways below the threshold
are excluded.

maxSize Maximal size of a gene set to test. All pathways above the threshold
are excluded.

eps This parameter sets the boundary for calculating the p value.

scoreType This parameter defines the GSEA score type. Possible options are
("std", "pos", "neg")

gseaParam GSEA parameter value, all gene-level statis are raised to the power
of ‘gseaParam‘ before calculation of GSEA enrichment scores.

BPPARAM Parallelization parameter used in bplapply. Can be used to specify
cluster to run. If not initialized explicitly or by setting ‘nproc* default value
‘bpparam()‘ is used.

absEps deprecated, use ‘eps‘ parameter instead

This function is a wrapper for the method fgsea: : fgsea.

Value

A long format tibble of the enrichment scores for each source across the samples. Resulting tibble
contains the following columns:

. statistic: Indicates which method is associated with which score.

. source: Source nodes of network.

1
2
3. condition: Condition representing each column of mat.
4

. score: Regulatory activity (enrichment score).

See Also

Other decoupleR statistics: decouple(), run_aucell(), run_gsva(), run_mdt(), run_mlm(),
run_ora(), run_udt(), run_ulm(), run_viper(), run_wmean(), run_wsum()

12

Examples

run_gsva

inputs_dir <- system.file("testdata”, "inputs"”, package = "decoupleR")

mat <- readRDS(file.path(inputs_dir, "input-expr_matrix.rds"))
network <- readRDS(file.path(inputs_dir, "input-dorothea_genesets.rds"))

run_fgsea(mat, network, .source='tf', nproc=1)

run_gsva

Gene Set Variation Analysis (GSVA)

Description

Calculates regulatory activities using GSVA.

Usage
run_gsva(
mat,
network,
.source = .data$source,
.target = .data$target,
verbose = FALSE,
method = "gsva”,
)
Arguments
mat Matrix to evaluate (e.g. expression matrix). Target nodes in rows and condi-
tions in columns. rownames(mat) must have at least one intersection with the
elements in network .target column.
network Tibble or dataframe with edges and it’s associated metadata.
.source Column with source nodes.
.target Column with target nodes.
verbose Gives information about each calculation step. Default: FALSE.
method Method to employ in the estimation of gene-set enrichment. scores per sample.
By default this is set to gsva (Hénzelmann et al, 2013).
Arguments passed on to GSVA: :gsva
Details

This function is a wrapper for the method GSVA: :gsva().

run_mdt 13

Value

A long format tibble of the enrichment scores for each source across the samples. Resulting tibble
contains the following columns:

1. statistic: Indicates which method is associated with which score.
2. source: Source nodes of network.

3. condition: Condition representing each column of mat.

4

. score: Regulatory activity (enrichment score).

See Also

Other decoupleR statistics: decouple(), run_aucell(), run_fgsea(), run_mdt(), run_mlm(),
run_ora(), run_udt(), run_ulm(), run_viper(), run_wmean(), run_wsum()

Examples
inputs_dir <- system.file("testdata”, "inputs”, package = "decoupleR")

mat <- readRDS(file.path(inputs_dir, "input-expr_matrix.rds"))
network <- readRDS(file.path(inputs_dir, "input-dorothea_genesets.rds"))

run_gsva(mat, network, .source='tf', verbose = FALSE)

run_mdt Multivariate Decision Trees (MDT)

Description

Calculates regulatory activities by fitting multivariate decision trees (MDT) using ranger: : ranger ().

Usage
run_mdt (
mat,
network,
.source = .data$source,
.target = .data$target,
.mor = .data$mor,

.likelihood = .data$likelihood,
sparse = FALSE,
center = FALSE,
na.rm = FALSE,

trees = 10,
min_n = 20,
nproc = 4,
seed = 42

14

Arguments

mat

network
.source
.target
.mor
.likelihood
sparse
center

na.rm

trees

min_n

nproc

seed

Details

run_mdt

Matrix to evaluate (e.g. expression matrix). Target nodes in rows and condi-
tions in columns. rownames(mat) must have at least one intersection with the
elements in network . target column.

Tibble or dataframe with edges and it’s associated metadata.

Column with source nodes.

Column with target nodes.

Column with edge mode of regulation (i.e. mor).

Column with edge likelihood.

Logical value indicating if the generated profile matrix should be sparse.
Logical value indicating if mat must be centered by base: : rowMeans ().

Should missing values (including NaN) be omitted from the calculations of
base: :rowMeans()?

An integer for the number of trees contained in the ensemble.

An integer for the minimum number of data points in a node that are required
for the node to be split further.

Number of cores to use for computation.

A single value, interpreted as an integer, or NULL for random number genera-
tion.

MDT fits a multivariate ensemble of decision trees (random forest) to estimate regulatory activities.
MDT transforms a given network into an adjacency matrix, placing sources as columns and targets
as rows. The matrix is filled with the associated weights for each interaction. This matrix is used
to fit a random forest model to predict the observed molecular readouts per sample. The obtained
feature importances from the fitted model are the activities of the regulators.

Value

A long format tibble of the enrichment scores for each source across the samples. Resulting tibble
contains the following columns:

. statistic: Indicates which method is associated with which score.

. source: Source nodes of network.

1
2
3. condition: Condition representing each column of mat.
4

. score: Regulatory activity (enrichment score).

See Also

Other decoupleR statistics: decouple(), run_aucell(), run_fgsea(), run_gsva(), run_mlm(),
run_ora(), run_udt(), run_ulm(), run_viper(), run_wmean(), run_wsum()

run_mim 15

Examples

inputs_dir <- system.file("testdata”, "inputs”, package = "decoupleR")

mat <- readRDS(file.path(inputs_dir, "input-expr_matrix.rds"))
network <- readRDS(file.path(inputs_dir, "input-dorothea_genesets.rds"))

run_mdt(mat, network, .source='tf'")

run_mlm Multivariate Linear Model (MLM)

Description

Calculates regulatory activities by fitting multivariate linear models (MLM)

Usage
run_mlm(
mat,
network,
.source = .data$source,
.target = .data$target,
.mor = .data$mor,

.likelihood = .data$likelihood,
sparse = FALSE,

center = FALSE,

na.rm = FALSE

)
Arguments

mat Matrix to evaluate (e.g. expression matrix). Target nodes in rows and condi-
tions in columns. rownames(mat) must have at least one intersection with the
elements in network . target column.

network Tibble or dataframe with edges and it’s associated metadata.

.source Column with source nodes.

.target Column with target nodes.

.mor Column with edge mode of regulation (i.e. mor).

.likelihood Column with edge likelihood.

sparse Logical value indicating if the generated profile matrix should be sparse.
center Logical value indicating if mat must be centered by base: : rowMeans ().
na.rm Should missing values (including NaN) be omitted from the calculations of

base: :rowMeans()?

16 run_ora

Details

MLM fits a multivariate linear model to estimate regulatory activities. MLM transforms a given
network into an adjacency matrix, placing sources as columns and targets as rows. The matrix is
filled with the associated weights for each interaction. This matrix is used to fit a linear model to
predict the observed molecular readouts per sample. The obtained t-values from the fitted model
are the activities of the regulators.

Value

A long format tibble of the enrichment scores for each source across the samples. Resulting tibble
contains the following columns:

1. statistic: Indicates which method is associated with which score.
2. source: Source nodes of network.

3. condition: Condition representing each column of mat.

4

. score: Regulatory activity (enrichment score).

See Also

Other decoupleR statistics: decouple(), run_aucell(), run_fgsea(), run_gsva(), run_mdt(),
run_ora(), run_udt(), run_ulm(), run_viper(), run_wmean(), run_wsum()

Examples
inputs_dir <- system.file("testdata”, "inputs”, package = "decoupleR")

mat <- readRDS(file.path(inputs_dir, "input-expr_matrix.rds"))
network <- readRDS(file.path(inputs_dir, "input-dorothea_genesets.rds"))

run_mlm(mat, network, .source='tf')

run_ora Over Representation Analysis (ORA)

Description

Calculates regulatory activities using ORA.

Usage

run_ora(
mat,
network,
.source = .data$source,
.target = .data$target,
n_up = 300,
n_bottom = 300,

run_ora 17

n_background = 20000,
with_ties = TRUE,

)
Arguments

mat Matrix to evaluate (e.g. expression matrix). Target nodes in rows and condi-
tions in columns. rownames(mat) must have at least one intersection with the
elements in network . target column.

network Tibble or dataframe with edges and it’s associated metadata.

.source Column with source nodes.

.target Column with target nodes.

n_up Integer indicating the number of top targets to slice from mat.

n_bottom Integer indicating the number of bottom targets to slice from mat.

n_background Integer indicating the background size of the sliced targets. If not specified
the number of background targets is determined by the total number of unique
targets in the union of mat and network.

with_ties Should ties be kept together? The default, TRUE, may return more rows than you
request. Use FALSE to ignore ties, and return the first n rows.

Arguments passed on to stats: :fisher.test

workspace an integer specifying the size of the workspace used in the network
algorithm. In units of 4 bytes. Only used for non-simulated p-values larger
than 2 x 2 tables. Since R version 3.5.0, this also increases the internal
stack size which allows larger problems to be solved, however sometimes
needing hours. In such cases, simulate.p.values=TRUE may be more
reasonable.

hybrid a logical. Only used for larger than 2 x 2 tables, in which cases it in-
dicates whether the exact probabilities (default) or a hybrid approximation
thereof should be computed.

hybridPars a numeric vector of length 3, by default describing “Cochran’s
conditions” for the validity of the chisquare approximation, see ‘Details’.

control a list with named components for low level algorithm control. At
present the only one used is "mult”, a positive integer > 2 with default 30
used only for larger than 2 x 2 tables. This says how many times as much
space should be allocated to paths as to keys: see file ‘fexact.c’ in the
sources of this package.

or the hypothesized odds ratio. Only used in the 2 x 2 case.

alternative indicates the alternative hypothesis and must be one of "two.sided",
"greater” or "less”. You can specify just the initial letter. Only used in
the 2 x 2 case.

conf.int logical indicating if a confidence interval for the odds ratioina 2 x 2
table should be computed (and returned).

conf.level confidence level for the returned confidence interval. Only used in
the 2 x 2 case and if conf.int = TRUE.

18 run_udt

simulate.p.value alogical indicating whether to compute p-values by Monte
Carlo simulation, in larger than 2 x 2 tables.

B an integer specifying the number of replicates used in the Monte Carlo test.

Details

Performs an over-representation analysis using stats::fisher.test(). Obtained scores are -
log10(p-values).

Value

A long format tibble of the enrichment scores for each source across the samples. Resulting tibble
contains the following columns:

1. statistic: Indicates which method is associated with which score.
2. source: Source nodes of network.

3. condition: Condition representing each column of mat.

4

. score: Regulatory activity (enrichment score).

See Also

Other decoupleR statistics: decouple(), run_aucell(), run_fgsea(), run_gsva(), run_mdt(),
run_mlm(), run_udt (), run_ulm(), run_viper(), run_wmean(), run_wsum()

Examples
inputs_dir <- system.file("testdata”, "inputs”, package = "decoupleR")

mat <- readRDS(file.path(inputs_dir, "input-expr_matrix.rds"))
network <- readRDS(file.path(inputs_dir, "input-dorothea_genesets.rds"))

run_ora(mat, network, .source='tf')

run_udt Univariate Decision Tree (UDT)

Description

Calculates regulatory activities by fitting univariate decision trees (UDT) using rpart: :rpart().

Usage

run_udt(
mat,
network,
.source = .data$source,
.target = .data$target,
.mor = .data$mor,

run_udt 19

.likelihood = .data$likelihood,
sparse = FALSE,
center = FALSE,
na.rm = FALSE,

min_n = 20,
seed = 42
)
Arguments
mat Matrix to evaluate (e.g. expression matrix). Target nodes in rows and condi-
tions in columns. rownames(mat) must have at least one intersection with the
elements in network .target column.
network Tibble or dataframe with edges and it’s associated metadata.
.source Column with source nodes.
.target Column with target nodes.
.mor Column with edge mode of regulation (i.e. mor).

.likelihood Column with edge likelihood.

sparse Logical value indicating if the generated profile matrix should be sparse.

center Logical value indicating if mat must be centered by base: : rowMeans ().

na.rm Should missing values (including NaN) be omitted from the calculations of
base: :rowMeans()?

min_n An integer for the minimum number of data points in a node that are required
for the node to be split further.

seed A single value, interpreted as an integer, or NULL for random number genera-
tion.

Details

UDT fits a (univariate) decision tree to estimate regulatory activities. UDT fits a decision tree
that predicts the observed molecular readouts using the given weights of a regulator as a single
co-variate. The obtained feature importance from the fitted model is the activity of the regulator.

Value

A long format tibble of the enrichment scores for each source across the samples. Resulting tibble
contains the following columns:

1. statistic: Indicates which method is associated with which score.

2. source: Source nodes of network.

3. condition: Condition representing each column of mat.

4

. score: Regulatory activity (enrichment score).

See Also

Other decoupleR statistics: decouple(), run_aucell(), run_fgsea(), run_gsva(), run_mdt(),
run_mlm(), run_ora(), run_ulm(), run_viper(), run_wmean(), run_wsum()

20 run_ulm

Examples

inputs_dir <- system.file("testdata”, "inputs”, package = "decoupleR")

mat <- readRDS(file.path(inputs_dir, "input-expr_matrix.rds"))
network <- readRDS(file.path(inputs_dir, "input-dorothea_genesets.rds"))

run_udt(mat, network, .source='tf'")

run_ulm Univariate Linear Model (ULM)

Description

Calculates regulatory activities by fitting univariate linear models (ULM).

Usage
run_ulm(
mat,
network,
.source = .data$source,
.target = .data$target,
.mor = .data$mor,

.likelihood = .data$likelihood,
sparse = FALSE,

center = FALSE,

na.rm = FALSE

)
Arguments

mat Matrix to evaluate (e.g. expression matrix). Target nodes in rows and condi-
tions in columns. rownames(mat) must have at least one intersection with the
elements in network . target column.

network Tibble or dataframe with edges and it’s associated metadata.

.source Column with source nodes.

.target Column with target nodes.

.mor Column with edge mode of regulation (i.e. mor).

.likelihood Column with edge likelihood.

sparse Logical value indicating if the generated profile matrix should be sparse.
center Logical value indicating if mat must be centered by base: : rowMeans ().
na.rm Should missing values (including NaN) be omitted from the calculations of

base: :rowMeans()?

run_viper 21

Details

ULM fits a (univariate) linear model to estimate regulatory activities. ULM fits a linear model
that predicts the observed molecular readouts using the given weights of a regulator as a single co-
variate. The obtained t-value from the fitted model is the activity of the regulator. This approach
was first described in: Improved detection of tumor suppressor events in single-cell RNA-Seq data.

Value

A long format tibble of the enrichment scores for each source across the samples. Resulting tibble
contains the following columns:

1. statistic: Indicates which method is associated with which score.
2. source: Source nodes of network.

3. condition: Condition representing each column of mat.

4

. score: Regulatory activity (enrichment score).

See Also

Other decoupleR statistics: decouple(), run_aucell(), run_fgsea(), run_gsva(), run_mdt(),
run_mlm(), run_ora(), run_udt(), run_viper(), run_wmean(), run_wsum()

Examples
inputs_dir <- system.file("testdata”, "inputs”, package = "decoupleR")

mat <- readRDS(file.path(inputs_dir, "input-expr_matrix.rds"))
network <- readRDS(file.path(inputs_dir, "input-dorothea_genesets.rds"))

run_ulm(mat, network, .source='tf"')

run_viper Virtual Inference of Protein-activity by Enriched Regulon analysis
(VIPER)

Description

Calculates regulatory activities using VIPER.

Usage
run_viper(
mat,
network,
.source = .data$source,
.target = .data$target,
.mor = .data$mor,

.likelihood = .data$likelihood,

https://www.nature.com/articles/s41525-020-00151-y?elqTrackId=d7efb03cf5174fe2ba84e1c34d602b13

22 run_viper
verbose = FALSE,
minsize = 0,
pleiotropy = T,
eset.filter = F,
)
Arguments
mat Matrix to evaluate (e.g. expression matrix). Target nodes in rows and condi-
tions in columns. rownames(mat) must have at least one intersection with the
elements in network . target column.
network Tibble or dataframe with edges and it’s associated metadata.
.source Column with source nodes.
.target Column with target nodes.
.mor Column with edge mode of regulation (i.e. mor).

.likelihood Column with edge likelihood.

verbose Logical, whether progression messages should be printed in the terminal.
minsize Integer indicating the minimum number of targets allowed per regulon.
pleiotropy Logical, whether correction for pleiotropic regulation should be performed.
eset.filter Logical, whether the dataset should be limited only to the genes represented in

the interactome .
Arguments passed on to viper: :viper

dnull Numeric matrix for the null model, usually generated by nullTtest
nes Logical, whether the enrichment score reported should be normalized

method Character string indicating the method for computing the single sam-
ples signature, either scale, rank, mad, ttest or none

bootstraps Integer indicating the number of bootstraps iterations to perform.
Only the scale method is implemented with bootstraps.

adaptive.size Logical, whether the weighting scores should be taken into
account for computing the regulon size

pleiotropyArgs list of 5 numbers for the pleotropy correction indicating: reg-
ulators p-value threshold, pleiotropic interaction p-value threshold, mini-
mum number of targets in the overlap between pleiotropic regulators, penalty
for the pleiotropic interactions and the method for computing the pleiotropy,
either absolute or adaptive

cores Integer indicating the number of cores to use (only 1 in Windows-based
systems)

Details

This function is a wrapper for the method viper: :viper().

run_wmean 23

Value

A long format tibble of the enrichment scores for each source across the samples. Resulting tibble
contains the following columns:

1. statistic: Indicates which method is associated with which score.
2. source: Source nodes of network.

3. condition: Condition representing each column of mat.

4

. score: Regulatory activity (enrichment score).

See Also

Other decoupleR statistics: decouple(), run_aucell(), run_fgsea(), run_gsva(), run_mdt(),
run_mlm(), run_ora(), run_udt(), run_ulm(), run_wmean(), run_wsum()

Examples

inputs_dir <- system.file("testdata”, "inputs"”, package = "decoupleR")

mat <- readRDS(file.path(inputs_dir, "input-expr_matrix.rds"))
network <- readRDS(file.path(inputs_dir, "input-dorothea_genesets.rds"))

run_viper(mat, network, .source='tf', verbose = FALSE)

run_wmean Weighted Mean (WMEAN)

Description

Calculates regulatory activities by computing the WMEAN.

Usage

run_wmean (
mat,
network,
.source = .data$source,
.target = .data$target,
.mor = .data$mor,
.likelihood = .data$likelihood,
times = 100,
seed = 42,
sparse = TRUE,
randomize_type = "rows”

24 run_wmean

Arguments

mat Matrix to evaluate (e.g. expression matrix). Target nodes in rows and condi-
tions in columns. rownames(mat) must have at least one intersection with the
elements in network . target column.

network Tibble or dataframe with edges and it’s associated metadata.

.source Column with source nodes.

.target Column with target nodes.

.mor Column with edge mode of regulation (i.e. mor).

.likelihood Column with edge likelihood.

times How many permutations to do?

seed A single value, interpreted as an integer, or NULL for random number genera-
tion.

sparse Should the matrices used for the calculation be sparse?

randomize_type How to randomize the expression matrix.

Details

Infers activity score for each regulator by weighting the molecular readouts of its targets by their
mode of regulations and likelihoods. In addition, it runs permutations to calculate empirical p-
values, providing normalized (z-score) and corrected activity (estimate * -log10(pval)) scores. This
is represented in the statistic column which will contain three values for each call to run_wmean();
wmean, norm_wmean and corr_wmean.

Value

A long format tibble of the enrichment scores for each source across the samples. Resulting tibble
contains the following columns:

statistic: Indicates which method is associated with which score.

source: Source nodes of network.

condition: Condition representing each column of mat.

score: Regulatory activity (enrichment score).

wokwD =

p_value: p-value for the score of the method.

See Also

Other decoupleR statistics: decouple(), run_aucell(), run_fgsea(), run_gsva(), run_mdt(),
run_mlm(), run_ora(), run_udt(), run_ulm(), run_viper(), run_wsum()

Examples
inputs_dir <- system.file("testdata”, "inputs”, package = "decoupleR")

mat <- readRDS(file.path(inputs_dir, "input-expr_matrix.rds"))
network <- readRDS(file.path(inputs_dir, "input-dorothea_genesets.rds"))

run_wmean(mat, network, .source='tf"')

run_wsum

25

run_wsum

Weighted Sum (WSUM)

Description

Calculates regulatory activities by computing the WSUM

Usage

run_wsum(
mat,
network,
.source =

.data$source,

.target = .data$target,
.mor = .data$mor,
.likelihood = .data$likelihood,

times = 100,
seed = 42,
sparse = TRUE,
randomize_type = "rows"”
)
Arguments
mat Matrix to evaluate (e.g. expression matrix). Target nodes in rows and condi-
tions in columns. rownames(mat) must have at least one intersection with the
elements in network .target column.
network Tibble or dataframe with edges and it’s associated metadata.
.source Column with source nodes.
.target Column with target nodes.
.mor Column with edge mode of regulation (i.e. mor).
.likelihood Column with edge likelihood.
times How many permutations to do?
seed A single value, interpreted as an integer, or NULL for random number genera-
tion.
sparse Should the matrices used for the calculation be sparse?

randomize_type How to randomize the expression matrix.

Details

Infers activity score for each regulator by weighting the molecular readouts of its targets by their
mode of regulations and likelihoods. In addition, it runs permutations to calculate empirical p-
values, providing normalized (z-score) and corrected activity (estimate * -log10(p-value)) scores.
This is represented in the statistic column which will contain three values for each call to
run_wsum(); wsum, norm_wsum and corr_wsum.

26 run_wsum

Value

A long format tibble of the enrichment scores for each source across the samples. Resulting tibble
contains the following columns:

statistic: Indicates which method is associated with which score.

source: Source nodes of network.

condition: Condition representing each column of mat.

score: Regulatory activity (enrichment score).

AU

p_value: p-value for the score of the method.

See Also

Other decoupleR statistics: decouple(), run_aucell(), run_fgsea(), run_gsva(), run_mdt(),
run_mlm(), run_ora(), run_udt(), run_ulm(), run_viper (), run_wmean()

Examples
inputs_dir <- system.file("testdata”, "inputs”, package = "decoupleR")

mat <- readRDS(file.path(inputs_dir, "input-expr_matrix.rds"))
network <- readRDS(file.path(inputs_dir, "input-dorothea_genesets.rds"))

run_wsum(mat, network, .source='tf')

Index

* convert_to_ variants
convert_to_, 4

+ decoupleR statistics
decouple, 5
run_aucell, 9
run_fgsea, 10
run_gsva, 12
run_mdt, 13
run_mlm, 15
run_ora, 16
run_udt, 18
run_ulm, 20
run_viper, 21
run_wmean, 23
run_wsum, 25

base: :rowMeans(), 14, 15, 19, 20

convert_f_defaults, 3
convert_f_defaults(), 5
convert_to_, 4

convert_to_aucell (convert_to_), 4
convert_to_fgsea (convert_to_), 4
convert_to_gsva (convert_to_), 4
convert_to_mlm (convert_to_), 4
convert_to_ora (convert_to_), 4
convert_to_ulm (convert_to_), 4
convert_to_viper (convert_to_), 4
convert_to_wmean (convert_to_), 4
convert_to_wsum (convert_to_), 4

decouple, 5,9, 11,13, 14, 16, 18, 19, 21, 23,
24,26

dplyr::rename(), 3

dplyr::select(), 3

fgsea: :fgseaMultilevel, 11
filter_regulons, 7

GSVA::gsva, 12
GSVA::gsva(), 5, 12

intersect_regulons, 8

ranger::ranger(), 13

rpart::rpart(), I8

run_aucell, 7,9, 11,13, 14, 16, 18, 19, 21,
23, 24,26

run_consensus, 10

run_fgsea, 7, 9, 10, 13, 14, 16, 18, 19, 21, 23,
24,26

run_gsva, 7,9, 11,12, 14, 16, 18, 19, 21, 23,
24,26

run_mdt, 7,9, 11, 13,13, 16, 18, 19, 21, 23,
24,26

run_mlm, 7,9, 11,13, 14,15, 18, 19, 21, 23,
24,26

run_ora, 7,9,11,13, 14, 16,16, 19, 21, 23,
24,26

run_udt, 7,9, 11,13, 14, 16, 18, 18, 21, 23,
24,26

run_ulm, 7,9, 11,13, 14, 16, 18, 19, 20, 23,
24,26

run_viper,7,9,11,13, 14, 16, 18, 19, 21, 21,
24,26

run_wmean, 7,9, 11,13, 14, 16, 18, 19, 21, 23,
23,26

run_wsum, 7,9, 11,13, 14, 16, 18, 19, 21, 23,
24,25

stats::fisher.test, 17
stats::fisher.test(), I8

tibble::add_column(), 3

viper::viper, 22
viper::viper(), 5, 22

	convert_f_defaults
	convert_to_
	decouple
	filter_regulons
	intersect_regulons
	run_aucell
	run_consensus
	run_fgsea
	run_gsva
	run_mdt
	run_mlm
	run_ora
	run_udt
	run_ulm
	run_viper
	run_wmean
	run_wsum
	Index

