Package ‘TFutils’

October 16, 2019

Title TFutils

Description Package to work with TF data.

Version 1.4.0

Depends R (>= 3.5.0)

Imports methods, dplyr, magrittr, miniUI, shiny

Suggests knitr, data.table, GSEABase, testthat, AnnotationDbi, AnnotationFilter, Biobase, GenomicFeatures, GenomicRanges, Gviz, IRanges, Rsamtools, S4Vectors, org.Hs.eg.db, EnsDb.Hsapiens.v75, BiocParallel, BiocStyle, GO.db, GenomicFeatures, GenomeInfoDb, SummarizedExperiment, UpSetR, ggplot2, png, gwascat

License Artistic-2.0

LazyLoad true

ByteCompile true

LazyData true

VignetteBuilder knitr

RoxygenNote 6.1.1

biocViews Transcriptomics

Roxygen list(markdown = TRUE)

Encoding UTF-8

git_url https://git.bioconductor.org/packages/TFutils

git_branch RELEASE_3_9

git_last_commit a2f8f46

git_last_commit_date 2019-05-02

Date/Publication 2019-10-15

Author Vincent Carey [aut],
 Shweta Gopaulakrishnan [cre, aut]

Maintainer Shweta Gopaulakrishnan <reshg@channing.harvard.edu>
R topics documented:

cisbpTFcat: data.frame with information on CISBP TFs for human

cisbpTFcat

directHitsInCISBP
encode690
fimo16
fimoMap
genemodelDF
genemodForGviz
grabTab
gwascat_bg19_chr17
HGNCmap
hocomoco.mono
hocomoco.mono.sep2018
importFIMO,TabixFile,GRanges-method
importFIMO_local_split
metadata_tf
named_tf
setupHIZE
show,TFCatalog-method
TFCatalog
TFCatalog-class
tfhash
TFtargs
tftColl
tftCollMap
topTraitsOfTargets
URL_s3_tf

cisbpTFcat: data.frame with information on CISBP TFs for human

description

cisbpTFcat: data.frame with information on CISBP TFs for human

usage

cisbpTFcat

format

data.frame

note

Extracted March 2018, checked August 2018. The only changes observed are that genes ZUFSP and T are used has HGNC values in the March catalog; these symbols seem to be absent from the org.Hs.eh.db of August 2018. The records involved are 1356, 7412 and 7413. These symbols were left in the package image of CISBP in August 2018.
directHitsInCISBP

Source

http://cisbp.ccbr.utoronto.ca/bulk.php select Homo_sapiens

Examples

head(TFutils::cisbpTFcat)

directHitsInCISBP
Demonstrate interoperation of TF catalog with GWAS catalog

Description

Demonstrate interoperation of TF catalog with GWAS catalog

Usage

directHitsInCISBP(traitTag, gwascat)

Arguments

- **traitTag**: character(1) string found in DISEASE/TRAIT field of gwascat instance
- **gwascat**: instance of gwaswloc-class

Value

data.frame

Examples

data(gwascat_hg19_chr17)
directHitsInCISBP("Prostate cancer", gwascat_hg19_chr17)

encode690

encode690: DataFrame extending AnnotationHub metadata about ENCODE cell line x TF ranges

Description

encode690: DataFrame extending AnnotationHub metadata about ENCODE cell line x TF ranges

Usage

encode690

Format

DataFrame

Source

see metadata(encode690)
Examples

names(TFutils::encode690)
TFutils::encode690[,1:5]

<table>
<thead>
<tr>
<th>fimo16</th>
<th>fimo16: GenomicFiles instance to AWS S3-resident FIMO bed for 16 TFs</th>
</tr>
</thead>
</table>

Description

fimo16: GenomicFiles instance to AWS S3-resident FIMO bed for 16 TFs

Usage

fimo16

Format

GenomicFiles for a TabixFileList

Source

K. Glass FIMO runs, see https://doi.org/10.1016/j.celrep.2017.10.001

Examples

TFutils::fimo16

<table>
<thead>
<tr>
<th>fimoMap</th>
<th>fimoMap: table with Mnnnn (motif PWM tags) and HGNC symbols for TFs</th>
</tr>
</thead>
</table>

Description

fimoMap: table with Mnnnn (motif PWM tags) and HGNC symbols for TFs

Usage

fimoMap

Format

data.frame

Source

Kimberly Glass (rekrg@channing.harvard.edu)

Examples

head(TFutils::fimoMap)
genemodelDF

use EnsDb to generate an exon-level model of genes identified by symbol

| genemodelDF | use EnsDb to generate an exon-level model of genes identified by symbol |

Description

use EnsDb to generate an exon-level model of genes identified by symbol

Usage

```r
genemodelDF(sym, resource, columnsKept = c("gene_id", "tx_id"), ...)
```

Arguments

- `sym` a character() vector of gene symbols
- `resource` should be or inherit from EnsDb, answering exons(), with AnnotationFilter::SymbolFilter as filter parameter
- `columnsKept` character vector used as columns param in exons()
- `...` passed to exons()

Value

data.frame instance with exons in rows

Note

There are many approaches available to acquiring 'gene models' in Bioconductor; this one emphasizes the use of the exons method for Ensembl annotation.

Examples

```r
if (requireNamespace("EnsDb.Hsapiens.v75")) {
  orm = genemodelDF("ORMDL3", EnsDb.Hsapiens.v75::EnsDb.Hsapiens.v75)
  dim(orm)
  head(orm)
}
```

genemodForGviz

create a GeneRegionTrack instance for selected symbols

| genemodForGviz | create a GeneRegionTrack instance for selected symbols |

Description

create a GeneRegionTrack instance for selected symbols

Usage

```r
genemodForGviz(sym = "ORMDL3", id_elem = c("symbol", "tx_id"),
  resource = EnsDb.Hsapiens.v75::EnsDb.Hsapiens.v75, ...)
```
grabTab

Arguments

 sym character vector of gene symbols, should be neighboring genes
 id_elem vector of names of columns generated by genemodelDF to be used to label transcripts
 resource should be or inherit from EnsDb, answering exons(), with AnnotationFilter::SymbolFilter as filter parameter
 ...

 ... passed to genemodelDF

Value

 instance of Gviz GeneRegionTrack

Note

 This function helps to display the locations of TF binding sites in the context of complex gene models. A complication is that we have nice visualization of quantitative affinity predictions for TFs in the vignette, based on ggplot2, but it is not clear how to use that specific code to work with Gviz.

Examples

 if (requireNamespace("EnsDb.Hsapiens.v75") &
 requireNamespace("Gviz")) {
 orm = genemodForGviz("ORMDL3", resource= EnsDb.Hsapiens.v75::EnsDb.Hsapiens.v75)
 Gviz::plotTracks(orm, showId=TRUE) # change id_elem for shorter id string
 }

grabTab

create table of TF targets and related metadata

Description

 create table of TF targets and related metadata

Usage

 grabTab(tfstub = "STAT1", gscoll = TFutils::tftColl,
 orgdb = org.Hs.eg.db::org.Hs.eg.db,
 gwrngs = TFutils::gwascat_hg19_chr17)

Arguments

 tfstub character(1) gene-like symbol for TF; will be grepped in names(gscoll)
 gscoll a GSEABase GeneSetCollection
 orgdb an instance of OrgDb as defined in AnnotationDbi
 gwrngs a GRanges representing EBI gwascat, must have DISEASE/TRAIT, MAPPED_GENE

Value

 data.frame instance
Note

This function will link together information on targets of a given TF to the GWAS catalog.

Examples

```r
gt = grabTab("VDR", gscoll=TFutils::tftColl,
    orgdb=org.Hs.eg.db::org.Hs.eg.db, gwrngs=TFutils::gwascat_hg19_chr17)
dim(gt)
head(gt)
```

Description

`gwascat_hg19`: GRanges of march 21 2018 EBI gwascat, limit to chr17

Usage

```r
gwascat_hg19_chr17
```

Format

GenomicRanges GRanges instance

Source

gwascat::makeCurrentGwascat, with gwascat:::lo38to19 applied

Examples

```r
TFutils::gwascat_hg19_chr17[,1:5]
```

HGNCmap

simple accessor for HGNCmap component of TFCatalog

Description

simple accessor for HGNCmap component of TFCatalog

Usage

```r
HGNCmap(x)
```

Arguments

- `x` instance of TFCatalog
Value
dataframe instance

Examples
HGNCmap

hocomoco.mono hocomoco.mono: data.frame with information on HOCOMOCO TFs for human

Description
hocomoco.mono: data.frame with information on HOCOMOCO TFs for human

Usage
hocomoco.mono

Format
data.frame

Note
Extracted March 2018

Source

Examples
head(TFutils::hocomoco.mono)

hocomoco.mono.sep2018 hocomoco.mono.sep2018: data.frame with information on HOCOMOCO TFs for human, Sept 2018 download

Description
hocomoco.mono.sep2018: data.frame with information on HOCOMOCO TFs for human, Sept 2018 download

Usage
hocomoco.mono.sep2018

Format
data.frame
importFIMO, TabixFile, GRanges-method

import a FIMO bed-like file
@importFrom utils read.delim

Description

import a FIMO bed-like file
@importFrom utils read.delim

Usage

S4 method for signature 'TabixFile,GRanges'
importFIMO(src, parms, ...)

S4 method for signature 'character,missing'
importFIMO(src, parms, ...)

Arguments

- src: TabixFile instance
- parms: a GRanges instance delimiting the import; multiple GRanges can be used
- ... passed to GenomicRanges::GRanges

Value

instance of GRanges

Examples

```r
if (requireNamespace("Rsamtools")) {
  tf = Rsamtools::TabixFile(system.file("M5946.1/chr1.bed.gz", package="TFutils"))
  importFIMO(tf, GenomicRanges::GRanges("chr1", IRanges::IRanges(1e6,11e6)))
}
```
importFIMO_local_split

utility to read FIMO outputs from local resource(cluster), assuming bed text split by chromosome

Description

utility to read FIMO outputs from local resource(cluster), assuming bed text split by chromosome

Usage

importFIMO_local_split(tf, chr)

Arguments

- tf character(1) file id
- chr character(1) chromosome name

Value
data.table instance

Examples

requireNamespace("GenomicRanges")
requireNamespace("IRanges")
importFIMO_local_split("M5946_1", "chr1")
dim(importFIMO_local_split("M5946_1", "chr17"))

metadata_tf

metadata_tf: list with metadata (motif_if and hgnc_symbol) about all the CISBP FIMO scan TF bed files

Description

metadata_tf: list with metadata (motif_if and hgnc_symbol) about all the CISBP FIMO scan TF bed files

Usage

metadata_tf

Format

list

Source

K. Glass ran FIMO

Examples

TFutils::metadata_tf
named_tf

named_tf: named list with the names being the hgnc_symbol of the motif_id

Description
named_tf: named list with the names being the hgnc_symbol of the motif_id

Usage
named_tf

Format
list

Source
K. Glass ran FIMO

Examples
TFutils::named_tf
data(named_tf)[["VDR"]]

setupHIZE

setupHIZE: process a gene_attribute_matrix.txt file from harmonizeome into a GeneSetCollection

Description
process a gene_attribute_matrix.txt file from harmonizeome into a GeneSetCollection

Usage
setupHIZE(txtfn = "gene_attribute_matrix.txt", tag)

Arguments
txtfn character(1) path to gene_attribute_matrix.txt file from harmonizeome
tag character(1) will be added to shortDescription field of each GeneSet instance

Note
After uncompressing content of http://amp.pharm.mssm.edu/static/hdfs/harmonizome/data/cheappi/gene_attribute_matrix.txt.gz run this on gene_attribute_matrix.txt with tag="CHEA".
show,TFCatalog-method
produce a concise report on TFCatalog instance

Description
produce a concise report on TFCatalog instance

Usage
```r
## S4 method for signature 'TFCatalog'
show(object)
```

Arguments

- `object`
 instance of TFCatalog

Value

side effect

TFCatalog
Constructor for TFCatalog

Description

Constructor for TFCatalog

Usage

TFCatalog(name, nativeIds, HGNCmap, metadata)

Arguments

- `name`
 informative character(1) for collection

- `nativeIds`
 character() vector of identifiers used by collection creators

- `HGNCmap`
 data.frame with column 1 nativeIds, column 2 HGNC or hgnc.heur for MSigDb and any other columns of use

- `metadata`
 a list of metadata elements

Value

instance of TFCatalog

Examples

```r
if (require("GSEABase")) {
  TFs_MSIG = TFCatalog(name="MsigDb.TFT",nativeIds=names(TFutils::tftColl),
                       HGNCmap=data.frame(TFutils::tftCollMap,stringAsFactors=FALSE))
  TFs_MSIG
}
```
TFCatalog-class

define a structure to hold information about TFs from diverse reference sources

Description

define a structure to hold information about TFs from diverse reference sources

Slots

name character
nativeIds character tokens used by the provider to enumerate transcription factors
HGNCmap data.frame with at least two columns, native id as first column and HGNC symbol as second column
metadata ANY

Note

This class respects the notions that 1) a source of information about transcription factors should have a name, 2) each source has its own ‘native’ nomenclature for the factors themselves, 3) it is common to use the gene symbol to refer to the transcription factor, and 4) additional metadata will frequently be required to establish information about provenance of assertions about transcription factors.

tfhash
tfhash: data.frame with MSigDb TFs, TF targets as symbol or ENTREZ

Description

tfhash: data.frame with MSigDb TFs, TF targets as symbol or ENTREZ

Usage
tfhash

Format
list

Source
MSigDb "c3" (motif gene sets) has been harvested for simple annotation of TFs and targets.

Examples
TFutils::tfhash
tfhash[1:3,]
TFtargs

gadget to help sort through tags naming TFs

Description

gadget to help sort through tags naming TFs

Usage

```r
TFtargs(gscoll = TFutils::tftColl, initTF = "VDR_Q3", gwcat = TFutils::gwascat_hg19_chr17, gadtitle = "Search for a TF; its targets will be checked for mapped status in GWAS catalog")
```

Arguments

- `gscoll`: a GSEABase GeneSetCollection
- `initTF`: character(1) initial TF string for app
- `gwcat`: GRanges-like structure with GWAS catalog information
- `gadtitle`: character(1) a title for the gadget panel

Value

On app conclusion a data.frame is returned

Note

Will use TFutils::gwascat_hg19_chr17 to look for 'MAPPED_GENE' field entries matching targets, also hardcoded to use org.Hs.eg.db to map symbols

Examples

```r
if (interactive()) TFtargs()
```

tftColl

GSEABase GeneSetCollection for transcription factor targets

Description

tftColl: GSEABase GeneSetCollection for transcription factor targets

Usage

`tftColl`

Format

GSEABase GeneSetCollection instance
tftCollMap

Note

run GSEABase::getGMT() on c3/TFT geneset collection from MSigDb

Source

broad institute

Examples

TFutils::tftColl

tftCollMap

tftCollMap: data.frame with information on MSigDb TFs for human

Description

tftCollMap: data.frame with information on MSigDb TFs for human

Usage

tftCollMap

Format

data.frame

Note

Annotation of TFs is ad-hoc. GeneSet names were tokenized, splitting by underscore, and then fragments were matched to SYMBOL and ALIAS elements of org.Hs.eg.db. Extracted March 2018

Source

http://software.broadinstitute.org/gsea/msigdb/genesets.jsp?collection=TFT

Examples

head(TFutils::tftCollMap)
topTraitsOfTargets
Use MSigDB TF targets resource to find targets of input TF and find traits to which these targets have been mapped

Description

Use MSigDB TF targets resource to find targets of input TF and find traits to which these targets have been mapped

Usage

topTraitsOfTargets(TFsym, gsc, gwcat, ntraits = 6, force = FALSE, ...)

Arguments

TFsym character(1) symbol for a TF must be present in tftCollMap[, "hgnc.heur"]
gsc an instance of GeneSetCollection-class, intended to enumerate targets of a single transcription factor in each GeneSet, as in TFutils::tftColl
gwcat instance of gwaswloc-class
ntraits numeric(1) number of traits to report
force logical see note, set to true if you want to skip mapping from TFsym to a specific motif or TF identifier used as name of a GeneSet in gsc
... character() vector of fields in mcols(gwcat) to include

Note

If tftCollMap[, "hgnc.heur"] does not possess the necessary symbol, set force = TRUE to use a known ‘motif’ name among names(gsc)

Examples

suppressPackageStartupMessages({
 library(GSEABase)
 library(TFutils)
}) # more results if you substitute ebicat37 from gwascat below
topTraitsOfTargets("MTF1", tftColl, gwascat_hg19_chr17)

URL_s3_tf
utility to generate link to biocfound bucket for FIMO TFBS scores

Description

utility to generate link to biocfound bucket for FIMO TFBS scores

Usage

URL_s3_tf(tag = "M3433")
Arguments
tag character(1) token identifying TF, can be an HGNC gene name or Mnnnn PWM tag. It must be findable in TFutils::fimoMap table.

Value
character(1) URL

Examples
URL_s3_tf
Index

Topic datasets
- cisbpTFcat, 2
- encode690, 3
- fimo16, 4
- fimoMap, 4
- gwascat_hg19_chr17, 7
- hocomoco.mono, 8
- hocomoco.mono.sep2018, 8
- metadata_tf, 10
- named_tf, 11
- tftColl, 14
- tftCollMap, 15

show,TFCatalog-method, 12
- TFCatalog, 12
- TFCatalog-class, 13
- tfhash, 13
- TFTargs, 14
- tftColl, 14
- tftCollMap, 15
- topTraitsOfTargets, 16
- URL_s3_tf, 16

cisbpTFcat, 2
directHitsInCISBP, 3
encode690, 3
fimo16, 4
fimoMap, 4
genemodelDF, 5
genemodForGviz, 5
grabTab, 6
gwascat_hg19_chr17, 7
HGNCmap, 7
hocomoco.mono, 8
hocomoco.mono.sep2018, 8

importFIMO
 (importFIMO,TabixFile,GRanges-method), 9
importFIMO,character,missing-method
 (importFIMO,TabixFile,GRanges-method), 9
importFIMO,TabixFile,GRanges-method, 9
importFIMO_local_split, 10
metadata_tf, 10
named_tf, 11
setupHIZE, 11