Package ‘TFutils’

January 17, 2020

Title TFutils

Description Package to work with TF metadata from various sources.

Version 1.6.0

Depends R (>= 3.5.0)

Imports methods, dplyr, magrittr, miniUI, shiny, Rsamtools, GSEABase

Suggests knitr, data.table, testthat, AnnotationDbi, AnnotationFilter, Biobase, GenomicFeatures, GenomicRanges, Gviz, IRanges, Rsamtools, S4Vectors, org.Hs.eg.db, EnsDb.Hsapiens.v75, BiocParallel, BiocStyle, GO.db, GenomicFiles, GenomeInfoDb, SummarizedExperiment, UpSetR, ggplot2, png, gwascat, MotifDb, motifStack, RColorBrewer

License Artistic-2.0

LazyLoad true

ByteCompile true

LazyData true

VignetteBuilder knitr

RoxygenNote 6.1.1

biocViews Transcriptomics

Roxygen list(markdown = TRUE)

Encoding UTF-8

git_url https://git.bioconductor.org/packages/TFutils

git_branch RELEASE_3_10

git_last_commit 7ae9a5f

git_last_commit_date 2019-10-29

Date/Publication 2020-01-16

Author Vincent Carey [aut], Shweta Gopaulakrishnan [cre, aut]

Maintainer Shweta Gopaulakrishnan <reshg@channing.harvard.edu>
R topics documented:

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>anchor_pmids</td>
<td>2</td>
</tr>
<tr>
<td>browse_lambert_gwaslinks</td>
<td>3</td>
</tr>
<tr>
<td>browse_lambert_main</td>
<td>4</td>
</tr>
<tr>
<td>cisbpTFcat</td>
<td>4</td>
</tr>
<tr>
<td>cisbpTFcat_2.0</td>
<td>5</td>
</tr>
<tr>
<td>defaultCircosParms</td>
<td>5</td>
</tr>
<tr>
<td>demo_fimo_granges</td>
<td>6</td>
</tr>
<tr>
<td>directHitsInCISBP</td>
<td>6</td>
</tr>
<tr>
<td>encode690</td>
<td>7</td>
</tr>
<tr>
<td>fimo16</td>
<td>7</td>
</tr>
<tr>
<td>fimoMap</td>
<td>8</td>
</tr>
<tr>
<td>fimo_granges</td>
<td>8</td>
</tr>
<tr>
<td>genemodelDF</td>
<td>9</td>
</tr>
<tr>
<td>genemodForGviz</td>
<td>10</td>
</tr>
<tr>
<td>get_rslocs_38</td>
<td>11</td>
</tr>
<tr>
<td>grabTab</td>
<td>11</td>
</tr>
<tr>
<td>gwascat_hg19_chr17</td>
<td>12</td>
</tr>
<tr>
<td>HGNCmap</td>
<td>12</td>
</tr>
<tr>
<td>hocomoco.mono</td>
<td>13</td>
</tr>
<tr>
<td>hocomoco.mono.sep2018</td>
<td>13</td>
</tr>
<tr>
<td>importFIMO,TabixFile,GRanges-method</td>
<td>14</td>
</tr>
<tr>
<td>importFIMO_local_split</td>
<td>15</td>
</tr>
<tr>
<td>lambert_snps</td>
<td>15</td>
</tr>
<tr>
<td>metadata_tf</td>
<td>16</td>
</tr>
<tr>
<td>named_tf</td>
<td>16</td>
</tr>
<tr>
<td>retrieve_lambert_main</td>
<td>17</td>
</tr>
<tr>
<td>seqinfo_hg19_chr17</td>
<td>17</td>
</tr>
<tr>
<td>setupHIZE</td>
<td>18</td>
</tr>
<tr>
<td>show,TFCatalog-method</td>
<td>18</td>
</tr>
<tr>
<td>TFCatalog</td>
<td>19</td>
</tr>
<tr>
<td>TFCatalog-class</td>
<td>19</td>
</tr>
<tr>
<td>tffamCirc.plot</td>
<td>20</td>
</tr>
<tr>
<td>tffamCirc.prep</td>
<td>20</td>
</tr>
<tr>
<td>tfhash</td>
<td>21</td>
</tr>
<tr>
<td>TFtargs</td>
<td>21</td>
</tr>
<tr>
<td>tfTColl</td>
<td>22</td>
</tr>
<tr>
<td>tfTCollMap</td>
<td>23</td>
</tr>
<tr>
<td>topTraitsOfTargets</td>
<td>23</td>
</tr>
<tr>
<td>URL_s3_tf</td>
<td>24</td>
</tr>
</tbody>
</table>

Index

- anchor_pmids
 - check columns of a dataframe for numerical tokens of 7 or 8 digits and create HTML anchors to pubmed.gov constituting a link to a PMID

Description

check columns of a dataframe for numerical tokens of 7 or 8 digits and create HTML anchors to pubmed.gov constituting a link to a PMID
browse_lambert_gwaslinks

Usage

`anchor_pmids(dataframe)`

Arguments

- `dataframe` a data.frame instance

Value

data.frame with HTML anchors to pubmed.gov inserted where 7- or 8-digit numbers are found

Note

The method of isolating putative PMIDs is peculiar to patterns found in the comment fields of annotated TF table (supplemental table S1 found in https://www.cell.com/cms/10.1016/j.cell.2018.01.029/attachment/88c0eca1-66f9-4068-b02e-bd3d55144f79/mmc2.xlsx of PMID 29425488). When DT::datatable is called on the output of this function with `escape=FALSE` the PMIDs will render as hyperlinks. Note that column 1 is assumed to be an ENSEMBL ID which could have 7 or 8 digits but is handled differently

Examples

```r
litdf = data.frame(id="ENSG00000116819", a="Binds the same GCCTGAGGC sequence as the other AP-2s (PMID: 24789576)", stringsAsFactors=FALSE)
anchor_pmids(litdf)
```

browse_lambert_gwaslinks

`browse several hundred disease-TF associations with hyperlinked PMIDs`

Description

browse several hundred disease-TF associations with hyperlinked PMIDs

Usage

`browse_lambert_gwaslinks()`

Note

Based on supplemental table S4 of PMID 29425488

Examples

```r
if (interactive()) browse_lambert_gwaslinks()
```
browse_lambert_main
use DT::datatable to browse the Lambert table S1

Description
use DT::datatable to browse the Lambert table S1

Usage
browse_lambert_main(cache = BiocFileCache::BiocFileCache(ask = FALSE))

Arguments
 cache a BiocFileCache instance

Value
result of DT::datatable

Note
PMIDs are converted to HTML anchors and DT::datatable is run with escape=FALSE.

Examples
if (interactive()) browse_lambert_main()

cisbpTFcat
cisbpTFcat: data.frame with information on CISBP TFs for human, retained for reproducibility support; see cisbpTFcat_2.0 for a more recent catalog

Description
 cisbpTFcat: data.frame with information on CISBP TFs for human, retained for reproducibility support; see cisbpTFcat_2.0 for a more recent catalog

Usage
cisbpTFcat

Format
data.frame

Note
Extracted March 2018, checked August 2018. The only changes observed are that genes ZUFSP and T are used has HGNC values in the March catalog; these symbols seem to be absent from the org.Hs.eh.db of August 2018. The records involved are 1356, 7412 and 7413. These symbols were left in the package image of CISBP in August 2018.
Source

http://cisbp.ccbr.utoronto.ca/bulk.php select Homo_sapiens

Examples

head(TFutils::cisbpTFcat)

cisbpTFcat_2.0: data.frame with information on CISBP TFs for human, described in PMID 31133749

Description

cisbpTFcat_2.0: data.frame with information on CISBP TFs for human, described in PMID 31133749

Usage

cisbpTFcat_2.0

Format

data.frame

Note

Extracted August 2019.

Source

http://cisbp.ccbr.utoronto.ca/bulk.php select Homo_sapiens

Examples

head(TFutils::cisbpTFcat_2.0)

defaultCircosParms: basic layout parameters for circos

defaultCircosParms

Description

basic layout parameters for circos

Usage

defaultCircosParms()

Value

a list

Examples

head(defaultCircosParms())
demo_fimo_granges

a list of GRanges instances with TF FIMO scores returned by fimo_granges

description

a list of GRanges instances with TF FIMO scores returned by fimo_granges

usage

demo_fimo_granges

format

a list of GRanges instances

examples

```r
names(S4Vectors::mcols(demo_fimo_granges$VDR[[1]]))
```

directHitsInCISBP

demostrate interoperation of TF catalog with GWAS catalog

description

demostrate interoperation of TF catalog with GWAS catalog

usage

directHitsInCISBP(traitTag, gwascat)

arguments

```r
traitTag character(1) string found in DISEASE/TRAIT field of gwascat instance
gwascat instance of gwasloc-class
```

value

data.frame

examples

```r
data(gwascat_hg19_chr17)
directHitsInCISBP("Prostate cancer", gwascat_hg19_chr17)
```
encode690

Description

encode690: DataFrame extending AnnotationHub metadata about ENCODE cell line x TF ranges

Usage

```r
encode690
```

Format

DataFrame

Source

see metadata(encode690)

Examples

```r
names(TFutils::encode690)
TFutils::encode690[,1:5]
```

fimo16

Description

fimo16: GenomicFiles instance to AWS S3-resident FIMO bed for 16 TFs

Usage

```r
fimo16
```

Format

GenomicFiles for a TabixFileList

Source

K. Glass FIMO runs, see https://doi.org/10.1016/j.celrep.2017.10.001

Examples

```r
TFutils::fimo16
```
fimoMap

fimoMap: table with Mnnnn (motif PWM tags) and HGNC symbols for TFs

Description
fimoMap: table with Mnnnn (motif PWM tags) and HGNC symbols for TFs

Usage
fimoMap

Format
data.frame

Source
Kimberly Glass (rekrg@channing.harvard.edu)

Examples
head(TFutils::fimoMap)

fimo_granges
create a list of GRanges for FIMO hits in a GenomicFiles instance, corresponding to a GRanges-based query

Description
create a list of GRanges for FIMO hits in a GenomicFiles instance, corresponding to a GRanges-based query

Usage
fimo_granges(gf, query)

Arguments
gf GenomicFiles instance, like fimo16 in TFutils
query a GRanges specifying ranges to check for TF binding scores

Value
a list of GRanges, produced by GenomicFiles::reduceByRange

Note
Be sure to use register([BPPARAM]) appropriately.
Examples

```r
if (interactive()) { # need internet
  # setup -- annotate fimo16 object and create an informative
  # query
  colnames(fimo16) = fimo16$HGNC
  si = GenomeInfoDb::Seqinfo(genome="hg19")['chr17'] # to fix query genome
  myg = GRanges("chr17", IRanges(38.07e6,38.09e6), seqinfo=si)
  requireNamespace("BiocParallel")
  BiocParallel::register(BiocParallel::SerialParam())
  f1 = fimo_granges(fimo16[, c("VDR", "POU2F1")], myg)
  f1
}
```

Description

use EnsDb to generate an exon-level model of genes identified by symbol

Usage

```r
genemodelDF(sym, resource, columnsKept = c("gene_id", "tx_id"), ...)
```

Arguments

- `sym` a character() vector of gene symbols
- `resource` should be or inherit from EnsDb, answering exons(), with AnnotationFilter::SymbolFilter as filter parameter
- `columnsKept` character vector used as columns param in exons()
- `...` passed to exons()

Value

data.frame instance with exons in rows

Note

There are many approaches available to acquiring 'gene models' in Bioconductor; this one emphasizes the use of the exons method for Ensembl annotation.

Examples

```r
if (requireNamespace("EnsDb.Hsapiens.v75")) {
  orm = genemodelDF("ORMDL3", EnsDb.Hsapiens.v75::EnsDb.Hsapiens.v75)
  dim(orm)
}
head(orm)
```
genemodForGviz

create a GeneRegionTrack instance for selected symbols

Description

create a GeneRegionTrack instance for selected symbols

Usage

gememodForGviz(sym = "ORMDL3", id_elem = c("symbol", "tx_id"),
 resource = EnsDb.Hsapiens.v75::EnsDb.Hsapiens.v75, ...)

Arguments

 sym character vector of gene symbols, should be neighboring genes
 id_elem vector of names of columns generated by genemodelDF to be used to label transcripts
 resource should be or inherit from EnsDb, answering exons(), with AnnotationFilter::SymbolFilter as filter parameter
 ... passed to genemodelDF

Value

instance of Gviz GeneRegionTrack

Note

This function helps to display the locations of TF binding sites in the context of complex gene models. A complication is that we have nice visualization of quantitative affinity predictions for TFs in the vignette, based on ggplot2, but it is not clear how to use that specific code to work with Gviz.

Examples

if (requireNamespace("EnsDb.Hsapiens.v75") &
 requireNamespace("Gviz")) {
 orm = genemodForGviz("ORMDL3", resource= EnsDb.Hsapiens.v75::EnsDb.Hsapiens.v75)
 Gviz::plotTracks(orm, showId=TRUE) # change id_elem for shorter id string
}
get_rslocs_38

utility to obtain location etc. for rsids of SNPs

Description
utility to obtain location etc. for rsids of SNPs

Usage
get_rslocs_38(rsids = c("rs6060535", "rs56116432"))

Arguments
rsids character vector of dbSNP identifiers

Note
Uses rest.ensembl.org, posting to variant_recorder/homo_sapiens. Parses result minimally, using only the first SPDI to obtain location information, adding 1 as ensembl genomic coordinates are zero-based.

Examples
get_rslocs_38()

grabTab
create table of TF targets and related metadata

Description
create table of TF targets and related metadata

Usage
grabTab(tfstub = "STAT1", gscoll = TFutils::tftColl,
orgdb = org.Hs.eg.db::org.Hs.eg.db,
gwrngs = TFutils::gwascat_hg19_chr17)

Arguments
tfstub character(1) gene-like symbol for TF; will be grepped in names(gscoll)
gscoll a GSEABase GeneSetCollection
orgdb an instance of OrgDb as defined in AnnotationDbi
gwrngs a GRanges representing EBI gwascat, must have DISEASE/TRAIT, MAPPED_GENE

Value
data.frame instance
Note

This function will link together information on targets of a given TF to the GWAS catalog.

Examples

```r
gt = grabTab("VDR", gscoll=TFutils::tftColl,
           orgdb=org.Hs.eg.db::org.Hs.eg.db, gwrngs=TFutils::gwascat_hg19_chr17)
dim(gt)
head(gt)
```

```
gwascat_hg19_chr17  gwascat_hg19: GRanges of march 21 2018 EBI gwascat, limit to chr17
```

Description

`gwascat_hg19`: GRanges of march 21 2018 EBI gwascat, limit to chr17

Usage

`gwascat_hg19_chr17`

Format

`GenomicRanges GRanges instance`

Source

`gwascat::makeCurrentGwascat, with gwascat:::lo38to19 applied`

Examples

```r
TFutils::gwascat_hg19_chr17[,1:5]
```

HGNCmap

simple accessor for HGNCmap component of TFCatalog

Description

simple accessor for HGNCmap component of TFCatalog

Usage

`HGNCmap(x)`

Arguments

- `x` instance of TFCatalog
hocomoco.mono

Value
dataframe instance

Examples
HGNCmap

<table>
<thead>
<tr>
<th>hocomoco.mono</th>
<th>hocomoco.mono: dataframe with information on HOCOMOCO TFs for human</th>
</tr>
</thead>
</table>

Description
hocomoco.mono: dataframe with information on HOCOMOCO TFs for human

Usage
hocomoco.mono

Format
data.frame

Note
Extracted March 2018

Source

Examples
head(TFutils::hocomoco.mono)

<table>
<thead>
<tr>
<th>hocomoco.mono.sep2018</th>
<th>hocomoco.mono.sep2018: dataframe with information on HOCOMOCO TFs for human, Sept 2018 download</th>
</tr>
</thead>
</table>

Description
hocomoco.mono.sep2018: dataframe with information on HOCOMOCO TFs for human, Sept 2018 download

Usage
hocomoco.mono.sep2018

Format
data.frame
Note
Extracted September 2018

Source

Examples
head(TFutils::hocomoco.mono.sep2018)

importFIMO,TabixFile,GRanges-method

import a FIMO bed-like file@importFrom utils read.delim

Description
import a FIMO bed-like file@importFrom utils read.delim

Usage

S4 method for signature 'TabixFile,GRanges'
importFIMO(src, parms, ...)

S4 method for signature 'character,missing'
importFIMO(src, parms, ...)

Arguments

src TabixFile instance
parms a GRanges instance delimiting the import; multiple GRanges can be used
... passed to GenomicRanges::GRanges

Value
instance of GRanges

Examples

if (requireNamespace("Rsamtools")) {
 tf = Rsamtools::TabixFile(system.file("M5946_1/chr1.bed.gz", package="TFutils"))
 importFIMO(tf, GenomicRanges::GRanges("chr1", IRanges::IRanges(1e6,1e6)))
}
importFIMO_local_split

Description

utility to read FIMO outputs from local resource(cluster), assuming bed text split by chromosome

Usage

`importFIMO_local_split(tf, chr)`

Arguments

- `tf` character(1) file id
- `chr` character(1) chromosome name

Value

data.table instance

Examples

```r
requireNamespace("GenomicRanges")
requireNamespace("IRanges")
importFIMO_local_split("M5946_1", "chr1")
dim(importFIMO_local_split("M5946_1", "chr17"))
```

lambert_snps

Description

lambert_snps is Table S3 of Lambert et al PMID 29425488

Usage

`lambert_snps`

Format

data.frame

Examples

```r
head(lambert_snps)
```
metadata_tf

Description

metadata_tf: list with metadata (motif_id and hgnc_symbol) about all the CISBP FIMO scan TF bed files

Usage

metadata_tf

Format

list

Source

K. Glass ran FIMO

Examples

TFutils::metadata_tf

named_tf

Description

named_tf: named list with the names being the hgnc_symbol of the motif_id

Usage

named_tf

Format

list

Source

K. Glass ran FIMO

Examples

TFutils::named_tf

named_tf["VDR"]
retrieve_lambert_main

acquire the Excel spreadsheet content for table S1 of Lambert et al. Cell 2018, "The Human Transcription Factors"

Description

acquire the Excel spreadsheet content for table S1 of Lambert et al. Cell 2018, "The Human Transcription Factors"

Usage

```r
retrieve_lambert_main(cache = BiocFileCache::BiocFileCache(ask = FALSE))
```

Arguments

- **cache**
 - a BiocFileCache instance

Value

- a tbl_df

Note

This will download the spreadsheet if not found in cache.

Examples

```r
if (interactive()) retrieve_lambert_main()
```

seqinfo_hg19_chr17

a Seqinfo instance for a chr17 in hg19

Description

a Seqinfo instance for a chr17 in hg19

Usage

```r
seqinfo_hg19_chr17
```

Format

- a Seqinfo instance

Examples

```r
seqinfo_hg19_chr17
```
show,TFCatalog-method

setupHIZE

process a gene_attribute_matrix.txt file from harmonizeome into a GeneSetCollection

Description

process a gene_attribute_matrix.txt file from harmonizeome into a GeneSetCollection

Usage

setupHIZE(txtfn = "gene_attribute_matrix.txt", tag)

Arguments

txtfn character(1) path to gene_attribute_matrix.txt file from harmonizeome
tag character(1) will be added to shortDescription field of each GeneSet instance

Note

After uncompressing content of http://amp.pharm.mssm.edu/static/hdfs/harmonizome/data/cheappi/gene_attribute_matrix.txt.gz run this on gene_attribute_matrix.txt with tag="CHEA".

show,TFCatalog-method

produce a concise report on TFCatalog instance

Description

produce a concise report on TFCatalog instance

Usage

S4 method for signature 'TFCatalog' show(object)

Arguments

object instance of TFCatalog

Value

side effect
TFCatalog

Description

Constructor for TFCatalog

Usage

```r
TFCatalog(name, nativeIds, HGNCmap, metadata)
```

Arguments

- **name**: informative character(1) for collection
- **nativeIds**: character() vector of identifiers used by collection creators
- **HGNCmap**: data.frame with column 1 nativeIds, column 2 HGNC or hgnc.heur for MSigDb and any other columns of use
- **metadata**: a list of metadata elements

Value

instance of TFCatalog

Examples

```r
if (require("GSEABase")) {
  TFs_MSIG = TFCatalog(name="MsigDb.TFT",nativeIds=names(TFutils::tftColl),
                        HGNCmap=data.frame(TFutils::tftCollMap,stringAsFactors=FALSE))
  TFs_MSIG
}
```

TFCatalog-class

define a structure to hold information about TFs from diverse reference sources

Description

define a structure to hold information about TFs from diverse reference sources

Slots

- **name**: character
- **nativeIds**: character tokens used by the provider to enumerate transcription factors
- **HGNCmap**: data.frame with at least two columns, native id as first column and HGNC symbol as second column
- **metadata**: ANY
Note
This class respects the notions that 1) a source of information about transcription factors should have a name, 2) each source has its own ‘native’ nomenclature for the factors themselves, 3) it is common to use the gene symbol to refer to the transcription factor, and 4) additional metadata will frequently be required to establish information about provenance of assertions about transcription factors.

tffamCirc.plot
use a radial plot (by default) for motif stack

Description
use a radial plot (by default) for motif stack

Usage
tffamCirc.plot(motiflist, circosParms = defaultCircosParms())

Arguments
motiflist a list of pfm instances from motifStack
circosParms a list of parameter settings for circos plot

Value
side effect to graphics device

Examples
p1 = tffamCirc.prep()
tffamCirc.plot(p1[c(1:8, 10:17, 19)])

tffamCirc.prep
set up list of pfms in motifStack protocol

Description
set up list of pfms in motifStack protocol

Usage
tffamCirc.prep(tffam = "Paired-related HD factors(3.1.3)",
trimfac = 0.4)

Arguments	tffam character(1) name of TF family as found in TFutils::hocomoco.mono field TF family
ttrimfac fraction passed as parameter t to motifStack::trimMotif
tfhash

Value

a list of pfm instances as defined in motifStack

Note

Uses MotifDb, motifStack to create a list of pfms

Examples

n1 = tffamCirc.prep()
str(n1)

tfhash
tfhash: data.frame with MSigDb TFs, TF targets as symbol or ENTREZ

Description
tfhash: data.frame with MSigDb TFs, TF targets as symbol or ENTREZ

Usage
tfhash

Format

list

Source

MSigDb "c3" (motif gene sets) has been harvested for simple annotation of TFs and targets.

Examples

TFutils::tfhash
tfhash[1:3,]

TFtargs
gadget to help sort through tags naming TFs

Description
gadget to help sort through tags naming TFs

Usage

TFtargs(gscoll = TFutils::tftColl, initTF = "VDR_Q3",
gwcat = TFutils::gwascat_hg19_chr17,
gadtitle = "Search for a TF; its targets will be checked for mapped status in GWAS catalog")
tftColl

Arguments

- `gscoll` a GSEABase GeneSetCollection
- `initTF` character(1) initial TF string for app
- `gwcata` GRanges-like structure with GWAS catalog information
- `gadtitle` character(1) a title for the gadget panel

Value

on app conclusion a data.frame is returned

Note

Will use `TFutils::gwascat_hg19_chr17` to look for 'MAPPED_GENE' field entries matching targets, also hardcoded to use `org.Hs.eg.db` to map symbols

Examples

```r
if (interactive()) TFtargs()
```

tftColl

`tftColl`: GSEABase GeneSetCollection for transcription factor targets

Description

tftColl: GSEABase GeneSetCollection for transcription factor targets

Usage

tftColl

Format

GSEABase GeneSetCollection instance

Note

run `GSEABase::getGMT()` on c3/TFT geneset collection from MSigDb

Source

broad institute

Examples

`TFutils::tftColl`
tftCollMap

tftCollMap: data.frame with information on MSigDb TFs for human

Description

tftCollMap: data.frame with information on MSigDb TFs for human

Usage

tftCollMap

Format

data.frame

Note

Annotation of TFs is ad-hoc. GeneSet names were tokenized, splitting by underscore, and then fragments were matched to SYMBOL and ALIAS elements of org.Hs.eg.db. Extracted March 2018

Source

http://software.broadinstitute.org/gsea/msigdb/genesets.jsp?collection=TFT

Examples

head(TFutils::tftCollMap)

topTraitsOfTargets

Use MSigDB TF targets resource to find targets of input TF and find traits to which these targets have been mapped

Description

Use MSigDB TF targets resource to find targets of input TF and find traits to which these targets have been mapped

Usage

topTraitsOfTargets(TFsym, gsc, gwcat, ntraits = 6, force = FALSE, ...)

Arguments

- **TFsym**: character(1) symbol for a TF must be present in tftCollMap[, "hgnc.heur"]
- **gsc**: an instance of `GeneSetCollection-class`, intended to enumerate targets of a single transcription factor in each GeneSet, as in TFutils::tftColl
- **gwcat**: instance of `gwaswloc-class`
- **ntraits**: numeric(1) number of traits to report
- **force**: logical see note, set to true if you want to skip mapping from TFsym to a specific motif or TF identifier used as name of a GeneSet in gsc
- **...**: character() vector of fields in mcols(gwcat) to include
Note

If `tftCollMap[,"hgnc.heur"]` does not possess the necessary symbol, set `force = TRUE` to use a known 'motif' name among `names(gsc)`.

Examples

```r
suppressPackageStartupMessages({
  library(GSEABase)
  library(TFutils)
}) # more results if you substitute ebicat37 from gwascat below
topTraitsOfTargets("MTF1", tftColl, gwascat_hg19_chr17)
```

URL_s3_tf

utility to generate link to biocfound bucket for FIMO TFBS scores

Description

utility to generate link to biocfound bucket for FIMO TFBS scores

Usage

```r
URL_s3_tf(tag = "M3433")
```

Arguments

- `tag` character(1) token identifying TF, can be an HGNC gene name or Mnnnn PWM tag. It must be findable in TFutils::fimoMap table.

Value

character(1) URL

Examples

```r
URL_s3_tf
```
Index

«Topic datasets
- cisbpTFcat, 4
- cisbpTFcat_2.0, 5
- demo_fimo_granges, 6
- encode690, 7
- fimo16, 7
- fimoMap, 8
- gwascat_hg19_chr17, 12
- hocomoco.mono, 13
- hocomoco.mono.sep2018, 13
- lambert_snps, 15
- metadata_tf, 16
- named_tf, 16
- seqinfo_hg19_chr17, 17
- tfhash, 21
- tftColl, 22
- tftCollMap, 23
- anchor_pmids, 2
- browse_lambert_gwaslinks, 3
- browse_lambert_main, 4
- cisbpTFcat, 4
- cisbpTFcat_2.0, 5
- defaultCircosParms, 5
- demo_fimo_granges, 6
- directHitsInCISBP, 6
- encode690, 7
- fimo16, 7
- fimo_granges, 8
- fimoMap, 8
- genemodelDF, 9
- genemodForGviz, 10
- get_rslocs_38, 11
- grabTab, 11
- gwascat_hg19_chr17, 12
- HGNCmap, 12
- hocomoco.mono, 13
- hocomoco.mono.sep2018, 13
- importFIMO
 - (importFIMO,TabixFile,GRanges-method), 14
- importFIMO,character,missing-method
 - (importFIMO,TabixFile,GRanges-method), 14
- importFIMO,TabixFile,GRanges-method, 14
- importFIMO_local_split, 15
- lambert_snps, 15
- metadata_tf, 16
- named_tf, 16
- retrieve_lambert_main, 17
- seqinfo_hg19_chr17, 17
- setupHIZE, 18
- show,TFCatalog-method, 18
- TFCatalog, 19
- TFCatalog-class, 19
- tffamCirc.plot, 20
- tffamCirc.prep, 20
- tfhash, 21
- TFtargs, 21
- tftColl, 22
- tftCollMap, 23
- topTraitsOfTargets, 23
- URL_s3_tf, 24