Package ‘TFutils’

 September 5, 2019

Title TFutils

Description Package to work with TF data.

Version 1.4.0

Depends R (>= 3.5.0)

Imports methods, dplyr, magrittr, miniUI, shiny

Suggests knitr, data.table, GSEABase, testthat, AnnotationDbi,
 AnnotationFilter, Biobase, GenomicFeatures, GenomicRanges,
 Gviz, IRanges, Rsamtools, S4Vectors, org.Hs.eg.db,
 EnsDb.Hsapiens.v75, BiocParallel, BiocStyle, GO.db,
 GenomicFiles, GenomeInfoDb, SummarizedExperiment, UpSetR,
 ggrepplot2, png, gwascat

License Artistic-2.0

LazyLoad true

ByteCompile true

LazyData true

VignetteBuilder knitr

RoxygenNote 6.1.1

biocViews Transcriptomics

Roxygen list(markdown = TRUE)

Encoding UTF-8

git_url https://git.bioconductor.org/packages/TFutils

git_branch RELEASE_3_9

git_last_commit a2f8f46

Date/Publication 2019-09-04

Author Vincent Carey [aut],
 Shweta Gopaulakrishnan [cre, aut]

Maintainer Shweta Gopaulakrishnan <reshg@channing.harvard.edu>
cisbpTFcat: data.frame with information on CISBP TFs for human

Description

cisbpTFcat: data.frame with information on CISBP TFs for human

Usage

cisbpTFcat

Format

data.frame

Note

Extracted March 2018, checked August 2018. The only changes observed are that genes ZUFSP and T are used has HGNC values in the March catalog; these symbols seem to be absent from the org.Hs.eg.db of August 2018. The records involved are 1356, 7412 and 7413. These symbols were left in the package image of CISBP in August 2018.
directHitsInCISBP

Source

http://cisbp.ccbr.utoronto.ca/bulk.php select Homo_sapiens

Examples

head(TFutils::cisbpTFcat)

directHitsInCISBP demonstrate interoperation of TF catalog with GWAS catalog

Description

demonstrate interoperation of TF catalog with GWAS catalog

Usage

directHitsInCISBP(traitTag, gwascat)

Arguments

- **traitTag** character(1) string found in DISEASE/TRAIT field of gwascat instance
- **gwascat** instance of gwaswloc-class

Value

data.frame

Examples

data(gwascat_hg19_chr17)
directHitsInCISBP("Prostate cancer", gwascat_hg19_chr17)

encode690

encode690: DataFrame extending AnnotationHub metadata about ENCODE cell line x TF ranges

Description

encode690: DataFrame extending AnnotationHub metadata about ENCODE cell line x TF ranges

Usage

encode690

Format

DataFrame

Source

see metadata(encode690)
Examples

```r
names(TFutils::encode690)
TFutils::encode690[,1:5]
```

`fimo16`
fimo16: GenomicFiles instance to AWS S3-resident FIMO bed for 16 TFs

Description

`fimo16`: GenomicFiles instance to AWS S3-resident FIMO bed for 16 TFs

Usage

`fimo16`

Format

GenomicFiles for a TabixFileList

Source

K. Glass FIMO runs, see https://doi.org/10.1016/j.celrep.2017.10.001

Examples

```r
TFutils::fimo16
```

`fimoMap`
fimoMap: table with Mnnnn (motif PWM tags) and HGNC symbols for TFs

Description

`fimoMap`: table with Mnnnn (motif PWM tags) and HGNC symbols for TFs

Usage

`fimoMap`

Format

data.frame

Source

Kimberly Glass (rekrg@channing.harvard.edu)

Examples

```r
head(TFutils::fimoMap)
```
genemodelDF

Description

use EnsDb to generate an exon-level model of genes identified by symbol

Usage

```r
genemodelDF(sym, resource, columnsKept = c("gene_id", "tx_id"), ...)  
```

Arguments

- **sym**
 - a character() vector of gene symbols
- **resource**
 - should be or inherit from EnsDb, answering exons(), with AnnotationFilter::SymbolFilter as filter parameter
- **columnsKept**
 - character vector used as columns param in exons()
- **...**
 - passed to exons()

Value

data.frame instance with exons in rows

Note

There are many approaches available to acquiring 'gene models' in Bioconductor; this one emphasizes the use of the exons method for Ensembl annotation.

Examples

```r
if (requireNamespace("EnsDb.Hsapiens.v75")) {
  orm = genemodelDF("ORMDL3", EnsDb.Hsapiens.v75::EnsDb.Hsapiens.v75)
  dim(orm)
}  
head(orm)
```

genemodForGviz

create a GeneRegionTrack instance for selected symbols

Description

create a GeneRegionTrack instance for selected symbols

Usage

```r
getemodForGviz(sym = "ORMDL3", id_elem = c("symbol", "tx_id"),
    resource = EnsDb.Hsapiens.v75::EnsDb.Hsapiens.v75, ...)
```
grabTab

Arguments

sym character vector of gene symbols, should be neighboring genes
id_elem vector of names of columns generated by genemodelDF to be used to label transcripts
resource should be or inherit from EnsDb, answering exons(), with AnnotationFilter::SymbolFilter as filter parameter

Value

instance of Gviz GeneRegionTrack

Note

This function helps to display the locations of TF binding sites in the context of complex gene models. A complication is that we have nice visualization of quantitative affinity predictions for TFs in the vignette, based on ggplot2, but it is not clear how to use that specific code to work with Gviz.

Examples

if (requireNamespace("EnsDb.Hsapiens.v75") &
 requireNamespace("Gviz")) {
 orm = genemodForGviz("ORMDL3", resource= EnsDb.Hsapiens.v75::EnsDb.Hsapiens.v75)
 Gviz::plotTracks(orm, showId=TRUE) # change id_elem for shorter id string
}

grabTab create table of TF targets and related metadata

Description

create table of TF targets and related metadata

Usage

grabTab(tfstub = "STAT1", gscoll = TFutils::tftColl,
orgdb = org.Hs.eg.db::org.Hs.eg.db,
gwrngs = TFutils::gwascat_hg19_chr17)

Arguments

tfstub character(1) gene-like symbol for TF; will be greppep in names(gscoll)
gscoll a GSEABase GeneSetCollection
orgdb an instance of OrgDb as defined in AnnotationDbi
gwrngs a GRanges representing EBI gwascat, must have DISEASE/TRAIT, MAPPED_GENE

Value

data.frame instance
Note

This function will link together information on targets of a given TF to the GWAS catalog.

Examples

```r
gt = grabTab("VDR", gscoll=TFutils::tftColl,
              orgdb=org.Hs.eg.db::org.Hs.eg.db, gwrngs=TFutils::gwascat_hg19_chr17)
dim(gt)
head(gt)
```

```
gwascat_hg19_chr17  gwascat_hg19: GRanges of march 21 2018 EBI gwascat, limit to chr17
```

Description

`gwascat_hg19`: GRanges of march 21 2018 EBI gwascat, limit to chr17

Usage

```r
gwascat_hg19_chr17
```

Format

GenomicRanges GRanges instance

Source

gwascat::makeCurrentGwascat, with gwascat:::lo38to19 applied

Examples

```r
TFutils::gwascat_hg19_chr17[,1:5]
```

```
HGNCmap
```

Description

`HGNCmap`: simple accessor for HGNCmap component of TFCatalog

Usage

```r
HGNCmap(x)
```

Arguments

`x` instance of TFCatalog
Value
dataframe instance

Examples
HGNCmap

hocomoco.mono

hocomoco.mono: data.frame with information on HOCOMOCO TFs for human

Description
hocomoco.mono: data.frame with information on HOCOMOCO TFs for human

Usage
hocomoco.mono

Format
data.frame

Note
Extracted March 2018

Source

Examples
head(TFutils::hocomoco.mono)

hocomoco.mono.sep2018

hocomoco.mono.sep2018: data.frame with information on HOCOMOCO TFs for human, Sept 2018 download

Description
hocomoco.mono.sep2018: data.frame with information on HOCOMOCO TFs for human, Sept 2018 download

Usage
hocomoco.mono.sep2018

Format
data.frame
Note
Extracted September 2018

Source

Examples
head(TFutils::hocomoco.mono.sep2018)

importFIMO, TabixFile, GRanges-method

import a FIMO bed-like file
importFrom utils read.delim

Description
import a FIMO bed-like file
importFrom utils read.delim

Usage
S4 method for signature 'TabixFile, GRanges'
importFIMO(src, parms, ...)

S4 method for signature 'character, missing'
importFIMO(src, parms, ...)

Arguments
src TabixFile instance
parms a GRanges instance delimiting the import; multiple GRanges can be used
... passed to GenomicRanges::GRanges

Value
instance of GRanges

Examples
if (requireNamespace("Rsamtools")) {
 tf = Rsamtools::TabixFile(system.file("M5946.1/chr1.bed.gz", package="TFutils"))
 importFIMO(tf, GenomicRanges::GRanges("chr1", IRanges::IRanges(1e6, 1e6)))
}
importFIMO_local_split

utility to read FIMO outputs from local resource(cluster), assuming bed text split by chromosome

Description
utility to read FIMO outputs from local resource(cluster), assuming bed text split by chromosome

Usage
importFIMO_local_split(tf, chr)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>tf</td>
<td>character(1) file id</td>
</tr>
<tr>
<td>chr</td>
<td>character(1) chromosome name</td>
</tr>
</tbody>
</table>

Value
data.table instance

Examples

```r
requireNamespace("GenomicRanges")
requireNamespace("IRanges")
importFIMO_local_split("M5946_1", "chr1")
dim(importFIMO_local_split("M5946_1", "chr17"))
```

metadata_tf

metadata_tf: list with metadata (motif_if and hgnc_symbol) about all the CISBP FIMO scan TF bed files

Description
metadata_tf: list with metadata (motif_if and hgnc_symbol) about all the CISBP FIMO scan TF bed files

Usage
metadata_tf

Format
list

Source
K. Glass ran FIMO

Examples

```r
TFutils::metadata_tf
```
named_tf

Description

named_tf: named list with the names being the hgnc_symbol of the motif_id

Usage

named_tf

Format

list

Source

K. Glass ran FIMO

Examples

TFutils::named_tf
named_tf[['VDR']]
show,TFCatalog-method produce a concise report on TFCatalog instance

Description
produce a concise report on TFCatalog instance

Usage
S4 method for signature 'TFCatalog'
show(object)

Arguments

 object instance of TFCatalog

Value
side effect

TFCatalog Constructor for TFCatalog

Description
Constructor for TFCatalog

Usage
TFCatalog(name, nativeIds, HGNCmap, metadata)

Arguments

 name informative character(1) for collection
 nativeIds character() vector of identifiers used by collection creators
 HGNCmap data.frame with column 1 nativeIds, column 2 HGNC or hgnc.heur for MSigDb and any other columns of use
 metadata a list of metadata elements

Value
instance of TFCatalog

Examples
if (require("GSEABase")) {
 TFs_MSIG = TFCatalog(name="MsigDb.TFT", nativeIds=names(TFutils::tftColl),
 HGNCmap=data.frame(TFutils::tftCollMap, stringAsFactors=FALSE))
 TFs_MSIG
}

TFCatalog-class

Define a structure to hold information about TFs from diverse reference sources.

Slots
- **name** character
- **nativeIds** character tokens used by the provider to enumerate transcription factors
- **HGNCmap** data.frame with at least two columns, native_id as first column and HGNC symbol as second column
- **metadata** ANY

Note
This class respects the notions that 1) a source of information about transcription factors should have a name, 2) each source has its own ‘native’ nomenclature for the factors themselves, 3) it is common to use the gene symbol to refer to the transcription factor, and 4) additional metadata will frequently be required to establish information about provenance of assertions about transcription factors.

tfhash

tfhash: data.frame with MSigDb TFs, TF targets as symbol or ENTREZ

Description
tfhash: data.frame with MSigDb TFs, TF targets as symbol or ENTREZ

Usage
tfhash

Format
list

Source
MSigDb "c3" (motif gene sets) has been harvested for simple annotation of TFs and targets.

Examples
TFutils::tfhash
tfhash[1:3,]
TFtargs
gadget to help sort through tags naming TFs

Description

gadget to help sort through tags naming TFs

Usage

TFtargs(gscoll = TFutils::tftColl, initTF = "VDR_Q3",
gwcat = TFutils::gwascat_hg19_chr17,
gadtitle = "Search for a TF; its targets will be checked for mapped status in GWAS catalog")

Arguments

gscoll a GSEABase GeneSetCollection
initTF character(1) initial TF string for app
gwcat GRanges-like structure with GWAS catalog information
gadtitle character(1) a title for the gadget panel

Value

on app conclusion a data.frame is returned

Note

Will use TFutils::gwascat_hg19_chr17 to look for 'MAPPED_GENE' field entries matching targets, also hardcoded to use org.Hs.eg.db to map symbols

Examples

if (interactive()) TFtargs()

tftColl
tftColl: GSEABase GeneSetCollection for transcription factor targets

Description

tftColl: GSEABase GeneSetCollection for transcription factor targets

Usage

tftColl

Format

GSEABase GeneSetCollection instance
tftCollMap

Note

run GSEABase::getGMT() on c3/TFT geneset collection from MSigDb

Source

broad institute

Examples

TFutils::tftColl

tftCollMap

tftCollMap: data.frame with information on MSigDb TFs for human

Description

tftCollMap: data.frame with information on MSigDb TFs for human

Usage

tftCollMap

Format

data.frame

Note

Annotation of TFs is ad-hoc. GeneSet names were tokenized, splitting by underscore, and then fragments were matched to SYMBOL and ALIAS elements of org.Hs.eg.db. Extracted March 2018

Source

http://software.broadinstitute.org/gsea/msigdb/genesets.jsp?collection=TFT

Examples

head(TFutils::tftCollMap)
topTraitsOfTargets

Use MSigDB TF targets resource to find targets of input TF and find traits to which these targets have been mapped

Description

Use MSigDB TF targets resource to find targets of input TF and find traits to which these targets have been mapped

Usage

topTraitsOfTargets(TFsym, gsc, gwcat, ntraits = 6, force = FALSE, ...)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TFsym</td>
<td>character(1) symbol for a TF must be present in tftCollMap[, "hgnc.heur"]</td>
</tr>
<tr>
<td>gsc</td>
<td>an instance of GeneSetCollection-class, intended to enumerate targets of a single transcription factor in each GeneSet, as in TFutils::tftColl</td>
</tr>
<tr>
<td>gwcat</td>
<td>instance of gwaswloc-class</td>
</tr>
<tr>
<td>ntraits</td>
<td>numeric(1) number of traits to report</td>
</tr>
<tr>
<td>force</td>
<td>logical see note, set to true if you want to skip mapping from TFsym to a specific motif or TF identifier used as name of a GeneSet in gsc</td>
</tr>
<tr>
<td>...</td>
<td>character() vector of fields in mcols(gwcat) to include</td>
</tr>
</tbody>
</table>

Note

If tftCollMap[, "hgnc.heur"] does not possess the necessary symbol, set force = TRUE to use a known ‘motif’ name among names(gsc)

Examples

```r
suppressPackageStartupMessages(
  library(GSEABase)
  library(TFutils)
) # more results if you substitute ebicat37 from gwascat below
topTraitsOfTargets("MTF1", tftColl, gwascat_hg19_chr17)
```

URL_s3_tf

utility to generate link to biocfound bucket for FIMO TFBS scores

Description

utility to generate link to biocfound bucket for FIMO TFBS scores

Usage

```r
URL_s3_tf(tag = "M3433")
```
Arguments

tag character(1) token identifying TF, can be an HGNC gene name or Mnnnn PWM tag. It must be findable in TFutils::fimoMap table.

Value

character(1) URL

Examples

URL_s3_tf
Index

*Topic datasets

- cisbpTFcat, 2
- encode690, 3
- fimo16, 4
- fimoMap, 4
- gwascat_hg19_chr17, 7
- hocomoco.mono, 8
- hocomoco.mono.sep2018, 8
- metadata_tf, 10
- named_tf, 11
- tfhash, 13
- tftColl, 14
- tftCollMap, 15

- cisbpTFcat, 2
- directHitsInCISBP, 3
- encode690, 3
- fimo16, 4
- fimoMap, 4
- genemodelDF, 5
- genemodForGviz, 5
- grabTab, 6
- gwascat_hg19_chr17, 7
- HGNCmap, 7
- hocomoco.mono, 8
- hocomoco.mono.sep2018, 8

importFIMO

 (importFIMO,TabixFile,GRanges-method), 9
importFIMO,character,missing-method

 (importFIMO,TabixFile,GRanges-method), 9
importFIMO,TabixFile,GRanges-method, 9
importFIMO_local_split, 10

metadata_tf, 10

named_tf, 11

setupHIZE, 11