Package ‘SomaticSignatures’

January 8, 2016

Type Package
Title Somatic Signatures
Version 2.6.0
Author Julian Gehring (EMBL Heidelberg)
Maintainer Julian Gehring <julian.gehring@embl.de>
Description The SomaticSignatures package identifies mutational signatures of single nucleotide variants (SNVs). It provides an infrastructure related to the methodology described in Nik-Zainal (2012, Cell), with flexibility in the matrix decomposition algorithms.
URL http://bioconductor.org/packages/release/bioc/html/SomaticSignatures.html,
https://github.com/julian-gehring/SomaticSignatures-release
Imports S4Vectors, IRanges, GenomeInfoDb, Biostrings, ggplot2, ggbio, reshape2, NMF, pcaMethods, Biobase, methods, proxy
Depends R (>= 3.1.0), VariantAnnotation, GenomicRanges
Suggests testthat, knitr, parallel, BSgenome.Hsapiens.UCSC.hg19,
SomaticCancerAlterations, gg dendro, fastICA, sva
VignetteBuilder knitr
ByteCompile TRUE
License GPL-3
LazyLoad yes
biocViews Sequencing, SomaticMutation, Visualization, Clustering,
GenomicVariation, StatisticalMethod
NeedsCompilation no

R topics documented:

cluster-spectrum ... 2
decomposition-signatures ... 3
gcContent .. 4
GRanges-conversioners .. 4
hs-chrs ... 6
Description

Cluster the mutational spectrum by sample or motif.

Usage

clusterSpectrum(m, by = c("sample", "motif"), distance = "Cosine", ...)

Arguments

m Mutational spectrum matrix
by Dimension to cluster by.
distance Distance function used in the clustering.
... Additional arguments passed to ‘hclust’.

Details

Hierachical clustering of the motif matrix aka mutational spectrum.

Value

An ‘hclust’ object.
Decomposition Functions for Somatic Signatures

Description

Estimate somatic signatures from sequence motifs with a selection of statistical methods.

Usage

```r
nmfDecomposition(x, r, ..., includeFit = FALSE)
pcaDecomposition(x, r, ..., includeFit = FALSE)
```

Arguments

- `x`: GRanges object [required]
- `r`: Number of signatures [integer, required]
- `...`: Additional arguments passed to `NMF::nmf` or `pcaMethods::pca`.
- `includeFit`: Include the fit object returned by the low-level decomposition function in the output.

Details

The `nmfDecomposition` and `pcaDecomposition` functions estimate a set of \(r \) somatic signatures using the NMF or PCA, respectively.

In previous versions of the package, these functions were known as `nmfSignatures` and `pcaSignatures`, respectively. While they are still available, we recommend using the new naming convention.

Value

The `signature` functions return a list with the elements:

- `wMatrix` of the form `motif x signature`
- `hMatrix` of the form `sample x signature`
- `vMatrix` of the form `motif x sample`, containing the reconstruction of \(m \) from \(w \) and \(h \).
- `mInput` matrix \(m \)
- `rNumber` of signatures.
- `fit` Fit object returned by the low-level decomposition function, if `includeFit` is true.
See Also

- NMF package
- pcaMethods package
- prcomp

gcContent

Description

Compute the GC content for regions of a reference sequence.

Usage

```r
gcContent(regions, ref)
```

Arguments

- `regions`: GRanges object with the regions for which the GC content should be computed.
- `ref`: Reference sequence object, as a 'BSgenome' or 'FaFile' object.

Value

A numeric vector with the GC content [0,1] for each region.

Examples

```r
library(BSgenome.Hsapiens.UCSC.hg19)

regs = GRanges(c("chr1", "chr2"), IRanges(1e7, width = 100))

gc = gcContent(regs, BSgenome.Hsapiens.UCSC.hg19)
```

GRanges-converters

Description

A set of utilities functions to convert and extract data in GRanges objects.

Usage

- `ncbi(x)`
- `ucsc(x)`
- `seqchar(x)`
Arguments

x A 'GRanges' object or one inheriting from the 'GRanges' class [required].

Details

- granges: Extracts only the 'GRanges' information by dropping the metadata columns of the object. The 'seqinfo' slot is kept.
- ncbi, ucsc: Shorthand for converting the seqnames notation to 'UCSC' (e.g. 'chr1', 'chrM') or 'NCBI' (e.g. '1', 'MT') notation, respectively. This also sets the 'genome' slot in the 'seqinfo' field to 'NA'.
- seqchar: Extracts the 'seqnames' as a character vector.

Value

For 'ncbi', 'ucsc': An object of the same class as the input.
For 'seqchar': A character vector with 'seqnames'.

See Also

seqnames, mcols
seqlevelsStyle

Examples

```r
mutect_path = system.file("examples", "mutect.tsv", package = "SomaticSignatures")
vr1 = readMutect(mutect_path, strip = TRUE)

## extract the GRanges
gr = granges(vr1)

## convert back and forth
gr_ncbi = ncbi(gr)
gr_ucsc = ucsc(gr_ncbi)

identical(gr, gr_ucsc)

## extract the seqnames as a character vector
seq_chars = seqchar(gr)
```
hs-chrs

Human Chromosome Names

Description
List human chromosome names.

Usage
- `hsToplevel()`
- `hsAutosomes()`
- `hsAllosomes()`
- `hsLinear()`

Value
Character vector with chromosome names (NCBI notation).

Examples
- `hsToplevel()`
- `hsAutosomes()`
- `hsAllosomes()`
- `hsLinear()`

kmerFrequency

Kmer Frequency

Description
Estimate the occurrence frequency of k-mers in a reference sequence.

Usage
```
kmerFrequency(ref, n = 1e4, k = 1, ranges = as(seqinfo(ref), "GRanges"))
```

Arguments
- `ref`
 A `BSgenome` or `FaFile` object matching the respective reference sequence [required].
- `n`
 The number of samples to draw [integer, default: 1e4].
- `k`
 The 'k'-mer size of the context, including the variant position [integer, default: 3].
- `ranges`
 Ranges in respect to the reference sequence to sample from [GRanges, default: take from the 'seqinfo' slot].
Details

The k-mer frequency is estimated by random sampling of ‘n’ locations across the specified ‘ranges’ of the reference sequence.

Value

A named vector, with names corresponding to the k-mer and value to the frequency.

Examples

```r
library(BSgenome.Hsapiens.UCSC.hg19)

kmer_freq = kmerFrequency(BSgenome.Hsapiens.UCSC.hg19, 1e2, 3)
```

kmers-data

Kmer datasets

Description

3mer base frequencies of human whole-genome and whole-exome sampling, based on the hg19/GRCh37 reference sequence.

For details, see the ‘inst/scripts/kmers-data.R’ script.

Value

Vectors with frequency of k-mers.

See Also

kmerFrequency

Examples

```r
data(kmers, package = "SomaticSignatures")
```
motif-functions

Group somatic motifs

Description
Tabulate somatic motifs by a grouping variable.

Usage
motifMatrix(vr, group = "sampleNames", normalize = TRUE)

Arguments
 vr GRanges object [required]
 group Grouping variable name [character, default: 'sampleNames']
 normalize Normalize to frequency

Details
The 'motifMatrix' function transforms the metadata columns of a 'VRanges' object, as returned by the 'mutationContext' function, to a matrix of the form 'motifs x groups'. This constitutes the bases for the estimation of the signatures. By default (with 'normalize' set to TRUE), the counts are transformed to frequencies, such that the sum of frequencies of each group equal 1. Otherwise (with 'normalize' set to FALSE), the counts for each motif in a group is returned.

Value
Occurance matrix with motifs in rows and samples in columns.

See Also
'mutationContext', 'mutationContextMutect'

Examples
Not run:
motifMatrix(sca_motifs, group = "study")

End(Not run)
mutation-distribution
Distributions of mutational locations.

Description

Summary and plotting function for characterizing the distributions of mutations along the genome.

Usage

```
mutationDistance(x)

plotRainfall(x, group, size = 2, alpha = 0.5, space.skip = 0, ...)
```

Arguments

- `x`
 A `GRanges` or `VRanges` object [required].

- `group`
 The variable name for color groups [optional].

- `size`
 Point size [default: 2]

- `alpha`
 Alpha value for points [default: 0.5]

- `space.skip`
 Space between chromosomes, as defined by `plotGrandLinear` [default: 0]

- `...`
 Additional arguments passed to `plotGrandLinear`

Value

- `mutationDensity`
 The position-sorted GRanges `x` with the additional column `distance`, specifying the distance from the previous mutation (or the beginning of the chromosome if it happens to be the first mutation on the chromosome.)

- `plotRainfall`
 Object of class `ggbio`, as returned by `plotGrandLinear`.

See Also

`plotGrandLinear` from the `ggbio` package

Examples

```r
library(GenomicRanges)
library(IRanges)

set.seed(1)
chr_len = 100
gr = GRanges(rep(1:3, each = 10),
  IRanges(start = sample.int(chr_len, 30, replace = FALSE), width = 1),
  mutation = sample(c("A", "C", "G", "T"), 30, replace = TRUE))
seqlengths(gr) = rep(chr_len, 3)

p = plotRainfall(gr)
```
mutational-normalization

Normalize Somatic Motifs

Description
Normalize somatic motifs, to correct for biases between samples.

Usage
normalizeMotifs(x, norms)

Arguments
- x: Matrix, as returned by `motifMatrix` [required]
- norms: Vector with normalization factors [required]. The names must match the base sequence names in 'x'.

Value
A matrix as 'x' with normalized counts.

See Also
- motifMatrix

mutational-plots

Mutational Plots

Description
Plots for variant analysis

Usage
plotVariantAbundance(x, group = NULL, alpha = 0.5, size = 2)

Arguments
- x: A VRanges object [required].
- group: Grouping variable, refers to a column name in 'x'. By default, no grouping is performed.
- alpha: Alpha value for data points.
- size: Size value for data points.
The `plotVariantAbundance` shows the variant frequency in relation to the total coverage at each variant position. This can be useful for examining the support of variant calls.

Value

A `ggplot` object.

mutational-signatures *Estimate Somatic Signatures*

Description

Estimate somatic signatures from sequence motifs with a selection of statistical methods.

Usage

`identifySignatures(m, nSigs, decomposition = nmfDecomposition, ...)`

Arguments

- `m`: Motif matrix, as returned by `motifMatrix` [required].
- `nSigs`: Number of signatures [integer, required].
- `decomposition`: Function to apply for the matrix decomposition. The methods NMF and PCA are already implemented in the functions `nmfDecomposition` and `pcaDecomposition`, respectively.
- `...`: Additional arguments passed to the `decomposition` function.

Details

`identifySignatures` estimate a set of r somatic signatures, based on a matrix decomposition method (such as NMF, PCA).

Value

An object of class `MutationalSignatures`.

See Also

The predefined decomposition functions: `nmfDecomposition` and `pcaDecomposition`

`mutationContext, mutationContextMutect, motifMatrix`
Examples

```r
data("sca_mm", package = "SomaticSignatures")
sigs = identifySignatures(sca_mm, 5)
```

Description

Object representing of somatic signatures.

Usage

```r
## S4 method for signature 'MutationalSignatures'
signatures(object)

## S4 method for signature 'MutationalSignatures'
samples(object)

## S4 method for signature 'MutationalSignatures'
observed(object)

## S4 method for signature 'MutationalSignatures'
fitted(object)

## S4 method for signature 'MutationalSignatures'
show(object)
```

Arguments

- `object`: 'MutationalSignatures' object

Value

`help("MutationalSignatures")`

See Also

`identifySignatures`
mutationContext

mutationContext functions

Description

Extract the sequence context surrounding SNVs from a genomic reference.

Usage

```
mutationContext(vr, ref, k = 3, strand = FALSE, unify = TRUE, check = FALSE)
mutableContextMutect(vr, k = 3, unify = TRUE)
mutableContextH5vc(vc, ms, unify = TRUE)
```

Arguments

- `vr` 'VRanges' with SNV substitutions, with 'ref' and 'alt' columns filled [required]. Each element of 'ref' and 'alt' have be a single base from the DNA bases (A,C,G,T). For 'mutationContextMutect', an object as returned by the 'read-Mutect' function.
- `ref` A 'BSgenome', 'FastaFile' or 'TwoBitfile' object representing the reference sequence [required]. More generally, any object with a defined 'getSeq' method can be used.
- `k` The 'k'-mer size of the context, including the variant position [integer, default: 3]. The variant will be located at the middle of the k-mer which requires 'k' to be odd.
- `strand` Should all variants be converted to the 'plus' strand? [logical, default: FALSE].
- `unify` Should the alterations be converted to have a C/T base pair as a reference alleles? [logical, default: TRUE]
- `check` Should the reference base of 'vr' be checked against 'ref' [logical, default: TRUE]? In case the two references do not match, a warning will be printed.
- `vc` A 'DataFrame' object as returned from a variant calling analysis by 'h5vc::h5dapply'. See the 'details' section for more information.
- `ms` A 'DataFrame' object as returned by 'h5vc::mutationSpectrum'. See the 'details' section for more information.

Details

The somatic motifs of a SNV, composed out of (a) the base change and (b) the sequence context surrounding the variant, is extracted from a genomic sequence with the 'mutationContext' function.

Different types of classes that represent the genomic sequence can used together with the 'mutationContext' function: 'BSgenome', 'FastaFile' and 'TwoBitfile' objects are supported through Bioconductor by default. See the vignette for examples discussing an analysis with non-reference genomes.
For mutect variant calls, all relevant information is already contained in the results and somatic motifs can be constructed by using the 'mutationContextMutect' function, without the need for the reference sequence. For h5vc variant calls, the information is merged from the outputs of the 'h5dapply' and 'mutationSpectrum' functions of the 'h5vc' package. A detailed example is shown in the vignette of the package.

Value

The original 'VRanges' object 'vr', with the additional columns

- alteration: DNAStringSet with 'ref|alt'.
- context: DNAStringSet with '..N..' of length 'k', where N denotes the variant position.

See Also

- `readMutect` for `mutationContextMutect`
- `showMethods("getSeq")` for genomic references that can be used

Examples

```r
mutect_path = system.file("examples", "mutect.tsv", package = "SomaticSignatures")
vr1 = readMutect(mutect_path)
ct1 = mutationContextMutect(vr1)
```

numberSignatures

Number of Signatures

Description

Assessment of the number of signatures in the data.

Usage

```r
assessNumberOfSignatures(m, nSigs, decomposition = nmfDecomposition, ..., nReplicates = 1)
plotNumberOfSignatures(gof)
```

Arguments

- `m`: Mutational spectrum matrix, same as used for 'identifySignatures'.
- `nSigs`: Vector of integers with the numbers of signatures that should be tested. See the 'nSigs' argument for 'identifySignatures'.
- `decomposition`: Function to apply for the matrix decomposition. See the 'decomposition' argument for 'identifySignatures'.
numberSignatures

... Additional arguments passed to the ‘decomposition’ function. See the ‘...’ argument for ‘identifySignatures’.

nReplicates How many runs should be used for assessing a value of ‘nSigs’? For decomposition methods with random seeding, values greater than 1 should be used.

gof Data frame, as returned of ‘assessNumberSignatures’.

Details

Compute the decomposition for a given number of signatures, and assess the goodness of the reconstruction between the observed and fitted mutational spectra M and V, respectively. The residual sum of squares (RSS)

\[\text{RSS} = \sum_{i,j} (M_{ij} - V_{ij})^2 \]

and the explained variance

\[evar = 1 - \frac{\text{RSS}}{\sum_{i,j} V_{ij}^2} \]

are used as summary statistics which can generally applied to all decomposition approaches.

The ‘plotNumberSignatures’ function visualizes the results of the ‘assessNumberSignatures’ analysis. Statistics of the individual runs are shown as gray crosses, whereas the mean across the runs is depicted in red.

If a decomposition method uses random seeding and hence recomputing the decomposition of the same data can yield different results, evaluating the summary statistics will give more reliable estimates of the number of signatures. This applies to some NMF algorithms, for example. Methods with a deterministic decomposition, such as the standard PCA, do not need this, since repeated computations will yield the same decomposition. This behaviour is controlled by the ‘nReplicates’ parameter, where the default of ‘1’ corresponds to a single run.

In practice, these summary statistics should not be trusted blindly, but rather interpreted together with biological knowledge and scientific reasoning. For a discussion of the interpretation of these statistics with special focus on the NMF decomposition, please refer to the references listed below.

Value

- assessNumberSignatures: A data frame with the RSS and explained variance for each run
- plotNumberSignatures: A ggplot object

References

See Also

identifySignatures
rss and evar functions of the NMF package.

Examples

data("sca_mm", package = "SomaticSignatures")

nSigs = 2:8
stat = assessNumberOfSignatures(sca_mm, nSigs, nReplicates = 3)

plotNumberOfSignatures(stat)

Description

Import ‘mutect’ calls.

Usage

readMutect(file, columns, strip = FALSE)

Arguments

file Location of the mutect tsv files [character, required]
columns Names of columns to import from the file [character vector, optional, default: missing]. If missing, all columns will be imported.
strip Should additional columns be imported? [logical, default: FALSE]. If TRUE, return only the bare ’VRanges’ object.

Details

The readMutect functions imports the mutational calls of a ’*.tsv’ file returned by the ’mutect’ caller to a ’VRanges’ object. For a description of the information of the columns, please refer to the mutect documentation.

Value

A ’VRanges’ object, with each row corresponding to one variant in the original file.
References

http://www.broadinstitute.org/cancer/cga/mutect_run

Examples

```r
mutect_path = system.file("examples", "mutect.tsv", package = "SomaticSignatures")
vr1 = readMutect(mutect_path)
vr2 = readMutect(mutect_path, strip = TRUE)
```

sca-data

SomaticCancerAlterations Results

Description

Motif matrix and 5 estimated signatures (NMF) from the somatic variant calls in the 'Somatic-CancerAlterations' package. For details, see the vignette of the 'SomaticSignatures' package.

See Also

SomaticCancerAlterations package

Examples

```r
data(sca_mm, package = "SomaticSignatures")
data(sca_sigs, package = "SomaticSignatures")
```

scaSNVRanges

SNV VRanges from SCA dataset

Description

Create VRanges for somatic SNV calls in the SomaticCancerAlterations dataset.

Usage

```r
scaSNVRanges(chrs = hsAutosomes())
```
signature-plots

Arguments

chrs
Chromosomes to include in the results. Defaults to human autosomes.

Value

A `VRanges` object with somatic SNV calls.

Note

While the `scaSNVRanges` is provided for a convenient access to the data of the `SomaticCancerAlterations` package, we encourage you to develop an understanding about the underlying data and its conversion to a `VRanges` object.

See Also

SomaticCancerAlterations package

signature-plots
Plot Mutational Signatures

Description

Visualize estimated signatures, sample contribution, and mutational spectra.

Usage

```r
plotObservedSpectrum(s, colorby = c("sample", "alteration"))
plotFittedSpectrum(s, colorby = c("sample", "alteration"))
plotMutationSpectrum(vr, group, colorby = c("sample", "alteration"), normalize = TRUE)
plotSignatureMap(s)
plotSignatures(s, normalize = FALSE, percent = FALSE)
plotSampleMap(s)
plotSamples(s, normalize = FALSE, percent = FALSE)
```

Arguments

s
MutationalSignatures object [required]

vr
VRanges object

colorby
Which variable to use for the coloring in the spectra representation.

normalize
Plot relative contributions (TRUE) instead of absolute (FALSE) ones.

percent
Display the results as fraction (FALSE) or percent (TRUE).

group
Characterizing string that represents the variable name used for grouping.
Details

With the plotting function, the obtained signatures and their occurrence in the samples can be visualized either as a heatmap ("plotSignatureMap", "plotSampleMap") or a bar chart ("plotSignature", "plotSamples").

Since the plotting is based on the 'ggplot2' framework, all properties of the plots can be fully controlled by the user after generating the plots. Please see the examples for some customizations and the ‘ggplot2’ documentation for the entire set of options.

Value

A 'ggplot' object, whose properties can further be changed

See Also

See the ggplot2 package for customizing the plots.

Examples

data("sca_sigs", package = "SomaticSignatures")

plotSamples(sigs_nmf)

plotSignatures(sigs_nmf, normalize = TRUE)

customize the plots
p = plotSamples(sigs_nmf)

library(ggplot2)
(re)move the legend
p = p + theme(legend.position = "none")
change the axis labels
p = p + xlab("Studies")
add a title
p = p + ggtitle("Somatic Signatures in TGCA WES Data")
change the color scale
p = p + scale_fill_brewer(palette = "Blues")
decrease the size of x-axis labels
p = p + theme(axis.text.x = element_text(size = 9))

p

signatures21-data 21 Signatures

Description

Published signatures, taken from ftp://ftp.sanger.ac.uk/pub/cancer/AlexandrovEtAl/signatures.txt
References

Examples

data(signatures21, package = "SomaticSignatures")

head(signatures21)

SomaticSignatures package

Description

Identifying somatic signatures of single nucleotide variants. This package provides an infrastructure related to the methodology described in Nik-Zainal (2012, Cell), with flexibility in the matrix decomposition algorithms.

Details

The 'SomaticSignatures' package offers the framework for identifying mutational signatures of single nucleotide variants (SNVs) from high-throughput experiments. In the concept of mutational signatures, a base change resulting from an SNV is regarded in term of motifs which embeds the variant in the context of the surrounding genomic sequence. Based on the frequency of such motifs across samples, mutational signatures and their occurrence in the samples can be estimated. An introduction into the methodology and a use case are illustrated in the vignette of this package.

Author(s)

Maintainer: Julian Gehring, EMBL Heidelberg <julian.gehring@embl.de>

References

Examples

vignette(package = "SomaticSignatures")

variants-utils Utility functions

Description

Utility functions

Usage

dfConvertColumns(x, from = "character", to = "factor")

Arguments

x A 'data.frame' to convert [required].
from The class of the columns to be converted [default: 'character'].
to The class of the columns to be converted to [default: 'factor'].

Details

The 'dfConvertColumns' converts all columns of a data frame with class 'from' to the class 'to'.

Value

A 'data.frame' object.
Index

+ Topic IO
 readMutect, 16
+ Topic datasets
 kmerData, 7
 SCA-data, 17
 signatures21-data, 19
+ Topic manip
 GRanges-converters, 4
 mutationContext, 13
+ Topic package
 SomaticSignatures, 20
+ Topic utilities
 GRanges-converters, 4
 assessNumberOfSignatures
 (numberOfSignatures), 14
 cluster-spectrum, 2
 clusterSpectrum (cluster-spectrum), 2
 decomposition-signatures, 3
 dfConvertColumns (variants-utils), 21
 dist, 3
 evar, 16
 findSignatures (mutational-signatures), 11
 fitted (MutationalSignatures), 12
 fitted, MutationalSignatures-method
 (MutationalSignatures), 12
 gcContent, 4
 ggplot2, 19
 GRanges-converters, 4
 hclust, 3
 hs-chrs, 6
 hsAllosomes (hs-chrs), 6
 hsAutosomes (hs-chrs), 6
 hsLinear (hs-chrs), 6
 hstoplevel (hs-chrs), 6
 identifySignatures, 12, 16
 identifySignatures (mutational-signatures), 11
 k3we (kmerData), 7
 k3wg (kmerData), 7
 kmerFrequency, 6, 7
 kmerData (kmerData), 7
 kmers-data, 7
 mcols, 5
 motif-functions, 8
 motifMatrix, 10, 11
 motifMatrix (motif-functions), 8
 mutation-distribution, 9
 mutational-normalization, 10
 mutational-plots, 10
 mutational-signatures, 11
 MutationalSignatures, 11, 12
 MutationalSignatures-class
 (MutationalSignatures), 12
 mutationContext, 11, 13
 mutationContextH5vc (mutationContext), 13
 mutationContextMutect, 11
 mutationDistance
 (mutation-distribution), 9
 ncbi (GRanges-converters), 4
 NMF, 4, 16
 nmfDecomposition, 11
 nmfDecomposition
 (decomposition-signatures), 3
 nmfSignatures
 (decomposition-signatures), 3
 normalizeMotifs
 (mutational-normalization), 10
<table>
<thead>
<tr>
<th>Term</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>numberSignatures</td>
<td>14</td>
</tr>
<tr>
<td>observed (MutationalSignatures)</td>
<td>12</td>
</tr>
<tr>
<td>observed, MutationalSignatures-method</td>
<td>12</td>
</tr>
<tr>
<td>pcaDecomposition</td>
<td>11</td>
</tr>
<tr>
<td>pcaDecomposition (decomposition-signatures)</td>
<td>3</td>
</tr>
<tr>
<td>pcaMethods</td>
<td>4</td>
</tr>
<tr>
<td>pcaSignatures (decomposition-signatures)</td>
<td>3</td>
</tr>
<tr>
<td>plotFittedSpectrum (signature-plots)</td>
<td>18</td>
</tr>
<tr>
<td>plotGrandLinear</td>
<td>9</td>
</tr>
<tr>
<td>plotMutationSpectrum (signature-plots)</td>
<td>18</td>
</tr>
<tr>
<td>plotNumberOfSignatures (numberSignatures)</td>
<td>14</td>
</tr>
<tr>
<td>plotObservedSpectrum (signature-plots)</td>
<td>18</td>
</tr>
<tr>
<td>plotRainfall (mutation-distribution)</td>
<td>9</td>
</tr>
<tr>
<td>plotSampleMap (signature-plots)</td>
<td>18</td>
</tr>
<tr>
<td>plotSamples (signature-plots)</td>
<td>18</td>
</tr>
<tr>
<td>plotSignatureMap (signature-plots)</td>
<td>18</td>
</tr>
<tr>
<td>plotSignatures (signature-plots)</td>
<td>18</td>
</tr>
<tr>
<td>plotVariantAbundance (mutational-plots)</td>
<td>10</td>
</tr>
<tr>
<td>prcomp</td>
<td>4</td>
</tr>
<tr>
<td>readMutect</td>
<td>14, 16</td>
</tr>
<tr>
<td>rss</td>
<td>16</td>
</tr>
<tr>
<td>samples (MutationalSignatures)</td>
<td>12</td>
</tr>
<tr>
<td>samples, MutationalSignatures-method</td>
<td>12</td>
</tr>
<tr>
<td>sca-data</td>
<td>17</td>
</tr>
<tr>
<td>sca_mm (sca-data)</td>
<td>17</td>
</tr>
<tr>
<td>sca_sigs (sca-data)</td>
<td>17</td>
</tr>
<tr>
<td>scaSNVRanges</td>
<td>17</td>
</tr>
<tr>
<td>seqchar (GRanges-converters)</td>
<td>4</td>
</tr>
<tr>
<td>seqlevelsStyle</td>
<td>5</td>
</tr>
<tr>
<td>seqnames</td>
<td>5</td>
</tr>
<tr>
<td>show (MutationalSignatures)</td>
<td>12</td>
</tr>
<tr>
<td>show, MutationalSignatures-method</td>
<td>12</td>
</tr>
<tr>
<td>signature-plots</td>
<td>18</td>
</tr>
<tr>
<td>signatures (MutationalSignatures)</td>
<td>12</td>
</tr>
<tr>
<td>signatures, MutationalSignatures-method</td>
<td>12</td>
</tr>
<tr>
<td>signatures21 (signatures21-data)</td>
<td>19</td>
</tr>
<tr>
<td>signatures21-data</td>
<td>19</td>
</tr>
<tr>
<td>sgs_nmm (sca-data)</td>
<td>17</td>
</tr>
<tr>
<td>sgs_pca (sca-data)</td>
<td>17</td>
</tr>
<tr>
<td>SomaticSignatures</td>
<td>20</td>
</tr>
<tr>
<td>SomaticSignatures-package</td>
<td>20</td>
</tr>
<tr>
<td>ucsc (GRanges-converters)</td>
<td>4</td>
</tr>
<tr>
<td>variants-utils</td>
<td>21</td>
</tr>
</tbody>
</table>