Package ‘GDCRNATools’

September 12, 2018

Title GDCRNATools: an R/Bioconductor package for integrative analysis of lncRNA, mRNA, and miRNA data in GDC

Version 1.0.7

Author Ruidong Li,
Han Qu,
Shibo Wang,
Julong Wei,
Le Zhang,
Renyuan Ma,
Jianming Lu,
Jianguo Zhu,
Wei-De Zhong,
Zhenyu Jia

Maintainer Ruidong Li <r11012@ucr.edu>,
Han Qu <hqu002@ucr.edu>

Description This is an easy-to-use package for downloading, organizing, and integrative analyzing RNA expression data in GDC with an emphasis on deciphering the lncRNA-mRNA related ceRNA regulatory network in cancer.
Three databases of lncRNA-miRNA interactions including spongeScan, starBase, and miRcode, as well as three databases of mRNA-miRNA interactions including miRTarBase, starBase, and miRcode are incorporated into the package for ceRNAs network construction. limma, edgeR, and DESeq2 can be used to identify differentially expressed genes/miRNAs. Functional enrichment analyses including GO, KEGG, and DO can be performed based on the clusterProfiler and DO packages. Both univariate CoxPH and KM survival analyses of multiple genes can be implemented in the package. Besides some routine visualization functions such as volcano plot, bar plot, and KM plot, a few simply shiny apps are developed to facilitate visualization of results on a local webpage.

Depends R (>= 3.5.0)

License Artistic-2.0

Encoding UTF-8

LazyData false
R topics documented:

Imports shiny, jsonlite, json, XML, limma, edgeR, DESeq2,
clusterProfiler, DOSE, org.Hs.eg.db, biomaRt, survival,
survminer, pathview, ggplot2, gplots, DT, GenomicDataCommons,
BiocParallel

Suggests knitr, testthat

VignetteBuilder knitr

biocViews GeneExpression, DifferentialExpression, GeneRegulation,
GeneTarget, NetworkInference, Survival, Visualization,
GeneSetEnrichment, NetworkEnrichment, Network, RNASeq, GO, KEGG

RoxygenNote 6.1.0

git_url https://git.bioconductor.org/packages/GDCRNATools

git_branch RELEASE_3_7

git_last_commit 17b7ea4

git_last_commit_date 2018-09-03

Date/Publication 2018-09-11

R topics documented:

- GDCRNATools-package
- DEGAll
- enrichOutput
- gdcBarPlot
- gdcCEAnalysis
- gdcClinicalDownload
- gdcClinicalMerge
- gdcCorPlot
- gdcDEAnalysis
- gdcDEReport
- gdcEnrichAnalysis
- gdcEnrichPlot
- gdcExportNetwork
- gdcFilterDuplicate
- gdcFilterSampleType
- gdcHeatmap
- gdcKMPlot
- gdcMatchSamples
- gdcParseMetadata
- gdcRNADownload
- gdcRNAMerge
- gdcSurvivalAnalysis
- gdcVolcanoPlot
- gdcVoomNormalization
- lncTarget
- mirCounts
- pcTarget
- rnaCounts
- shinyCorPlot
- shinyKMPlot
- shinyPathview
This is an easy-to-use package for downloading, organizing, and integrative analyzing RNA expression data in GDC with an emphasis on deciphering the lncRNA-mRNA related ceRNA regulatory network in cancer.

Description

This is an easy-to-use package for downloading, organizing, and integrative analyzing RNA expression data in GDC with an emphasis on deciphering the lncRNA-mRNA related ceRNA regulatory network in cancer.

DEGAll

Output of `gdcDEAnalysis` for downstream analysis

Description

Output of `gdcDEAnalysis` for downstream analysis

enrichOutput

Output of `gdcEnrichAnalysis` for visualization

Description

Output of `gdcEnrichAnalysis` for visualization

gdcBarPlot

Bar plot of differentially expressed genes/miRNAs

Description

A bar plot showing the number of down-regulated and up-regulated DE genes/miRNAs of different biotypes

Usage

`gdcBarPlot(deg, angle = 0, data.type)`

Arguments

- **deg**: a dataframe generated from `gdcDEReport` containing DE genes/miRNAs ids, logFC, etc.
- **angle**: a numeric value specifying the angle of text on x-axis. Default is 0
- **data.type**: one of 'RNAseq' and 'miRNAs'
gdcCEAnalysis

Value
A bar plot

Author(s)
Ruidong Li and Han Qu

Examples
```r
genes <- c("ENSG00000231806", "ENSG00000261211", "ENSG00000260920", 
"ENSG00000228594", "ENSG00000125170", "ENSG00000179909", 
"ENSG00000280012", "ENSG00000134612", "ENSG00000213071")
symbol <- c("PCAT7", "AL031123.2", "AL031985.3", 
"FNDC10", "DOK4", "ZNF154", 
"RPL23AP61", "FOLH1B", "LPAL2")
group <- rep(c("long_non_coding", "protein_coding", "pseudogene"), each=3)
logFC <- c(2.8, 2.3, -1.1, 1.9, -1.2, -1.6, 1.5, 2.1, -1.1)
FDR <- rep(c(0.1, 0.00001, 0.0002), each=3)
deg <- data.frame(symbol, group, logFC, FDR)
rownames(deg) <- genes
gdcBarPlot(deg, angle=45, data.type="RNAseq")
```

gdcCEAnalysis

Competing endogenous RNAs (ceRNAs) analysis

Description
Identify ceRNAs by (1) number of shared miRNAs between lncRNA and mRNA; (2) expression correlation of lncRNA and mRNA; (3) regulation similarity of shared miRNAs on lncRNA and mRNA; (4) sensitivity correlation

Usage
```r
gdcCEAnalysis(lnc, pc, deMIR = NULL, lnc.targets = "starBase", 
pc.targets = "starBase", rna.expr, mir.expr)
```

Arguments
- **lnc**: a vector of Ensembl long non-coding gene ids
- **pc**: a vector of Ensembl protein coding gene ids
- **deMIR**: a vector of differentially expressed miRNAs. Default is NULL
- **lnc.targets**: a character string specifying the database of miRNA-lncRNA interactions. Should be one of ‘spongeScan’, ‘starBase’, and ‘miRcode’. Default is ‘starBase’.
 - Or a list of miRNA-lncRNA interactions generated by users
- **pc.targets**: a character string specifying the database of miRNA-lncRNA interactions. Should be one of ‘spongeScan’, ‘starBase’, and ‘miRcode’. Default is ‘starBase’.
 - Or a list of miRNA-lncRNA interactions generated by users
- **rna.expr**: voom transformed gene expression data
- **mir.expr**: voom transformed mature miRNA expression data
gdcCEAnalysis

Value

A dataframe containing ceRNA pairs, expression correlation between lncRNA and mRNA, the number and hypergeometric significance of shared miRNAs, regulation similarity score, and the mean sensitivity correlation (the difference between Pearson correlation and partial correlation) of multiple lncRNA-miRNA-mRNA triplets, etc.

Author(s)

Ruidong Li and Han Qu

References

Examples

####### ceRNA network analysis #######
deLNC <- c('ENSG00000260920', 'ENSG00000242125', 'ENSG00000261211')
dePC <- c('ENSG0000043355', 'ENSG00000109586', 'ENSG00000144355')
genes <- c(deLNC, dePC)
rnaExpr <- data.frame(matrix(c(2.7,7.0,4.9,6.9,4.6,2.5, 0.5,2.5,5.7,6.5,4.9,3.8, 2.1,2.9,5.9,5.7,4.5,3.5, 2.7,5.9,4.5,5.8,5.2,3.0, 2.5,2.2,5.3,4.4,4.4,2.9, 2.4,3.8,6.2,3.8,3.8,2.2),6,6), stringsAsFactors=FALSE)
rownames(rnaExpr) <- genes
colnames(rnaExpr) <- samples

mirExpr <- data.frame(matrix(c(7.7,7.4,7.9,8.9,8.6,9.5, 5.1,4.4,5.5,8.5,4.4,3.5, 4.9,5.5,6.9,6.1,5.5,4.1, 12.4,13.1,15.1,15.4,13.0,12.8, 2.5,2.2,5.3,4.4,4.4,2.9, 2.4,2.7,6.2,1.5,4.4,4.2),6,6), stringsAsFactors=FALSE)
colnames(mirExpr) <- samples

ceOutput <- gdcCEAnalysis(lnc = deLNC, pc = dePC, lnc.targets = 'starBase', pc.targets = 'starBase', rna.expr = rnaExpr, mir.expr = mirExpr)
gdcClinicalDownload Download clinical data in GDC

Description

Download clinical data in GDC either by providing the manifest file or specifying the project id and data type

Usage

```r
  gdcClinicalDownload(manifest = NULL, project.id, 
                       directory = "Clinical", write.manifest = FALSE, 
                       method = "gdc-client")
```

Arguments

- `manifest`: manifest file that is downloaded from the GDC cart. If provided, files whose UUIDs are in the manifest file will be downloaded via gdc-client, otherwise, project id argument should be provided to download data automatically. Default is NULL
- `project.id`: project id in GDC
- `directory`: the folder to save downloaded files. Default is 'Clinical'
- `write.manifest`: logical, whether to write out the manifest file
- `method`: method that is used to download data. Either 'GenomicDataCommons' which is a well established method developed in the GenomicDataCommons package, or alternatively 'gdc-client' which uses the gdc-client tool developed by GDC. Default is 'gdc-client'.

Value

downloaded files in the specified directory

Author(s)

Ruidong Li and Han Qu

Examples

```r
  ####### Download Clinical data by manifest file #######
  manifest <- 'Clinical.manifest.txt'
  ## Not run: gdcClinicalDownload(manifest = manifest, 
  ## directory = 'Clinical')
  ## End(Not run)

  ####### Download Clinical data by project id #######
  project <- 'TCGA-PRAD'
  ## Not run: gdcClinicalDownload(project.id = project, 
  ## write.manifest = TRUE, 
  ## directory = 'Clinical')
  ## End(Not run)
```
gdcClinicalMerge

Description

Merge clinical data in .xml files that are downloaded from GDC to a dataframe

Usage

```r
gdcClinicalMerge(path, key.info = TRUE, organized = FALSE)
```

Arguments

- `path`
 path to downloaded files for merging
- `key.info`
 logical, whether to return the key clinical information only. If TRUE, only clinical information such as age, stage, grade, overall survival, etc. will be returned
- `organized`
 logical, whether the clinical data have already been organized into a single folder (e.g., data downloaded by the `GenomicDataCommons` method are already organized). Default is FALSE.

Value

A dataframe of clinical data with rows are patients and columns are clinical traits

Author(s)

Ruidong Li and Han Qu

Examples

```r
# Merge clinical data
path <- file.path('Clinical/

## Not run: clinicalDa <- gdcClinicalMerge(path=path, key.info=TRUE)
```

gdcCorPlot

Description

Scatter plot showing the expression correlation between two genes/miRNAs

Usage

```r
gdcCorPlot(gene1, gene2, rna.expr, metadata)
```

Arguments

- `gene1`
 an Ensembl gene id or miRBase v21 mature miRNA id
- `gene2`
 an Ensembl gene id or miRBase v21 mature miRNA id
- `rna.expr`
 voom transformed expression data
- `metadata`
 metadata parsed from `gdcParseMetadata`
Value

A scatter plot with line of best fit

Author(s)

Ruidong Li and Han Qu

Examples

genes <- c('ENSG00000000938', 'ENSG00000000571', 'ENSG00000001036', 'ENSG00000001084', 'ENSG00000001167', 'ENSG00000001460')
metaMatrix <- data.frame(sample_type=rep(c('PrimaryTumor', 'SolidTissueNormal'), each=3),
sample=samples,
days_to_death=seq(100,600,100),
days_to_last_follow_up=rep(NA,6))
rnaExpr <- matrix(c(2.7,7.0,4.9,6.9,4.6,2.5,
0.5,2.5,5.7,6.5,4.9,3.8,
2.1,2.9,5.9,5.7,4.5,5.3,5,
2.7,5.9,5.4,5.8,5.2,3.0,
2.5,2.2,5.3,4.4,4.4,2.9,
2.4,3.8,6.2,3.8,3.8,4.2),6,6)
rownames(rnaExpr) <- genes
colnames(rnaExpr) <- samples
gdcCorPlot(gene1 = 'ENSG00000000938',
gene2 = 'ENSG000000001084',
rna.expr = rnaExpr,
metadata = metaMatrix)

gdcDEAnalysis

Differential gene expression analysis

Description

Performs differential gene expression analysis by limma, edgeR, and DESeq2

Usage

gdcDEAnalysis(counts, group, comparison, method = "limma",
n.cores = NULL, filter = TRUE)

Arguments

counts a dataframe or numeric matrix of raw counts data generated from gdcRNAMerge
group a vector giving the group that each sample belongs to
comparison a character string specifying the two groups being compared. Example: comparison='PrimaryTumor-SolidTissueNormal'
method one of 'limma', 'edgeR', and 'DESeq2'. Default is 'limma'

Note: It may take long time for method='DESeq2' with a single core

n.cores a numeric value of cores to be used for method='DESeq2' to accelerate the analysis process. Default is NULL

filter logical, whether to filter out low expression genes. If TRUE, only genes with cpm > 1 in more than half of the samples will be kept. Default is TRUE

Value

A dataframe containing Ensembl gene ids/miRBase v21 mature miRNA ids, gene symbols, biotypes, fold change on the log2 scale, p value, and FDR etc. of all genes/miRNAs of analysis.

Note

It may takes long time for method='DESeq2' with a single core. Please use multiple cores if possible

Author(s)

Ruidong Li and Han Qu

References

Examples

genes <- c('ENSG00000000938', 'ENSG00000000971', 'ENSG00000001036', 'ENSG00000001084', 'ENSG00000001167', 'ENSG00000001460')
metaMatrix <- data.frame(sample_type=rep(c('PrimaryTumor', 'SolidTissueNormal'), each=3), sample=samples, days_to_death=seq(100,600,100), days_to_last_follow_up=rep(NA,6))
rnaMatrix <- matrix(c(6092,11652,5426,4383,3334,2656, 8436,2547,7943,3741,6302,13976, 1506,6467,5324,3651,1566,2780, 834,4623,10275,5639,6183,4548, 24702,43,1987,269,3322,2410, 2815,2089,3804,230,883,5415), 6,6)
rownames(rnaMatrix) <- genes
colnames(rnaMatrix) <- samples
DEGAll <- gdcDEAnalysis(counts = rnaMatrix, group = metaMatrix$sample_type,
gdcDEReport

comparison = 'PrimaryTumor-SolidTissueNormal',
method = 'limma')

gdcDEReport

Report differentially expressed genes/miRNAs

Description
Report genes/miRNAs that are differentially expressed satisfying a given threshold

Usage
gdcDEReport(deg, gene.type = "all", fc = 2, pval = 0.01)

Arguments
deg A dataframe of DE analysis result from gdcDEAnalysis
gene.type one of 'all', 'long_non_coding', 'protein_coding', and 'miRNAs'. Default is 'all'
fc a numeric value specifying the threshold of fold change
pval a numeric value specifying the threshold of p value

Value
A dataframe or numeric matrix of differentially expressed genes/miRNAs

Author(s)
Ruidong Li and Han Qu

Examples
genes <- c("ENSG00000000938", "ENSG00000000971", "ENSG00000001036", "ENSG00000001084", "ENSG00000001167", "ENSG00000001406")
metaMatrix <- data.frame(sample_type=rep(c('PrimaryTumor', 'SolidTissueNormal'),each=3),
sample=samples,
days_to_death=seq(100,600,100),
days_to_last_follow_up=rep(NA,6))
rnaMatrix <- matrix(c(6092,11652,5426,4383,3334,2656,
8436,2547,7943,3741,6302,13976,
1506,6467,5324,3651,1566,2708,
834,4623,10275,5639,6183,4548,
24702,43,1987,269,3322,2410,
2815,2089,3804,230,883,5415), 6,6)
rownames(rnaMatrix) <- genes
colnames(rnaMatrix) <- samples
DEGAll <- gdcDEAnalysis(counts = rnaMatrix,
gdcEnrichAnalysis

```r

group = metaMatrix$sample_type,
comparison = 'PrimaryTumor-SolidTissueNormal',
method = 'limma')
dePC <- gdcDEReport(deg=DEGAll)
```

gdcEnrichAnalysis
Functional enrichment analysis

Description

Performs Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway and Disease Ontology (DO) enrichment analyses by *clusterProfiler* and *DOSE* packages

Usage

```r
gdcEnrichAnalysis(gene, simplify = TRUE, level = 0)
```

Arguments

- `gene`
a vector of Ensembl gene id
- `simplify`
logical, specifying whether to remove redundant GO terms. Default `simplify=TRUE`
- `level`
a numeric value, restrict the GO enrichment result at a specific GO level. Default is 0, which means all terms should be returned

Value

A dataframe of enrichment analysis result containing enriched terms, number of overlapped genes, p value of hypergeometric test, fdr, fold of enrichment, Ensembl gene ids, gene symbols, and functional categories, etc.

Author(s)

Ruidong Li and Han Qu

References

Examples

```r

#### GO, KEGG, DO enrichment analysis ####

deg <- c('ENSG00000000938', 'ENSG00000000971', 'ENSG00000001036',
  'ENSG00000001884', 'ENSG0000001167', 'ENSG00000001468')

# Not run: enrichOutput <- gdcEnrichAnalysis(gene=deg, simplify=TRUE)
```
gdcEnrichPlot

Plots for enrichment analysis

Description

Bar plot and bubble plot for GO, KEGG, and DO functional enrichment analysis

Usage

gdcEnrichPlot(enrichment, type = "bar", category = "KEGG",
num.terms = 10, bar.color = "black")

Arguments

enrichment a dataframe generated from gdcEnrichAnalysis
type type of the plot, should be one of 'bar' and 'bubble'
category which category should be plotted. Possible values are 'KEGG', 'GO', 'GO_BP', 'GO_CC', 'GO_MF', and 'DO'. Default is 'KEGG'
um.terms number of terms to be plotted. Default is 10
bar.color color of the bar plot. Default is 'black'

Value

A bar plot or bubble plot of functional enrichment analysis

Author(s)

Ruidong Li and Han Qu

Examples

######## Enrichment plots ########
enrichOutput<-data.frame(Terms=c('hsa05414-Dilated cardiomyopathy (DCM)',
'hsa04510-Focal adhesion',
'hsa05205-Proteoglycans in cancer'),
Category=rep('KEGG',3),
FDR=c(0.001,0.002,0.003))
gdcEnrichPlot(enrichment=enrichOutput, type='bar', category='KEGG')

gdcExportNetwork

Export network for Cytoscape

Description

Export nodes and edges of ce network for Cytoscape visualization

Usage

gdcExportNetwork(ceNetwork, net)
gdcFilterDuplicate

Arguments

ceNetwork a dataframe generated from gdcCEAnalysis
net one of 'nodes' and 'edges'

Value

A dataframe of nodes or edges

Author(s)

Ruidong Li and Han Qu

Examples

####### ceRNA network analysis #######
ceOutput <- data.frame(lncRNAs=c('ENSG00000242125','ENSG00000242125',
 'ENSG00000245532'),
 Genes=c('ENSG00000043355','ENSG00000109586',
 'ENSG00000144355'),
 miRNAs=c('hsa-miR-340-5p','hsa-miR-340-5p',
 'hsa-miR-320b,hsa-miR-320d,
 hsa-miR-320c,hsa-miR-320a'),
 Counts=c(1,1,4), stringsAsFactors=FALSE)

####### Export edges #######
edges <- gdcExportNetwork(ceNetwork=ceOutput, net='edges')

####### Export nodes #######
Not run: nodes <- gdcExportNetwork(ceNetwork=ceOutput, net='nodes')

gdcFilterDuplicate Filter out duplicated samples

Description

Filter out samples that are sequenced for two or more times

Usage

gdcFilterDuplicate(metadata)

Arguments

metadata metadata parsed from gdcParseMetadata

Value

A filtered dataframe of metadata without duplicated samples

Author(s)

Ruidong Li and Han Qu
gdcParseMetadata

Parse metadata by project id and data type.

```r
metaMatrix <- gdcParseMetadata(project.id='TARGET-RT', data.type='RNAseq')
```

gdcFilterDuplicate

Filter out duplicate metadata.

```r
metaMatrix <- gdcFilterDuplicate(metadata=metaMatrix)
```

gdcFilterSampleType

Filter out other type of samples.

- **Description**
 - Filter out samples that are neither *Solid Tissue Normal* nor *Primary Tumor*.

- **Usage**
  ```r
gdcFilterSampleType(metadata)
  ```

- **Arguments**
 - `metadata`: metadata parsed from `gdcParseMetadata`

- **Value**
 - A filtered dataframe of metadata with *Solid Tissue Normal* and *Primary Tumor* samples only.

- **Author(s)**
 - Ruidong Li and Han Qu

gdcHeatmap

Heatmap of differentially expressed genes/miRNAs.

- **Description**
 - A heatmap showing unsupervised hierarchical clustering of DE genes/miRNAs by `heatmap.2` in the `gplots` package.

- **Usage**
  ```r
gdcHeatmap(deg.id, metadata, rna.expr)
  ```

- **Arguments**
 - `deg.id`: a vector of Ensembl gene ids or miRBase v21 mature miRNA ids
 - `metadata`: metadata parsed from `gdcParseMetadata`
 - `rna.expr`: `voom` transformed expression data
A heatmap with rows are DE genes/miRNAs and columns are samples. Solid Tissue Normal samples are labeled with blue and Primary Tumor samples are labeled with red.

Author(s)
Ruidong Li and Han Qu

Examples

genes <- c('ENSG00000000938', 'ENSG00000000971', 'ENSG00000001036', 'ENSG00000001084', 'ENSG00000001167', 'ENSG00000001460')
metaMatrix <- data.frame(sample_type=rep('PrimaryTumor',6),
 sample=samples,
 days_to_death=seq(100,600,100),
 days_to_last_follow_up=rep(NA,6))
rnaExpr <- matrix(c(2.7,7.0,4.9,6.9,4.6,2.5,
 0.5,2.5,5.7,6.5,4.9,3.8,
 2.1,2.0,5.9,5.7,4.5,3.5,
 2.7,5.9,4.5,5.8,5.2,3.0,
 2.5,2.2,5.3,4.4,4.2,9,
 2.4,3.8,6.2,3.8,3.8,4.2),6,6)
rownames(rnaExpr) <- genes
colnames(rnaExpr) <- samples
gdcHeatmap(deg.id=genes, metadata=metaMatrix, rna.expr=rnaExpr)

gdcKMPPlot

Description
Plot Kaplan Meier survival curve

Usage

gdcKMPPlot(gene, rna.expr, metadata, sep = "median")

Arguments

gene an Ensembl gene id
rna.expr voom transformed expression data
metadata metadata parsed from gdcParseMetadata
sep a character string specifying which point should be used to separate low-expression and high-expression groups. Possible values are '1stQu', 'mean', 'median', and '3rdQu'. Default is 'median'
gdcMatchSamples

Value
A plot of Kaplan Meier survival curve

Author(s)
Ruidong Li and Han Qu

Examples

####### KM plots #######

genes <- c('ENSG00000000938', 'ENSG00000000971', 'ENSG00000001036',
'ENSG00000001084', 'ENSG00000001167', 'ENSG00000001460')
samples <- c('TCGA-2F-A9KO-01', 'TCGA-2F-A9KP-01',
'TCGA-2F-A9KQ-01', 'TCGA-2F-A9KR-01',
'TCGA-2F-A9KT-01', 'TCGA-2F-A9KW-01')

metaMatrix <- data.frame(sample_type=rep('PrimaryTumor', 6),
sample=samples,
days_to_death=seq(100, 600, 100),
days_to_last_follow_up=rep(NA, 6))
rnaExpr <- matrix(c(2.7, 7.0, 4.9, 6.9, 4.6, 2.5,
0.5, 2.5, 5.7, 6.5, 4.9, 3.8,
2.1, 2.9, 5.9, 5.7, 4.5, 3.5,
2.7, 5.9, 5.5, 8.5, 2.3, 0,
2.5, 2.2, 2.5, 4.4, 4.4, 2.9,
2.4, 3.8, 6.2, 3.8, 3.8, 4.2), 6, 6)
rownames(rnaExpr) <- genes
colnames(rnaExpr) <- samples
gdcKMPlot(gene='ENSG00000000938', rna.expr=rnaExpr,
metadata=metaMatrix, sep='median')

Description
Check if samples in the metadata and expression data match

Usage
gdcMatchSamples(metadata, rna.expr)

Arguments

metadata metadata parsed from gdcParseMetadata
rna.expr voom transformed expression data

Value
A logical value. If TRUE, all the samples matched
gdcParseMetadata

Parse metadata

Description

Parse metadata either by providing the `.json` file that is downloaded from GDC cart or by parse metadata automatically by providing the project id and data type.

Usage

```r
gdcParseMetadata(metafile = NULL, project.id, data.type, write.meta = FALSE)
```

Arguments

- `metafile`: metadata file in `.json` format download from GDC cart. If provided, the metadata will be parsed from this file, otherwise, `project.id` and `data.type` arguments should be provided to retrieve metadata automatically. Default is `NULL`.
- `project.id`: project id in GDC.
- `data.type`: one of 'RNAseq' and 'miRNAs'.
- `write.meta`: logical, whether to write the metadata to a `.json` file.

Value

A dataframe of metadata containing file_name, sample_id, etc. as well as some basic clinical data.
gdcRNADownload

Description
Download gene expression quantification and isoform expression quantification data from GDC either by providing the manifest file or by specifying the project id and data type.

Usage
```
gdcRNADownload(manifest = NULL, project.id, data.type, directory = "Data", write.manifest = FALSE, method = "gdc-client")
```

Arguments
- **manifest** manifest file that is downloaded from the GDC cart. If provided, files whose UUIDs are in the manifest file will be downloaded via gdc-client, otherwise, project and data.type arguments should be provided to download data automatically. Default is NULL.
- **project.id** project id in GDC
- **data.type** one of 'RNAseq' and 'miRNAs'
- **directory** the folder to save downloaded files. Default is 'Data'
- **write.manifest** logical, whether to write out the manifest file
- **method** method that is used to download data. Either 'GenomicDataCommons' which is a well-established method developed in the GenomicDataCommons package, or alternatively 'gdc-client' which uses the gdc-client tool developed by GDC. Default is 'gdc-client'.

Value
Downloaded files in the specified directory

Author(s)
Ruidong Li and Han Qu
gdcRNAMerge

Description

Merge raw counts data that is downloaded from GDC to a single expression matrix

Usage

gdcRNAMerge(metadata, path, data.type, organized = FALSE)

Arguments

metadata metadata parsed from gdcParseMetadata
path path to downloaded files for merging
data.type one of 'RNAseq' and 'miRNAs'
organized logical, whether the raw counts data have already been organized into a single folder (e.g., data downloaded by the 'GenomicDataCommons' method are already organized). Default is FALSE.

Value

A dataframe or numeric matrix of raw counts data with rows are genes or miRNAs and columns are samples

Author(s)

Ruidong Li and Han Qu

Examples

########## Merge RNA expression data ##########
metaMatrix <- gdcParseMetadata(project.id='TARGET-RT',
data.type='RNAseq')
Not run: rnaExpr <- gdcRNAMerge(metadata=metaMatrix, path='RNAseq/',
data.type='RNAseq')
End(Not run)
gdcSurvivalAnalysis Univariate survival analysis of multiple genes

Description
Univariate Cox Proportional-Hazards and Kaplan Meier survival analysis of a vector of genes

Usage
gdcSurvivalAnalysis(gene, rna.expr, metadata, method = "coxph", sep = "median")

Arguments
gene a vector of Ensembl gene ids
rna.expr voom transformed expression data
metadata metadata parsed from gdcParseMetadata
method method for survival analysis. Possible values are 'coxph' and 'KM'. Default is 'coxph'
sep which point should be used to separate low-expression and high-expression groups for method='KM'. Possible values are '1stQu', 'mean', 'median', and '3rdQu'. Default is 'median'

Value
A dataframe or numeric matrix of hazard ratio, 95% confidence interval, p value, and FDR

Author(s)
Ruidong Li and Han Qu

References

Examples
genes <- c(’ENSG00000000938’, ’ENSG00000000971’, ’ENSG00000001036’, ’ENSG00000001084’, ’ENSG00000001167’, ’ENSG00000001460’)
metaMatrix <- data.frame(sample_type=rep(’PrimaryTumor’, 6),...
gdcVolcanoPlot

```r
gdcVolcanoPlot(sample=samples,
                days_to_death=seq(100,600,100),
                days_to_last_follow_up=rep(NA,6))
rnaExpr <- matrix(c(2.7,7.0,4.9,6.9,4.6,2.5,
                    0.5,2.5,5.7,6.5,4.9,3.8,
                    2.1,2.9,5.9,5.7,4.5,3.5,
                    2.7,5.9,4.5,5.8,5.2,3.0,
                    2.5,2.2,5.3,4.4,4.4,2.9,
                    2.4,3.8,6.2,3.8,3.8,4.2),6,6)
rownames(rnaExpr) <- genes
colnames(rnaExpr) <- samples
survOutput <- gdcSurvivalAnalysis(gene=genes,
                                   rna.expr=rnaExpr, metadata=metaMatrix)
```

gdcVolcanoPlot

Volcano plot of differentially expressed genes/miRNAs

Description

A volcano plot showing differentially expressed genes/miRNAs

Usage

```r
gdcVolcanoPlot(deg.all, fc = 2, pval = 0.01)
```

Arguments

- `deg.all`: a dataframe generated from `gdcDEAnalysis` containing all genes of analysis no matter they are differentially expressed or not
- `fc`: a numeric value specifying the threshold of fold change
- `pval`: a numeric value specifying the threshold of p value

Value

A volcano plot

Author(s)

Ruidong Li and Han Qu

Examples

```r
genes <- c('ENSG00000231806', 'ENSG00000261211', 'ENSG00000260920',
           'ENSG00000228594', 'ENSG00000125170', 'ENSG00000179909',
           'ENSG00000280012', 'ENSG00000134612', 'ENSG000000213071')
symbol <- c('PCAT7', 'AL031123.2', 'AL031985.3',
            'FNDC10', 'DOK4', 'ZNF154',
            'RPL23A9', 'FOLH1B', 'LPAL2')
group <- rep(c('long_non_coding', 'protein_coding', 'pseudogene'), each=3)
logFC <- c(2.8,2.3,1.1,1.9,1.2,-1.6,1.5,2.1,-1.1)
FDR <- rep(c(0.1,0.00001,0.0002), each=3)
deg <- data.frame(symbol, group, logFC, FDR)
rownames(deg) <- genes
gdcVolcanoPlot(deg.all=deg)
```
gdcVoomNormalization \textit{TMM normalization and voom transformation}

Description

Normalize raw counts data by TMM implemented in \texttt{edgeR} and then transform it by \texttt{voom} in \texttt{limma}.

Usage

\begin{verbatim}
gdcVoomNormalization(counts, filter = TRUE)
\end{verbatim}

Arguments

- \texttt{counts}: raw counts of RNA/miRNA expression data
- \texttt{filter}: logical, whether to filter out low-expression genes. If \texttt{TRUE}, only genes with cpm > 1 in more than half of the samples will be kept. Default is \texttt{TRUE}.

Value

A dataframe or numeric matrix of TMM normalized and \texttt{voom} transformed expression values on the log2 scale.

Author(s)

Ruidong Li and Han Qu

References

Examples

\begin{verbatim}
####### Normalization #######
rnaMatrix <- matrix(sample(1:100,100), 4, 25)
rnaExpr <- gdcVoomNormalization(counts=rnaMatrix, filter=FALSE)
\end{verbatim}

\textbf{Description}

\textit{miRNA-IncRNA interactions}

\textbf{Description}

\textit{miRNA-IncRNA interactions}
mirCounts

miRNA counts data of TCGA-CHOL

Description

miRNA counts data of TCGA-CHOL

pcTarget

miRNA-mRNA interactions

Description

miRNA-mRNA interactions

rnaCounts

RNAseq counts data of TCGA-CHOL

Description

RNAseq counts data of TCGA-CHOL

shinyCorPlot

Shiny correlation plot

Description

A simple **shiny** app to show scatter plot of correlations between two genes/miRNAs on local web browser

Usage

```
shinyCorPlot(gene1, gene2, rna.expr, metadata)
```

Arguments

- `gene1` a vector of Ensembl gene ids or miRBase v21 mature miRNA ids
- `gene2` a vector of Ensembl gene ids or miRBase v21 mature miRNA ids
- `rna.expr` voom transformed expression data
- `metadata` metadata parsed from `gdcParseMetadata`

Value

a local webpage for visualization of correlation plots
Author(s)
Ruidong Li and Han Qu

Examples

```r
genes <- c('ENSG00000000938', 'ENSG00000000971', 'ENSG00000001036', 'ENSG00000001084', 'ENSG00000001167', 'ENSG00000001460')
metaMatrix <- data.frame(sample_type=rep('PrimaryTumor', 6), sample=samples, days_to_death=seq(100, 600, 100), days_to_last_follow_up=rep(NA, 6))
rnaExpr <- matrix(c(2.7, 7.0, 4.9, 6.9, 4.6, 2.5, 0.5, 2.5, 5.7, 6.5, 4.9, 3.8, 2.1, 2.9, 5.9, 5.7, 4.5, 3.5, 2.7, 5.9, 4.5, 5.8, 5.2, 3.0, 2.5, 2.2, 5.3, 4.4, 4.4, 2.9, 2.4, 3.8, 6.2, 3.8, 3.8, 4.2), 6, 6)
rownames(rnaExpr) <- genes
colnames(rnaExpr) <- samples
## Not run: shinyKMPlot(gene1=genes[1:3], gene2=genes[4:5], rna.expr=rnaExpr, metadata=metaMatrix)
## End(Not run)
```

Description
A simple shiny app to show KM survival curves on local web browser

Usage

`shinyKMPlot(gene, rna.expr, metadata)`

Arguments

- `gene` a vector of Ensembl gene ids
- `rna.expr` voom transformed expression data
- `metadata` metadata parsed from `gdcParseMetadata`

Value

a local webpage for visualization of KM plots

Author(s)
Ruidong Li and Han Qu
Examples

```r
genes <- c('ENSG00000000938', 'ENSG00000000971', 'ENSG00000001036', 'ENSG00000001084', 'ENSG00000001167', 'ENSG000000001460')
metaMatrix <- data.frame(sample_type=rep('PrimaryTumor',6),
                        sample=samples,
                        days_to_death=seq(100,600,100),
                        days_to_last_follow_up=rep(NA,6))
rnaExpr <- matrix(c(2.7,7.0,4.9,6.9,4.6,2.5,
                    0.5,2.5,5.7,6.5,4.9,3.8,
                    2.1,2.9,5.9,5.7,4.5,3.5,
                    2.7,5.9,4.5,5.8,5.2,3.0,
                    2.5,2.2,5.3,4.4,4.2,9,
                    2.4,3.8,6.2,3.8,3.8,4.2),6,6)
rownames(rnaExpr) <- genes
colnames(rnaExpr) <- samples
## Not run: shinyKMPlot(gene=genes, rna.expr=rnaExpr, metadata=metaMatrix)
## End(Not run)
```

Description

A simple shiny app to show pathways generated by pathview package on local web browser

Usage

```r
shinyPathview(gene, pathways, directory = ".")
```

Arguments

- **gene**: a vector of numeric values (eg. fold change on log2 scale) with names are Ensembl gene ids
- **pathways**: a vector of KEGG pathway ids
- **directory**: the folder to save pathway figures. Default is the working directory

Value

a local webpage for visualization of KEGG maps

Author(s)

Ruidong Li and Han Qu
Examples

genes <- c('ENSG00000000938', 'ENSG00000000971', 'ENSG00000001036', 'ENSG00000001084', 'ENSG00000001167', 'ENSG00000001460')
pathways <- c("hsa05414~Dilated cardiomyopathy (DCM)",
 "hsa05410~Hypertrophic cardiomyopathy (HCM)",
 "hsa05412~Arrhythmogenic right ventricular cardiomyopathy",
 "hsa04512~ECM-receptor interaction",
 "hsa04510~Focal adhesion",
 "hsa04360~Axon guidance",
 "hsa04270~Vascular smooth muscle contraction",
 "hsa05205~Proteoglycans in cancer",
 "hsa04022~cGMP-PKG signaling pathway",
 "hsa00480~Glutathione metabolism")
Not run: shinyPathview(gene=genes, pathways=pathways)
Index

Topic datasets
 DEGAll, 3
 enrichOutput, 3
 lncTarget, 22
 mirCounts, 23
 pcTarget, 23
 rnaCounts, 23

DEGAll, 3

enrichOutput, 3

gdcBarPlot, 3
 gdcCEAnalysis, 4, 13
 gdcClinicalDownload, 6
 gdcClinicalMerge, 7
 gdcCorPlot, 7
 gdcDEAnalysis, 3, 8, 10, 21
 gdcDEReport, 3, 10
 gdcEnrichAnalysis, 3, 11, 12
 gdcEnrichPlot, 12
 gdcExportNetwork, 12
 gdcFilterDuplicate, 13
 gdcFilterSampleType, 14
 gdcHeatmap, 14
 gdcKMPlot, 15
 gdcMatchSamples, 16
 gdcParseMetadata, 7, 13–16, 17, 19, 20, 23, 24
 gdcRNADownload, 18
 gdcRNAMerge, 8, 19
 GDCRNATools (GDCRNATools-package), 3
 GDCRNATools-package, 3
 gdcSurvivalAnalysis, 20
 gdcVolcanoPlot, 21
 gdcVoomNormalization, 22

heatmap.2, 14

lncTarget, 22

mirCounts, 23

pcTarget, 23

shinyCorPlot, 23
 shinyKMPlot, 23
 shinyPathview, 25
 voom, 4, 7, 14–16, 20, 22–24