We put a lot of time and effort in developing casper, if you use casper for your research please do cite our paper [Rossell et al. 2014]. Our support comes from research institutions and grants, your citations is an easy way to ensure we continue having time to develop casper.

1 Quick start

The function `wrapKnown` runs the whole analysis pipeline for a single sample, starting from a sorted and indexed BAM file and reference transcriptome and returning estimated log-expression in an ExpressionSet object. `wrapKnown` also returns the following secondary output, which may be ignored for routine analyses: processed reads (procBam object), path counts (pathCounts object) and read start and fragment length distributions (readDists object).

The `wrapKnown` function needs an annotated transcriptome, which can either come from the UCSC or any user-specified gtf file (e.g. as provided by the Gencode project or returned by the Cufflinks RABT module). To generate a transcriptome from the UCSC database you may use the following code, changing 'hg19' for your desired genome.

```r
library(GenomicFeatures)
genome='hg19'
genDB<-makeTranscriptDbFromUCSC(genome=genome, tablename='refGene')hg19DB <- procGenome(genDB=genDB, genome=genome, mc.cores=6)
```

To generate a transcriptome from a gtf file use the following code, changing the file name for your gtf file (including the full path).

```r
genDB <- import('gencode.v18.annotation.gtf')gencode18DB <- procGenome(genDB, genome='gencode18')
```

Recall that the input BAM file should be indexed and sorted, and that this index is placed in the same directory as the corresponding BAM. The `samtools` "index" function can be used to generate such an index.
To call `wrapKnown` use the code below (for information on the parameters please refer to the man page of the function).

```r
bamFile="/path_to_bam/sorted.bam"
ans <- wrapKnown(bamFile=bamFile, mc.cores.int=4, mc.cores=3, genomeDB=hg19DB, names(ans)
head(exprs(ans\$exp))
```

After you run `wrapKnown` on all your bam files, you can easily combine the expressions from all samples into a single ExpressionSet using function `mergeExp`. The code below contains an example to combine four samples. Adding 'explCnts' to the keep argument results in the number of counts for each gene and each sample to be saved in the fData of the combined ExpressionSet (by default, only the total count across all samples is stored). The function `quantileNorm` performs quantile normalization, which is typically needed to take into account the different sequencing depth in each sample.

```r
sampleNames <- c('A1','A2','B1','B2')
x <- mergeExp(A1$exp,A2$exp,B1$exp,B2$exp,sampleNames=sampleNames, keep=c('transcript' x$group <- c('A','A','B','B') xnorm <- quantileNorm(x)
boxplot(exprs(x))
boxplot(exprs(xnorm))
```

The remaining sections explain in more detail the model, functions and classes included in the package. They are intended to help you obtain a better understanding of the methodology underlying `casper` by obtaining expression estimates step-by-step. However, in practice we recommend that you use `wrapKnown`, as it is more efficiently implemented both in terms of memory requirements and computational speed.

2 Introduction

The package `casper` implements statistical methodology to infer gene alternative splicing from paired-end RNA-seq data [Rossell et al., 2014]. In this section we overview the methodology and highlight its advantages. For further details, please see the paper. In subsequent sections we illustrate how to use the package with a worked example.

`casper` uses a probability model to estimate expression at the variant level. Key advantages are that `casper` summarizes RNA-seq data in a manner that is more informative than the current standard, and that is determines the read non-uniformity and fragment length (insert size) distribution.
from the observed data. More specifically, the current standard is to record the number of reads overlapping with each exon and connecting each pair of exons. The fact that only pairwise connections between exons are considered disregards important information, namely that numerous read pairs visit more than 2 exons. While this was not a big issue with older sequencing technologies, it has become relevant with current protocols which produce longer sequences. For instance, in a 2012 ENCODE Illumina Hi-Seq dataset [Rossell et al. 2014] found that roughly 2 out of 3 read pairs visited ≥ 3 exons.

casper summarizes the data by recording the exon path followed by each pair, and subsequently counts the number of exons following each path. For instance, suppose that the left end visits exons 1 and 2, while the right end visits exon 3. In this case we would record the path $1\cdot 2\cdot 3$, and count the number of reads which also visit the same sequence of exons. Table 1 illustrates how these summaries might look like for a gene with 3 exons (examples in subsequent sections show counts for experimental data). The first row indicates there are 210 sequences for which both ends only overlap with exon 1. The second and third rows contain counts for exons 2 and 3. The fourth row indicates that for 90 sequences the left end visited exon 1 and the right end exon 2. The fifth row illustrates the gain of information associated to considering exon paths: we have 205 pairs where the left end visits exons 1-2 and the right end visits exon 3. These reads can only have originated from a variant that contains the three exons in the gene, and hence are highly informative. If we only counted pairwise connections, this information would be lost (and incidentally, the usual assumption that counts are independent would be violated). The sixth row indicates that 106 additional pairs visited exons 1-2-3, but they did so in a different manner (now it’s the right end the one that visits two exons). In this simplified example rows 5 and 6 give essentially the same information and could be combined, but for longer genes they do provide different information.

Now suppose that the gene has two known variants: the full variant v_1 (i.e. using the 3 exons) and the variant v_2 which only contains exons 1 and 2. The third column in Table 1 shows the probability that a read pair generated from v_1 follows each path, and similarly the fourth column for v_2. These probabilities are simply meant as an example, in practice casper estimates these probabilities precisely by considering the fragment length distribution and possible read non-uniformity. Notice that read pairs generated under v_2 have zero probability of following any path that visits exon 3, as v_2 does not contain this exon. Further, the proportion of observed counts following each path is very close to what one would expect if all reads came from v_1, hence intuitively one would estimate that the expression of v_1 must be close
Table 1: Exon path counts is the basic data fed into casper. Counts are compared to the probability of observing each path under each considered variant.

to 1. From a statistical point of view, estimating the proportion of pairs generated by each variant can be viewed as a mixture model where the aim is to estimate the weight of each component (i.e. variant) in the mixture.

A key point is that, in order to determine the probability of each path, one would need to know the distribution of fragment lengths (i.e. outer distance between pairs) and read starts (e.g. read non-uniformity due to 3’ biases). These quantities are in general not known, and in our experience reports from sequencing facilities are oftentimes inaccurate. Further, these distributions may differ substantially from simple parametric forms that are usually assumed (e.g. the fragment length distribution is not well approximated by a Normal or Poisson distribution). Instead, [Rossell et al. 2014] proposed estimating these distributions non-parametrically from the observed data. In short, these distributions are estimated by selecting reads mapping to long exons (fragment size) or to genes with a single known transcript (read start). There are typically millions of such reads, therefore the estimates can be obtained at a very high precision. Examples are shown in subsequent sections (note: the illustration uses a small subset of reads, in real applications the estimates are much more precise).

Finally we highlight a more technical issue. By default casper uses a prior distribution which, while being essentially non-informative, it pushes the estimates away from the boundaries (e.g. variants with 0 expression) and thus helps reduce the estimation error. The theoretical justification lies in the typical arguments in favor of pooling that stem from Stein’s paradox and related work. Empirical results in [Rossell et al. 2014] show that, by combining all the features described above, casper may reduce the estimation error by a factor of 4 when compared to another popular method. Currently, casper implements methods to estimate the expression for a set of known
variants. We are in the process of incorporating methodology for de novo variant searches, and also for sample size calculations, i.e. determining the sequencing depth, read length or the number of patients needed for a given study.

3 Aligning reads and importing data

The input for casper are BAM files containing aligned reads. There are several software options to produce BAM files. TopHat [Trapnell et al., 2009] is a convenient option, as it is specifically designed to map reads spanning exon junctions accurately. As an illustration, suppose paired end reads produced with the Illumina platform are stored in the FASTQ files sampleR1.fastq and sampleR2.fastq. The TopHat command to align these reads into a BAM file is:

```
> tophat --solexa1.3-quals -p 4 -r 200 /pathToBowtieIndexes/hg19
sampleR1.fastq sampleR2.fastq
```

The option `-solexa1.3-quals` indicates the version of quality scores produced by the Illumina pipeline and `-p 4` to use 4 processors. The option `-r` is required by TopHat for paired-end reads and indicates the average fragment size. The fragment size is around 200-300 for many experiments, so any value of `-r` in this range should be reasonable. After importing the data into R, one can use the casper function `getDistrs` to estimate the fragment size distribution (see below). This can be used as a check that the specified `-r` was reasonable. In our experience, results are usually robust to moderate miss-specifications of `-r`.

BAM files can be read into R using the Rsamtools package [Morgan and Pages]. For the sake of computational speed, in this vignette we will use data that has already been imported in a previous session. The data was obtained from the RGASP1 project at ftp://ftp.sanger.ac.uk/pub/gencode/rgasp/RGASP1/inputdata/human.fastq.

We used reads from replicate 1 and lane 1 in sample K562_2x75. In order for the vignette to compile quickly here we illustrate the usage of the package by selecting the reads mapping to 6 genes in chromosome 1 (see Section 4). The code required to import the data into Bioconductor is provided below. It is important to add the option `tag='XS'`, so that information on whether the experiment was stranded or not is imported.

```
> library(Rsamtools)
> what <- scanBamWhat(); what <- what[!(what %in% c('seq','qual'))]
> flag <- scanBamFlag(isPaired=TRUE,hasUnmappedMate=FALSE)
```
4 Pre-processing the data for analysis

We start by obtaining and processing genome annotation data. Here we illustrate our package with a few selected genes obtained from the human genome version hg19. The commands that one would use to store the full annotated genome into `hg19DB` is

```r
param <- ScanBamParam(flag=flag, what=what, tag='XS')
bam0 <- scanBam(file='accepted_hits.bam', param=param)[[1]]
```

We load the imported BAM file and processed human genome annotation. `K562.r1l1` was imported using `scanBam` and is a list containing read-level information such as read identifier, chromosome and alignment position, position of the matched paired end etc. `hg19DB` is an object of class `annotatedGenome` and contains information regarding genes, transcripts, exons etc. It also indicates the genome version that was used to create the genome and the creation date.

```r
data(K562.r1l1)
names(K562.r1l1)
```

The lengths displayed above indicate the number of transcripts per island. RNA-seq experiments typically contain some very short RNA sequences, which can be due to RNA degradation. The function `rmShortInserts` removes all sequences with insert size (i.e. distance between start of left-end and start of right-end) below a user-specified level. We remove reads with insert sizes below 100bp. We then use `getDistrs` to estimate the fragment length distribution and the read start distribution.
We visualize the fragment length distribution. The resulting plot is shown in Figure 1, left panel. Notice there few fragments shorter than 140bp. Given the reduced number of reads in our toy data the estimate is not accurate, and hence we overlay a smoother estimate (blue line).

We produce a histogram to inspect the read start distribution. The histogram reveals that reads are non-uniformly distributed along transcripts (Figure 1, right panel). Rather, there is a bias towards the 3’ end.

As a final pre-processing step, we use the function procBam to divide each read pair into a series of disjoint intervals. The intervals indicate genomic regions that the read aligned to consecutively, i.e. with no gaps.
The resulting object `pbam0` is a list with element `pbam` of type `RangedData` and `stranded` indicating whether the RNA-seq experiment was stranded or not.

5 Estimating expression for a set of known variants

In order to obtain expression estimates, we first determine the exons visited by each read, which we denominate the `exon path`, and count the number of reads following the same exon path.

```r
&gt; pc <- pathCounts(pbam0, DB=hg19DB)
&gt; pc

Non-stranded known pathCounts object with 21 islands and 15 non zero islands.

&gt; head(pc@counts[[1]])

$ 326$
NULL

$ 463$

.17737-17738. .17732-17733-17733. .17726-17727. .17734-17735-17736. 2 1 1 1 3
.17728-17729-17729. .17726-17727-17727. .17736-17736. .17736-17737. 1 1 2 1 1
.17731-17732-17732. .17738-17741-17741. .17727-17728-17728. .17737-17737. 3 1 1 1 1
.17726-17726. .17728-17728-17729. .17728-17729. 90 1 1

$ 11211$

.129388-129389-129389. .129389-129389. .129386-129387-129387. 1 48 1
.129382-129383-129383. .129381-129382-129382. .129382-129382. 2 1 1
.129379-129380-129380. .129383-129384. .129381-129382. 1
```

seqinfo: 13 sequences from an unspecified genome; no seqlengths

The output of `pathCounts` is a named integer vector counting exon paths. The names follow the format ".exon1.exon2-exon3.exon4.", with dashes making the split between exons visited by left and right-end reads correspondingly. For instance, an element in `pc` named `.1314.1315-1315.1316.` indicates the number of reads for which the left end visited exons 1314 and 1315 and the right end visited exons 1315 and 1316. The precise genomic coordinates of each exon are stored in the annotated genome.
The function `calcExp` uses the exon path counts, read start and fragment length distributions and genome annotation to obtain RPKM expression estimates. Expression estimates are returned in an `ExpressionSet` object, with RefSeq transcript identifiers as `featureNames` and the internal gene ids used by `hg19DB` stored as feature data.

```r
> eset <- calcExp(distrs=distrs, genomeDB=hg19DB, pc=pc, readLength=75, rpkm=FALSE)
> eset
ExpressionSet (storageMode: lockedEnvironment)
aassayData: 52 features, 1 samples
  element names: exprs
protocolData: none
phenoData: none
featureData
  featureNames: NM_005158 NM_001168236 ... NM_005502 (52 total)
  fvarLabels: transcript gene_id island_id explCnts
  fvarMetadata: labelDescription
experimentData: use 'experimentData(object)'
Annotation:
> head(exprs(eset))

  1
NM_005158  0.15246806
NM_001168236 0.18206660
NM_001136000  0.07945679
NM_001168239  0.26803610
NM_001136001  0.04616323
NM_007314   0.12214227

> head(fData(eset))

  transcript gene_id island_id explCnts
NM_005158   NM_005158   27   463   110
NM_001168236 NM_001168236 27   463   110
NM_001136000 NM_001136000 27   463   110
NM_001168239 NM_001168239 27   463   110
NM_001136001 NM_001136001 27   463   110
NM_007314   NM_007314   27   463   110

When setting `rpkm` to `FALSE`, `calExp` returns relative expression estimates for each isoform. That is, the proportion of transcripts originating from each variant, so that the estimated expressions add up to 1 for each island. If you would prefer relative expressions that add up to 1 within each gene you can use function `relexprByGene`. When setting `rpkm` to `TRUE`, expression estimates in reads per kilobase per million (RPKM) are returned instead.

```r
> eset <- calcExp(distrs=distrs, genomeDB=hg19DB, pc=pc, readLength=75, rpkm=TRUE)
> head(exprs(eset))

```
Let \( \hat{\pi}_i \) be the estimated relative expression for transcript \( i \) within gene \( g \), \( w_{gi} \) the transcript width in base pairs, \( n_g \) the number of reads overlapping with gene \( g \) and \( \sum n_g \) the total number of reads in the experiment. The RPKM for transcript \( i \) within gene \( g \) is computed as

\[
r_{gi} = 10^9 \frac{\hat{\pi}_{gi} n_g}{w_{gi} \sum n_g}
\]  

1

6 Plots and querying an annotatedGenome

casper incorporates some functionality to plot splicing variants and estimated expression levels. While in general we recommend using dedicated visualization software such as IGV [Robinson et al., 2011], we found useful to have some plotting capabilities within the package.

We start by showing how to extract information from an annotatedGenome object. Suppose we are interested in a gene with Entrez ID = 27. We can obtain the known variants for that gene with the function transcripts, and the chromosome with getChr. We can also find out the island identifier that casper assigned to that gene (recall that casper merges multiple genes that have some overlapping exons into a single gene island).

\[
> tx <- transcripts(entreid='27', genomeDB=hg19DB)
> tx
\]

IRangesList of length 8
$NM_001168236
IRanges of length 13

<table>
<thead>
<tr>
<th>start</th>
<th>end</th>
<th>width</th>
<th>names</th>
</tr>
</thead>
<tbody>
<tr>
<td>179198376</td>
<td>179198819</td>
<td>444</td>
<td>17741</td>
</tr>
<tr>
<td>179100446</td>
<td>179100616</td>
<td>171</td>
<td>17738</td>
</tr>
<tr>
<td>179095512</td>
<td>179095807</td>
<td>296</td>
<td>17737</td>
</tr>
<tr>
<td>179090730</td>
<td>179091002</td>
<td>273</td>
<td>17736</td>
</tr>
<tr>
<td>179089325</td>
<td>179089409</td>
<td>85</td>
<td>17735</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>179081444</td>
<td>179081533</td>
<td>90</td>
<td>17731</td>
</tr>
<tr>
<td>179079417</td>
<td>179079590</td>
<td>174</td>
<td>17729</td>
</tr>
<tr>
<td>179078343</td>
<td>179078576</td>
<td>234</td>
<td>17728</td>
</tr>
<tr>
<td>179078034</td>
<td>179078342</td>
<td>309</td>
<td>17727</td>
</tr>
</tbody>
</table>
Once we know the islandid, we can plot the variants with `genePlot`. The argument `col` can be set if one wishes to override the default rainbow colours.

```r
> genePlot(islandid=islandid, genomeDB=hg19DB)
```

Figure 2 shows the resulting plot. The plot shows the identifiers for all transcripts in the gene island, and exons are displayed as boxes. The x-axis indicates the genomic position in bp. For instance, the last three variants have a different transcription end site than the rest, indicated by their last exon being different. Similarly, the first variant has an alternative transcription start site.

It can also be useful to add the aligned reads and estimated expression to the plot. This can be achieved by passing the optional arguments `reads` (the object returned by `procBam`) and `exp` (the object returned by `calcExp`).

```r
> genePlot(islandid=islandid, genomeDB=hg19DB, reads=pbam0, exp=eset)
```

Figure 3 shows the plot. Black segments correspond to pairs with short insert size (i.e. where both ends are close to each other, by default up to `maxFragLength`=500bp). They indicate the outer limits of the pair (i.e. left-most position of the left read and right-most position of the right read). Red/blue segments indicate pairs with long insert sizes. The red lines indicates the gapped alignments and the discontinuous blue lines simply fill in the gaps, so that they are easier to visualize. By staring at this plot long enough, one can make some intuitive guesses as to which variants may be more expressed. For instance, many reads align to the left-most exon, which suggests that variant NM_00136001 is not highly expressed. Accordingly, `casper` estimated expression for this variant is lowest. There are few reads
aligning to the exons to the right-end (which may be partially explained by the presence of a 3’ bias). The last variant does not contain several of these genes, and hence has the highest estimated expression. Of course, inspecting the figure is simply meant to provide some intuition, to quantify alternative splicing casper uses precise probability calculations.

References


Figure 3: Transcripts for gene with Entrez ID= 27

http://www.e-publications.org/ims/submission/AOAS/user/submissionFile/13921?confirm=ede240bc