Introduction to SeqVarTools

Stephanie M. Gogarten

March 11, 2015

Contents

1 Introduction 1

2 Converting a Variant Call Format (VCF) file 1

3 Applying methods to subsets of data 6

4 Examples 6
 4.1 Transition/transversion ratio 6
 4.2 Heterozygosity 10
 4.3 Principal Component Analysis 11
 4.4 Hardy-Weinberg Equilibrium 12
 4.5 Mendelian errors 14

1 Introduction

 SeqArray provides an alternative to the Variant Call Format (VCF) for storage of variants called from sequencing data, enabling efficient storage, fast access to subsets of the data, and rapid computation.

 SeqVarTools provides an interface to the SeqArray storage format with tools for many common tasks in variant analysis.

 It is highly recommended to read the vignette in SeqArray in addition to this document to understand the data structure and full array of features.

2 Converting a Variant Call Format (VCF) file

To work with SeqVarTools, we must first convert a VCF file into the SeqArray GDS format. All information in the VCF file is preserved in the resulting GDS file.

> library(SeqVarTools)
> vcffile <- seqExampleFileName("vcf")
> gdsfile <- "tmp.gds"
> seqVCF2GDS(vcffile, gdsfile, verbose=FALSE)
> gds <- seqOpen(gdsfile)
> gds

Object of class "SeqVarGDSClass"
File: /tmp/RtmptJCfeE/Rbuild767b76c6731/SeqVarTools/vignettes/tmp.gds
+ [] *
|---+ description [] *
|---+ sample.id { VStr8 90 ZIP(28.33%) }
|---+ variant.id { Int32 1348 ZIP(35.39%) }
|---+ position { Int32 1348 ZIP(86.11%) }
|---+ chromosome { VStr8 1348 ZIP(2.14%) }
|---+ allele { VStr8 1348 ZIP(16.86%) }
|---+ genotype [] *
| |---+ data { Bit2 2x90x1348 ZIP(28.36%) }
| |---+ extra.index { Int32 3x0 ZIP } *
| |---+ extra { Int16 0 ZIP }
|---+ phase []
| |---+ data { Bit1 90x1348 ZIP(0.24%) }
| |---+ extra.index { Int32 3x0 ZIP } *
| |---+ extra { Bit1 0 ZIP }
|---+ annotation []
| |---+ id { VStr8 1348 ZIP(40.89%) }
| |---+ qual { Float32 1348 ZIP(0.57%) }
| |---+ filter { Int32,factor 1348 ZIP(0.56%) } *
| |---+ info []
| | |---+ AA { VStr8 1348 ZIP(23.55%) } *
| | |---+ AC { Int32 1348 ZIP(26.89%) } *
| | |---+ AN { Int32 1348 ZIP(20.29%) } *
| | |---+ DP { Int32 1348 ZIP(62.24%) } *
| | |---+ HM2 { Bit1 1348 ZIP(106.51%) } *
| | |---+ HM3 { Bit1 1348 ZIP(106.51%) } *
| | |---+ OR { VStr8 1348 ZIP(12.92%) } *
| | |---+ GP { VStr8 1348 ZIP(34.24%) } *
| | |---+ BN { Int32 1348 ZIP(21.31%) } *
| |---+ format []
| | |---+ DP [] *
| | | |---+ data { Int32 90x1348 ZIP(33.83%) }

We can look at some basic information in this file, such as the reference and alternate alleles.

> ref(gds)

A DNAStringSet instance of length 1348
 width seq
 [1] 1 T
 [2] 1 G
 [3] 1 G
 [4] 1 T
 [5] 1 G
... ...
...
> head(refChar(gds))
[1] "T" "G" "G" "T" "G" "C"
> alt(gds)
DNAStringSetList of length 1348
[[1]] C
[[2]] A
[[3]] A
[[4]] C
[[5]] C
[[6]] T
[[7]] A
[[8]] T
[[9]] A
[[10]] G
...
<1338 more elements>
> head(altChar(gds))
[1] "C" "A" "A" "C" "C" "T"
How many alleles are there for each variant?
> table(nAlleles(gds))
 2 3
1346 2
Two variants have 3 alleles (1 REF and 2 ALT). We can extract the second alternate allele for these variants by using the argument n=2 to altChar.
> multi.allelic <- which(nAlleles(gds) > 2)
> altChar(gds)[multi.allelic]
[1] "T,CT" "T,AT"
> altChar(gds, n=1)[multi.allelic]
[1] "T" "T"
> altChar(gds, n=2)[multi.allelic]
[1] "CT" "AT"
These two sites have three alleles, two are each single nucleotides and the third is a dinucleotide, representing an indel.
> table(isSNV(gds))
FALSE TRUE
2 1346

> isSNV(gds)[multi.allelic]
[1] FALSE FALSE

Chromosome and position can be accessed as vectors or as a GRanges object.

> head(seqGetData(gds, "chromosome"))
[1] "1" "1" "1" "1" "1" "1"

> head(seqGetData(gds, "position"))
[1] 1105366 1105411 1110294 3537996 3538692 3541597

> granges(gds)
GRanges object with 1348 ranges and 0 metadata columns:

<table>
<thead>
<tr>
<th>seqnames</th>
<th>ranges</th>
<th>strand</th>
</tr>
</thead>
<tbody>
<tr>
<td><Rle></td>
<td><IRanges></td>
<td><Rle></td>
</tr>
<tr>
<td>1</td>
<td>[1105366, 1105366]</td>
<td>*</td>
</tr>
<tr>
<td>2</td>
<td>[1105411, 1105411]</td>
<td>*</td>
</tr>
<tr>
<td>3</td>
<td>[1110294, 1110294]</td>
<td>*</td>
</tr>
<tr>
<td>4</td>
<td>[3537996, 3537996]</td>
<td>*</td>
</tr>
<tr>
<td>5</td>
<td>[3538692, 3538692]</td>
<td>*</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>1344</td>
<td>[43690908, 43690908]</td>
<td>*</td>
</tr>
<tr>
<td>1345</td>
<td>[43690970, 43690970]</td>
<td>*</td>
</tr>
<tr>
<td>1346</td>
<td>[43691009, 43691009]</td>
<td>*</td>
</tr>
<tr>
<td>1347</td>
<td>[43691073, 43691073]</td>
<td>*</td>
</tr>
<tr>
<td>1348</td>
<td>[48958933, 48958933]</td>
<td>*</td>
</tr>
</tbody>
</table>

seqinfo: 22 sequences from an unspecified genome; no seqlengths

We can also find the sample and variant IDs.

> head(seqGetData(gds, "sample.id"))
[1] "NA06984" "NA06985" "NA06986" "NA06989" "NA06994" "NA07000"

> head(seqGetData(gds, "variant.id"))
[1] 1 2 3 4 5 6

The variant IDs are sequential integers created by seqVCF2GDS. We may wish to rename them to something more useful. Note the "annotation/id" prefix required to retrieve the "id" variable. We need to confirm that the new IDs are unique (which is not always the case for the "annotation/id" field).

> rsID <- seqGetData(gds, "annotation/id")
> head(rsID)
[1] "rs11751804" "rs114390380" "rs1320571" "rs2760321" "rs2760320" "rs116230480"

> length(unique(rsID)) == length(rsID)
Renaming the variant IDs requires modifying the GDS file, so we have to close it first.

```r
> seqClose(gds)
> setVariantID(gdsfile, rsID)
> gds <- seqOpen(gdsfile)
> head(seqGetData(gds, "variant.id"))
```

```
[1] "rs111751804" "rs114390380" "rs1320571" "rs2760321" "rs2760320" "rs116230480"
```

Note that using character strings for variant.id instead of integers may decrease performance for large datasets.

getGenotype transforms the genotypes from the internal storage format to VCF-like character strings.

```r
> geno <- getGenotype(gds)
> dim(geno)
```

```
[1] 90 1348
```

```r
> geno[1:10, 1:5]
```

```
variant
sample     rs111751804 rs114390380 rs1320571 rs2760321 rs2760320
NA06984 NA          NA      "0/0"    "1/0"    "0/0"
NA06985 NA          NA      "0/0"    "1/1"    "0/0"
NA06986 "0/0"        "0/0"    "0/0"    "1/1"    "0/0"
NA06989 NA          NA      "0/0"    NA      "0/0"
NA06994 NA          NA      "0/0"    NA      "0/0"
NA07000 "0/0"        "0/0"    "0/0"    "1/1"    "1/0"
NA07037 "0/0"        "0/0"    "0/0"    "1/1"    "0/0"
NA07048 "0/0"        "0/0"    "0/0"    "1/1"    "0/0"
NA07051 "0/0"        "1/0"    "0/0"    "1/1"    "0/0"
NA07346 "0/0"        "0/0"    "0/0"    "1/1"    "0/0"
```

getGenotypeAlleles returns the nucleotides instead of integers.

```r
> geno <- getGenotypeAlleles(gds)
> geno[1:10, 1:5]
```

```
variant
sample     rs111751804 rs114390380 rs1320571 rs2760321 rs2760320
NA06984 NA          NA      "G/G"    "C/T"    "G/G"
NA06985 NA          NA      "G/G"    "C/C"    "G/G"
NA06986 "T/T"       "G/G"    "G/G"    "C/C"    "G/G"
NA06989 NA          NA      "G/G"    NA      "G/G"
NA06994 NA          NA      "G/G"    NA      "G/G"
NA07000 "T/T"       "G/G"    "G/G"    "C/C"    "C/G"
NA07037 "T/T"       "G/G"    "G/G"    "C/C"    "G/G"
NA07048 "T/T"       "G/G"    "G/G"    "C/C"    "G/G"
NA07051 "T/T"       "A/G"    "G/G"    "C/C"    "G/G"
NA07346 "T/T"       "G/G"    "G/G"    "C/C"    "G/G"
```
3 Applying methods to subsets of data

If a dataset is large, we may want to work with subsets of the data at one time. We can use applyMethod to select a subset of variants and/or samples. applyMethod is essentially a wrapper for seqSetFilter that enables us to apply a method or function to a data subset in one line. If it is desired to use the same filter multiple times, it may be more efficient to set the filter once instead of using applyMethod.

```r
> samp.id <- seqGetData(gds, "sample.id")[1:10]
> var.id <- seqGetData(gds, "variant.id")[1:5]
> applyMethod(gds, getGenotype, variant=var.id, sample=samp.id)

# of selected samples: 10
# of selected variants: 5

<table>
<thead>
<tr>
<th>sample</th>
<th>rs111751804</th>
<th>rs14390380</th>
<th>rs1320571</th>
<th>rs2760321</th>
<th>rs2760320</th>
</tr>
</thead>
<tbody>
<tr>
<td>NA06984</td>
<td>NA</td>
<td>0/0</td>
<td>1/0</td>
<td>0/0</td>
<td></td>
</tr>
<tr>
<td>NA06985</td>
<td>NA</td>
<td>0/0</td>
<td>1/1</td>
<td>0/0</td>
<td></td>
</tr>
<tr>
<td>NA06986</td>
<td>0/0</td>
<td>0/0</td>
<td>1/1</td>
<td>0/0</td>
<td></td>
</tr>
<tr>
<td>NA06989</td>
<td>NA</td>
<td>0/0</td>
<td>NA</td>
<td>0/0</td>
<td></td>
</tr>
<tr>
<td>NA06994</td>
<td>NA</td>
<td>0/0</td>
<td>NA</td>
<td>0/0</td>
<td></td>
</tr>
<tr>
<td>NA07000</td>
<td>0/0</td>
<td>0/0</td>
<td>1/1</td>
<td>1/0</td>
<td></td>
</tr>
<tr>
<td>NA07037</td>
<td>0/0</td>
<td>0/0</td>
<td>1/1</td>
<td>0/0</td>
<td></td>
</tr>
<tr>
<td>NA07048</td>
<td>0/0</td>
<td>0/0</td>
<td>1/1</td>
<td>0/0</td>
<td></td>
</tr>
<tr>
<td>NA07051</td>
<td>1/0</td>
<td>0/0</td>
<td>1/1</td>
<td>0/0</td>
<td></td>
</tr>
<tr>
<td>NA07346</td>
<td>0/0</td>
<td>0/0</td>
<td>1/1</td>
<td>0/0</td>
<td></td>
</tr>
</tbody>
</table>
```

As an alternative to specifying variant ids, we can use a GRanges object to select a range on chromosome 22. This feature is not available in seqSetFilter.

```r
> library(GenomicRanges)
> gr <- GRanges(seqnames="22", IRanges(start=1, end=250000000))
> geno <- applyMethod(gds, getGenotype, variant=gr)

# of selected variants: 23

dim(geno)
[1] 90 23
```

4 Examples

4.1 Transition/transversion ratio

The transition/transversion ratio (TiTv) is frequently used as a quality metric. We can calculate TiTv over the entire dataset or by sample.

```r
> titv(gds)
[1] 3.562712
> head(titv(gds, by.sample=TRUE))
```
Alternatively, we can plot TiTv binned by various metrics (allele frequency, missing rate, depth) to assess variant quality. We need the ids of the variants that fall in each bin.

```r
> binVar <- function(var, names, breaks) {
+   names(var) <- names
+   var <- sort(var)
+   mids <- breaks[1:length(breaks)-1] +
+     (breaks[2:length(breaks)] - breaks[1:length(breaks)-1])/2
+   bins <- cut(var, breaks, labels=mids, right=FALSE)
+   split(names(var), bins)
+ }

> variant.id <- seqGetData(gds, "variant.id")
> afreq <- alleleFrequency(gds)
> maf <- pmin(afreq, 1-afreq)
> maf.bins <- binVar(maf, variant.id, seq(0,0.5,0.02))
> nbins <- length(maf.bins)
> titv.maf <- rep(NA, nbins)
> for (i in 1:nbins) {
+   capture.output(titv.maf[i] <- applyMethod(gds, titv, variant=maf.bins[[i]]))
+ }
> plot(as.numeric(names(maf.bins)), titv.maf, xlab="MAF", ylab="TiTv")
```
> miss <- missingGenotypeRate(gds)
> miss.bins <- binVar(miss, variant.id, c(seq(0,0.5,0.05),1))
> nbins <- length(miss.bins)
> titv.miss <- rep(NA, nbins)
> for (i in 1:nbins) {
+ capture.output(titv.miss[i] <- applyMethod(gds, titv, variant=miss.bins[[i]]))
+ }
> plot(as.numeric(names(miss.bins)), titv.miss, xlab="missing rate", ylab="TiTv")
> depth <- seqApply(gds, "annotation/format/DP", mean, margin="by.variant",
+ as.is="double", na.rm=TRUE)
> depth.bins <- binVar(depth, variant.id, seq(0,200,20))
> nbins <- length(depth.bins)
> titv.depth <- rep(NA, nbins)
> for (i in 1:nbins) {
+ capture.output(titv.depth[i] <- applyMethod(gds, titv, variant=depth.bins[[i]]))
+ }
> plot(as.numeric(names(depth.bins)), titv.depth, xlab="mean depth", ylab="TiTv")
4.2 Heterozygosity

We will calculate the ratio of heterozygotes to non-reference homozygotes by sample. First, we filter the data to exclude any variants with missing rate < 0.1 or heterozygosity > 0.6%.

```r
> miss.var <- missingGenotypeRate(gds, margin="by.variant")
> het.var <- heterozygosity(gds, margin="by.variant")
> filt <- seqGetData(gds, "variant.id")[miss.var <= 0.1 & het.var <= 0.6]
```

We calculate the heterozygosity and homozygity by sample, using only the variants selected above. Since we want to use the same variant filter for both methods, we set it once using seqSetFilter and reset at the end.

```r
> seqSetFilter(gds, variant.id=filt)
# of selected variants: 1078

> het <- heterozygosity(gds, margin="by.sample")
> homnr <- homozygosity(gds, margin="by.sample", allele="alt")
> hethom <- het / homnr
```
> hist(hethom, main="", xlab="Het/Hom Non-Ref")
> seqSetFilter(gds)

of selected samples: 90
of selected variants: 1348

4.3 Principal Component Analysis

We can do Principal Component Analysis (PCA) to separate subjects by ancestry. All the samples in the example file are CEU, so we expect to see only one cluster.

> pc <- pca(gds)
> names(pc)

[1] "eigenval" "eigenvect"

> plot(pc$eigenvect[,1], pc$eigenvect[,2])
4.4 Hardy-Weinberg Equilibrium

We can test for deviations from Hardy-Weinberg Equilibrium (HWE), which can reveal variants of low quality.

```r
> pval <- hwe(gds)
> pval <- -log10(sort(pval))
> n <- length(pval)
> a <- 1:n
> b <- a/n
> x <- -log10(b)
> plot(x, pval, xlab="-log10(expected P)", ylab="-log10(observed P)")
> abline(0,1,col="red")
```
The inbreeding coefficient can also be used as a quality metric. For variants, this is 1 - observed heterozygosity / expected heterozygosity.

```r
> f <- inbreedCoeff(gds, margin="by.variant")
> hist(f)
```
4.5 Mendelian errors

Checking for Mendelian errors is another way to assess variant quality. The example data contains a trio (child, mother, and father).

```r
> data(pedigree)
> pedigree[pedigree$family == 1463,]

       family individ  father  mother   sex sample.id
   86     1463 NA12878 NA12891 NA12892   F      NA12878
   87     1463 NA12889   0       0     M      NA12889
   88     1463 NA12890   0       0     F      NA12890
```
The example data do not have any Mendelian errors.