Package ‘rnaSeqMap’

March 26, 2015

Type Package
Title rnaSeq secondary analyses
Version 2.25.0
Date 2014-09-30
Author Anna Lesniewska <alesniewska@cs.put.poznan.pl>; Michal Okoniewski <michal@fgcz.ethz.ch>
Maintainer Michal Okoniewski <michal@fgcz.ethz.ch>
Depends R (>= 2.11.0), methods, Biobase, Rsamtools, GenomicAlignments
Imports GenomicRanges, IRanges, edgeR, DESeq, DBI
Description The rnaSeqMap library provides classes and functions to analyze the RNA-sequencing data using the coverage profiles in multiple samples at a time
License GPL-2
biocViews Annotation, ReportWriting, Transcription, GeneExpression, DifferentialExpression, Sequencing, RNASeq, SAGE, Visualization
NeedsCompilation yes

R topics documented:

addBamData ... 2
addDataToReadset ... 3
addExperimentsToReadset .. 4
averageND .. 4
bam2sig .. 5
buildDESeq .. 6
buildDGEList ... 7
findRegionsAsIR ... 8
findRegionsAsND .. 9
fiveCol2GRanges .. 10
addBamData - getting sample data from BAM file.

Description

Add data from experimental samples stored in BAM file.

Usage

addBamData(rs, file, exp, phenoDesc=NULL)

Arguments

rs SeqReads object to modify
file BAM file to read
exp Numbers of sample slot in the object
phenoDesc A vector to add to phenoData
addDataToReadset

Value

SeqReads object with samples added from the BAM files. List of BAM files comes from the covdesc. The covdesc content becomes phenoData of the object.

Author(s)

Michal Okoniewski, Anna Lesniewska

Examples

```r
# if (xmapConnected())
#
#   rs <- newSeqReads(1,1,20000,1)
#   rs <- addBamData(rs,1:3)
# }
```

addDataToReadset - adding one more sample in the SeqRead on R level

Description

Add another reads matrix to the readset. No control of region consistency, the matrix needs just 2 columns: starts and ends.

Usage

```r
addDataToReadset(rs, datain, spl)
```

Arguments

- `rs`
- `datain`
- `spl` Number or name of the experimental sample

Value

SeqReads object with one more sample added.

Author(s)

Michal Okoniewski, Anna Lesniewska

Examples

```r
# rs <- newSeqReads(1,1,20000,1)
# my.data1 <- rbind(c(1,50), c(3,53), c(11,60))
# rs <- addDataToReadset(rs, my.data1, 1)
```
addExperimentsToReadset

addExperimentsToReadset - getting sample data from the database.

Description
Add data from experimental samples in the xXMAP database to the readset. Connection to the database required.

Usage
addExperimentsToReadset(rs, exps)

Arguments
- rs: SeqReads object to modify
- exps: Vector of numbers of experimental samples in xXMAP

Value
SeqReads object with samples added from the database.

Author(s)
Michal Okoniewski, Anna Lesniewska

Examples
```
# if (xmapConnected())
# {
#   rs <- newSeqReads(1,1,20000,1)
#   rs <- addExperimentsToReadset(rs,1:3)
# }
```

averageND

averageND, sumND, combineNS, log2ND - operations on distributions

Description
Set of functions to operate on NucleotideDistr objects.

averageND calculates the mean for samples, sumND adds up selected samples’ distributions, combineND adds two objects with the same size of distribution matrix, log2ND transforms all numeric data in the object into log space.
bam2sig

Usage

averageND(nd, exps);
sumND(nd, exps);
combineND(nd1, nd2);
log2ND(nd);

Arguments

nd, nd1, nd2 NucleotideDistr objects
exps a pair of numbers of samples in the experiment

Value

NucleotideDistr object of the same type as input objects

Author(s)

Michal Okoniewski, Anna Lesniewska

Examples

if (xmapConnected())
{
rs <- newSeqReads(1,1,20000,1)
nd.cov <- getCoverageFromRS(rs,1:3)
nd.avg <- averageND(nd.cov,c(1,3))
nd.sum <- averageND(nd.cov,c(1,3))
nd.sum <- combineND(nd.cov,nd.cov)
nd.log <- log2ND(nd.cov)
}

bam2sig

bam2sig - encapsulated pipeline of finding significant expression

Description

Reads BAM files according to annotation and produces output table processed with DESeq negative binomial test.

Usage

bam2sig(annotlib, covdesc="covdesc", species=NULL, level="gene")
Arguments

annotlib Character table or data frame with columns: chr, start, end, strand, name
covdesc Name of the file that includes BAM files (experiment description file)
species Species name - needed for .chr.convert function - to match BAM and annotation chromosome names
level The level of annotation for calculating the counts: gene, transcript of exon

Value

Output table with significant expression results, as from DESeq

Author(s)

Michal Okoniewski, Anna Lesniewska

Examples

```r
if (1==0)
{
  allNg <- all.genes(as.vector=F)
  ss <- sample(1:20000, 10)
  genes <- as.data.frame(all.g[ss,])

deseqRes <- bam2sig("cassava.db")
deseqRes[1:10,]
}
```

buildDESeq

`buildDESeq` - create CountDataSet

Description

Creates CountDataSet from the data in the database using the list of genes supplied - for further analysis with DESeq

Usage

```r
buildDESeq(genes, exps, conds=NULL)
```

Arguments

genes vector of Ensembl gene IDs
exps vector of experiments
conds Vector of experimental condition descriptions for the samples
Description

Creates DGEList from the data in the database using the list of genes supplied - for further analysis with edgeR

Usage

buildDGEList(genes, exps, conds=NULL)

Arguments

- genes: vector of Ensembl gene IDs
- exps: vector of experiments
- conds: Vector of experimental condition descriptions for the samples

Value

DGEList object filled with the data of gene-level counts of reads

Author(s)

Michal Okoniewski, Anna Lesniewska
findRegionsAsIR

See Also

buildDESeq

Examples

```r
# if (xmapConnected())
# {
#   data(sample_data_rnaSeqMap)
#   gg <- names(rs.list)
#   cds <- buildDGEList(gg,1:6, c("a","b","b","a","a","b"))
# }```

*findRegionsAsIR*  
`findRegionsAsIR` - finding regions of high coverage using Lindell-Aumann algorithm.

Description

The function is running Lindell-Aumann algorithm to find regions of irreducible expression on the coverage data in the `NucleotideDistr` object. The function may be used to find the location and boundaries of significant expression of exons and small RNA.

Usage

`findRegionsAsIR(nd, mi, minsup=5, exp)`

Arguments

- `nd`  
  An object of `NucleotideDistr` class that has coverage values for a given region
- `mi`  
  The threshold of coverage that makes the region significant
- `minsup`  
  Minimal support of the numeric association rule - namely, in this case, the minimal length of the discovered region
- `exp`  
  Sample (experiment) number

Value

IRanges object with irreducible regions with high coverage.

Author(s)

Michal Okoniewski, Anna Lesniewska
findRegionsAsND

Examples

```r
if (xmapConnected())
{
rs <- newSeqReads(1,1,20000,1)
rs <- addExperimentsToReadset(rs,1:3)
nd.cov <- getCoverageFromRS(rs,1:3)
nd.regs <- findRegionsAsND(nd.cov, 10)
}
```

findRegionsAsND  findRegionsAsND - finding regions of high coverage using Lindell-Aumann algorithm.

Description

The function is running Lindell-Aumann algorithm to find regions of irreducible expression on the coverage data in the NucleotideDistr object. The function may be used to find the location and boundaries of significant expression of exons and small RNA.

Usage

```r
findRegionsAsND(nd, mi, minsup)
```

Arguments

- `nd` An object of NucleotideDistr class that has coverage values for a given region
- `mi` The threshold of coverage that makes the region significant
- `minsup` Minimal support of the numeric association rule - namely, in this case, the minimal length of the discovered region

Value

NucleotideDistr object that includes a matrix with zeros where no region was found and the value of `mi` for all the nucleotides included in the region. The type of the object is "REG".

Author(s)

Michal Okoniewski, Anna Lesniewska

Examples

```r
if (xmapConnected())
{
rs <- newSeqReads(1,1,20000,1)
rs <- addExperimentsToReadset(rs,1:3)
nd.cov <- getCoverageFromRS(rs,1:3)
nd.regs <- findRegionsAsND(nd.cov, 10)
}
```
Description

Set of functions to operate on NucleotideDistr objects.

averageND calculates the mean for samples, sumND adds up selected samples’ distributions, combineND adds two objects with the same size of distribution matrix, log2ND transforms all numeric data in the object into log space.

Usage

fiveCol2GRanges(t)

Arguments

t A matrix or data frame including genomic regions in 5 columns: ID, chr/contig name, start, end, strand

Value

GenomicRanges object with the same values

Author(s)

Michal Okoniewski

geneInChromosome

description

Finds all the genes in the given chromosome regions

Usage

geneInChromosome(chr, start, end, strand)

Arguments

chr Chromosome
start Start of the region on a chromosome
end End of the region on a chromosome
strand Genome strand: 1 or -1
Value
table of the genes in a given regions, produced with stored procedure

Author(s)
Michal Okoniewski, Anna Lesniewska

Examples

```c
if (xmapConnected())
{
 # geneInChromosome(1, 1, 80000, 1)
}
```

Description
Various generators for experiments.

Usage

```c
generatorAddSquare(nd, deg, length.prop=0.5)
generatorAdd(nd, deg, length.prop=0.5)
generatorMultiply(nd, deg, length.prop=0.5)
generatorTrunc(nd,deg)
generatorSynth(nd, deg, length.prop=0.5)
generatorPeak(nd, deg, sr=10, mult=10)
```

Arguments

- **nd**: nucleotide distribution object
- **deg**: degeneration level for the output profile
- **length.prop**: a fraction of the genome region to be degenerated - (0,1)
- **sr**: distance from the 5' end for the peak
- **mult**: multiplier - how many times the peak is supposed to be higher than the maximum of the distribution

Generators of synthetic and semi-synthetic coverage profiles, for RNA-seq measures testing.

Author(s)
Anna Lesniewska, Michal Okoniewski
getBamData

getBamData - getting sample data from BAM file.

Description

Add data from experimental samples stored in BAM file.

Usage

getBamData(rs, exps = NULL, cvd = NULL, covdesc.file = "covdesc")

Arguments

rs SeqReads object to modify
exps Vector of numbers of experimental samples
cvd Covdesc-like data frame - BAM files are read from row names
covdesc.file Alternatively, the experiment description file

Value

SeqReads object with samples added from the BAM files. List of BAM files comes from the covdesc. The covdesc content becomes phenoData of the object.

Author(s)

Michal Okoniewski, Anna Lesniewska

Examples

# if (xmapConnected())
# {
#  rs <- newSeqReads(1,1,20000,1)
#  rs <- getBamData(rs,1:3)
# }
getCoverageFromRS  

getCoverageFromRS - conversion to coverage object

Description

Calculates the coverage function for the reads encapsulated in the SeqReads object.

Usage

getCoverageFromRS(rs, exps)

Arguments

rs  SeqReads object to modify
exps  Vector of numbers of experimental samples in xXMAP

Value

NucleotideDistr object with coverage matrix in assayData slot and type "COV".

Author(s)

Michal Okoniewski, Anna Lesniewska

Examples

# if (xmapConnected())
# {
#  rs <- newSeqReads(1,1,20000,1)
#  rs <- addExperimentsToReadset(rs,1:6)
#  nd.cov <- getCoverageFromRS(rs,1:3)
#  }

getData

Data accessor function for rnaSeqMap objects containing 'data' field

Description

This function gets the 'data' field from rnaSeqMap objects

Usage

getData(iND)

Arguments

iND  rnaSeqMap object containing 'data' field
Value
A list containing 'data' field

Author(s)
Michal Okoniewski, Anna Lesniewska, Marek Wiewiorka

getExpDescription
getExpDescription

Description
Gets the bio_sample table from the database. May be used as phenoData.

Usage
getExpDescription()

Value
Table of experimental factors assigned to numbers of samples.

Author(s)
Michal Okoniewski, Anna Lesniewska

getFCFromND
getFCFromND - calculating fold change of coverages

Description
This function calculates the fold change of two sample coverages from a NucleotideDistr objects. The coverages are assumed to be after logarithmic transformation, so the function basically subtracts the value and generates new NucleotideDistr object with a single vector of fold changes.

Usage
getFCFromND(nd, exps)

Arguments
nd NucleotideDistr object with coverages
exps a pair of numbers of samples in the experiment
getSIFromND 15

Value

NucleotideDistr object of type "FC" with a single vector of fold changes

Author(s)

Michal Okoniewski, Anna Lesniewska

Examples

```r
if (xmapConnected())
{
rs <- newSeqReads(1,1,20000,1)
rs <- addExperimentsToReadset(rs,1:3)
nd.cov <- getCoverageFromRs(rs,1:3)
nd.fc <- getSIFromND(nd.cov,c(1,3))
}
```

Description

This function calculates the splicing index value of two sample coverages from a NucleotideDistr object. It is assumed that the region in the NucleotideDistr is a single gene. Splicing index is calculated in similar way to the implementation for exon Affy microarrays (see Gardina et al, Genome Biology, 2007 for details), but it is run for each nucleotide in the region and instead of gene-level average expression values, it uses sums of reads for both samples.

Usage

```r
getSIFromND(nd, exps)
```

Arguments

- `nd` NucleotideDistr object with coverages
- `exps` a pair of numbers of samples in the experiment

Value

NucleotideDistr object of type "FC" with a single vector of splicing index values

Author(s)

Michal Okoniewski, Anna Lesniewska
Examples

```r
if (xmapConnected())
{
rs <- newSeqReads(1,1,20000,1)
nd.cov <- getCoverageFromRS(rs,1:3)
nd.fc <- getSIFromND(nd.cov,c(1,3))
}
```

getSumsExp  

Description

Gets the sum of reads in all the samples present in the database in the seq_read table.

Usage

getsSumsExp()

Value

Vector of sums

Author(s)

Michal Okoniewski, Anna Lesniewska

Examples

```r
if (xmapConnected())
{
sums <- getsSumsExp()
nsums
}
```

granges2CamelMeasures  

Genomic plots based upon NucleotideDistr objects

Description

Various plots of genomic coverage for data from NucleotideDistr objects.

Usage

granges2CamelMeasures(gR, cvd, sample.idx1, sample.idx2, sums=NULL, progress=NULL)
allCamelMeasuresForRegion(ch, st, en, str, cvd, sample.idx1, sample.idx2, sums=NULL)
**measures**

**Arguments**

- **ch**: chromosome name
- **st**: genomic start
- **en**: genomic end
- **str**: strand
- **cvd**: name of the file with BAM description - covdesc
- **gR**: GenomicRanges object to use as a set of genomic regions to query
- **sample.idx1, sample.idx2**: sample indices
- **sums**: the vector of sums for normalization
- **progress**: every how many regions print a dot for progress indicator

**Author(s)**

Michal Okoniewski

**Examples**

#

---

**measures**

**Description**

Various measures to find differential expression.

**Usage**

ks_test(dd)
diff_area(dd, cconst)
diff_derivative_area(dd, cconst)
qq_plot(dd)
qq_derivative_plot(dd)
pp_plot(dd)
pp_derivative_plot(dd)
hump_diff1(dd)
hump_diff2 (dd)
Arguments

dd  a matrix with 2 columns for samples and rows for nucleotides, containing coverage data (like from BED files)
cconst  NULL default

The measures give various assessment of the difference between two sequencing samples shapes. Full description will follow in the paper.

Author(s)

Anna Lesniewska, Michal Okoniewski

Examples

```r
if (xmapConnected())
{
ks_test(dd)
}
```

NDplots  Genomic plots based upon NucleotideDistr objects

Description

Various plots of genomic coverage for data from NucleotideDistr objects

Usage

```r
distrCOVPlot(nd, exps)
distrSIPlot(nd, ex1, ex2, mi, minsup=5)
```

Arguments

nd  NucleotideDistr object
dexp  vectors of experiment numbers to plot
dex1, ex2  experiment numbers to plot
mi  threshold in the region mining algorithm
minsup  minimal support - minimal length of the irreducible region found

Author(s)

Michal Okoniewski, Anna Lesniewska
## Normalization Methods

<table>
<thead>
<tr>
<th>Description</th>
<th>Usage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Various normalization methods.</td>
<td>various normalization methods.</td>
</tr>
</tbody>
</table>

### Arguments

- **nd**: nucleotide distribution object
- **sums**: sum of reads in a sequencing sample

Normalizations of a single coverage profile for multiple samples contained in the NucleotideDistr object. Full description will follow in a paper.

### Author(s)

Anna Lesniewska, Michal Okoniewski

### Examples

```r
if (xmapConnected())
{
s <- newSeqReads('chr2', 220238268, 220254744, -1)
f <- c("test1.bam", "test2.bam", "test3.bam", "test4.bam", "test5.bam")
ff <- sapply(f, function(x) system.file("extdata", x, package = "rnaseqMap"))
rs <- getBamData(rs, 1:5, files = ff)
nd <- getCoverageFromRS(rs, 1:5)
min_maxNormalize(nd)
}
normalizeBySum

Normalization of NucleotideDistr by global number of reads

Description

The normalizeBySum function normalizes the coverage values in NucleotideDistr by dividing all the numbers for all samples by the sum of reads for each sample. The number of reads from each sample may be taken from the database by the function getSumsExp, which is a wrapper for an appropriate SQL procedure. Alternatively, it is passed directly as a vector of numeric values of the same length as the number of samples analyzed. Such simple normalization allows comparisons of the coverage values for samples with different number of reads.

Usage

```r
normalizeBySum(nd, r=NULL)
```

Arguments

- `nd` NucleotideDistr object with raw read counts
- `r` Vector of numbers. If there is no such parameter, a database procedure summarizing reads is run

Value

NucleotideDistr object

Author(s)

Michal Okoniewski, Anna Lesniewska

See Also

getSumsExp

Examples

```r
# if (xmapConnected())
# {
#   rs <- newSeqReads(1, 10000, 20000, 1)
#   nd.cov <- getCoverageFromRS(rs, 1:3)
#   nd.norm <- normalizeBySum(nd.cov)
#   nd.norm <- normalizeBySum(nd.cov, r=c(100, 200, 1000))
# }
Numeric distributions by nucleotide - class

Description

An S4 class that inherits from eSet and holds all the numeric distributions of functions defined over the genome. The values may include coverage, splicing, fold change, etc. for a region defined by genomic coordinates.

Slots/List Components

Objects of this class contain (at least) the following list components:

- **chr**: numeric matrix containing the read counts.
- **start**: data.frame containing the library size and group labels.
- **end**: data.frame containing the library size and group labels.
- **strand**: data.frame containing the library size and group labels.
- **start**: data.frame containing the library size and group labels.

Methods

- **distribs**: gives the matrix of distributions from assayData
- **getDistr**: gives a single distribution from assayData as a vector
- **newNucleotideDistr**: constructor from a matrix of data and chromosome coordinates.

Author(s)

Anna Lesniewska, Michal Okoniewski

See Also

SeqReads, NDtransforms

ParseGff3 - parsing gff3 file format

Description

 Parses gff3 file into genes, transcripts and exons.

Usage

parseGff3(filegff, fileg="genes.txt", filet="transcripts.txt", filee="exons.txt", nofiles=FALSE)
Arguments

filegff  Input file in GFF3 format
fileg   Filename for output: genes
filet   Filename for output: transcripts
filee   Filename for output: exons
nofiles Flag: just output list, no files

Value

List with elements "genes", "transcripts", "exons" with appropriate tables.

Author(s)

Michal Okoniewski, Anna Lesniewska

Examples

# if (xmapConnected())
# {
#   parseGff3("Athaliana.gff3")
# }

plotGeneCoverage  Genomic plots with rnaSeqMap

Description

Various plots of genomic coverage for experiments.

Usage

plotGeneCoverage(gene_id, ex)
plotRegionCoverage(chr, start, end, strand, ex)
plotExonCoverage (exon_id,ex)
plotCoverageHistogram (chr,start,end,strand,ex, skip)
plotGeneExonCoverage(gene_id, ex)
plotSI(chr,start,end,strand, exp1, exp2 )
readsInRange

Arguments

ex vectors of experiment numbers to plot
exp1, exp2 experiment numbers for splicing index
gene_id Ensembl gene ID
gene_id Ensembl exon ID
chr Chromosome
start Start position of region on the chromosome
end End position of region on the chromosome
strand Strand
skip size of the bucket in histogram

Author(s)
Michal Okoniewski, Anna Lesniewska

Examples

# if (xmapConnected())
#
# plotGeneCoverage("ENSG00000144567", 1:3) # plotting FAM134A for experiments 1,2,3
# plotRegionCoverage(2, 220040947, 220050201, 1, 1:3) # the same, using coordinates
#

Description

Finds all the reads for a genomic range

Usage

readsInRange(chr, start, end, strand, ex)

Arguments

chr Chromosome
start Start of the region on a chromosome
end End of the region on a chromosome
strand Genome strand: 1 or -1
ex experiment

Value

table of reads, as in the database
Author(s)
Michal Okoniewski, Anna Lesniewska

Examples

```r
if (xmapConnected())
{
tmp <- readsInRange(1, 10000, 20000, 1,3)
}
```

regionBasedCoverage  
regionBasedCoverage - transformation of the region coverage by the Lindell-Aumann regions

Description
The function builds a NucleotideDistr object from another object of coverage, using sequential call of Lindell-Aumann algorithm on the same data with a sequence of mi-levels. Each nucleotide is assigned the maximum mi-value of a region that covers it. The output NucleotideDistr object has the distribution without peaks and small drops of coverage, but the trade-off is that the level of coverage are discrete: seq^maxexp.

Usage

```r
regionBasedCoverage(nd, seqq=1:10, maxexp=20, minsup=5)
```

Arguments

- **nd**: An object of NucleotideDistr class that has coverage values for a given region
- **seqq**: Vector of numbers used to divide the range of coverage for subsequent mi-levels
- **maxexp**: The maximal mi-level for coverage
- **minsup**: Minimal support of the numeric association rule - namely, in this case, the minimal length of the discovered region

Value
NucleotideDistr object that includes a matrix with zeros where no region was found and a maximum of mi-levels used for the sequential region searched. The distributions are similar to coverage, but have removed outliers of coverage peaks and short drops of coverage.

Author(s)
Michal Okoniewski, Anna Lesniewska
regionCoverage

Examples

```r
if (xmapConnected())
{
rs <- newSeqReads(1,1,20000,1)
rs <- addExperimentsToReadSet(rs,1:3)
nd.cov <- getCoverageFromRS(rs,1:3)
nd.regs <- regionBasedCoverage(nd.cov, 1:10, 100)
runs the Lindell-Aumann algorithm at 100, 90, ... and picks maximal mi-level, where the nucleotide has a region
}
```

---

### Description
Finds all the reads for a genomic range

### Usage
```
regionCoverage(chr, start, end, strand, ex, db = "FALSE")
```

### Arguments
- `chr` - Chromosome
- `start` - Start of the region on a chromosome
- `end` - End of the region on a chromosome
- `strand` - Genome strand: 1 or -1
- `ex` - experiment
- `db` - Use database (SQL) implementation of the algorithm

### Value
coverage vector, independent from NucleotideDistr

### Author(s)
Michal Okoniewski, Anna Lesniewska

### Examples
```
if (xmapConnected())
{
tmp <- regionCoverage(1, 10000, 20000, 1,3)
}
```
Description

Function transforms list of Rle objects to matrix.

Usage

RleList2matrix(ll);

Arguments

ll list of Rle objects.

Value

Produces the full, unpacked coverage matrix from a list of Rle objects. Used to re-format the coverage data.

Author(s)

Michal Okoniewski, Anna Lesniewska

Example of sequencing data for rnaSeqMap library

Description

A fragment of sequencing data from 6 samples - human.

Usage

data(sample_data_rnaSeqMap)

Format

A list with 17 SeqReads objects, each with sequencing reads from 6 samples sequenced with ABI SOLID machine.

Examples

# data(sample_data_rnaSeqMap)
# length(rs.list)
# gene1rs <- rs.list[[1]]
**SeqReads**

SeqReads - a container for RNAseq reads

---

**Description**

SeqReads objects keep the reads information in the form of a list, containing one matrix of reads per experiment. Matrices of dimension n x 2 should come from a mapping to the regions defined by genome coordinates (chromosome, start, end, strand) in the SeqReads object.

The object may be filled in from the database or from list with read data. It is recommended to create one SeqReads object per gene or intergenic region. The object are used then to create object of class NucleotideDistr.

**Usage**

newSeqReads(chr, start, end, strand, datain=NULL, phenoData=NULL, featureData=NULL, covdesc=NULL)
newSeqReadsFromGene(g)

**Arguments**

- chr
  - Chromosome
- start
  - Start of the region on a chromosome
- end
  - End of the region on a chromosome
- strand
  - Genome strand: 1 or -1
- datain
  - If supplied, it must be a list of matrices of reads start and stop
- g
  - Ensembl identifier of a gene
- phenoData
- featureData
- covdesc
  - Filename for experiment description

**Value**

Object of a class SeqReads

**Author(s)**

Michal Okoniewski, Anna Lesniewska
**setData**  
*Data accessor function for rnaSeqMap objects containing 'data' field*

**Description**  
This function sets the 'data' field from one rnaSeqMap object with 'data' field from the other one.

**Usage**  
```
setData(iND1,iND2)
```

**Arguments**
- `iND1`  
  target rnaSeqMap object containing 'data' field
- `iND2`  
  source rnaSeqMap object containing 'data' field

**Value**  
NULL

**Author(s)**

Michal Okoniewski, Anna Lesniewska, Marek Wiewiorka

---

**setSAXPYData**  
*Data accessor function for rnaSeqMap objects containing 'data' field*

**Description**  
This function sets the 'data' field at i position. The new value is the old one multiplied by a iParam.

**Usage**  
```
setSAXPYData(iND1,iParam,i)
```

**Arguments**
- `iND1`  
  rnaSeqMap object containing 'data' field
- `iParam`  
  Scaling parameter
- `i`  
  Index of the 'data' field to be modified

**Value**  
NULL

**Author(s)**

Michal Okoniewski, Anna Lesniewska, Marek Wiewiorka
setSpecies

Description
Sets the species name for chromosomes X, Y and MT translation into consecutive numbers. If you use xmap.connect, no need to call setSpecies. Both set the internal variable of xmapcore.

Usage
setSpecies(name=NULL)

Arguments
name Species name

Author(s)
Michal Okoniewski, Anna Lesniewska

Examples
setSpecies("mus_musculus")

simplePlot

Description
Plots 2 or 3 coverages with fixed colors.

Usage
ddexpss (nd, exps, xlab="genome coordinates", ylab="coverage")

Arguments
nd NucleotideDistr object to plot
exps Samples to plot - numeric vector
xlab ylab

Author(s)
Michal Okoniewski
**Description**

Finds all the intergenic spaces in the given chromosome region

**Usage**

`spaceInChromosome(chr, start, end, strand)`

**Arguments**

- `chr`: Chromosome
- `start`: Start of the region on a chromosome
- `end`: End of the region on a chromosome
- `strand`: Genome strand: 1 or -1

**Value**

Table of the intergenic spaces in a given region, produced with stored procedure

**Author(s)**

Michal Okoniewski, Anna Lesniewska

**Examples**

```c
if (xmapConnected())
#
{
spaceInChromosome(1, 1, 80000, 1)
}
```
Index

* Topic **classes**
  - NucleotideDistr-class, 21

* Topic **datasets**
  - rs.list, 26

addBamData, 2
addDataToReadset, 3
addExperimentsToReadset, 4
allCamelMeasuresForRegion
  - (gRanges2CamelMeasures), 16
averageND, 4
averageND (averageND), 4

bam2sig, 5
buildDESeq, 6
buildDGEList, 7

combineND (averageND), 4
densityNormalize (normalizations), 19
diff_area (measures), 17
diff_derivative_area (measures), 17
distrCOPPlot (NDplots), 18
distrCOPPlotg (NDplots), 18
distrs (NucleotideDistr-class), 21
distrSIPlot (NDplots), 18

findRegionsAsIR, 8
findRegionsAsND, 9
fiveCo12GRanges, 10
gcoverage (regionCoverage), 25
geneInChromosome, 10
generatorAdd (generators), 11
generatorAddSquare (generators), 11
generatorMultiply (generators), 11
generatorPeak (generators), 11
generators, 11
generatorSynth (generators), 11
generatorTrunc (generators), 11
getBamData, 12

getCoverageFromRS, 13
data, 13
getDistr (NucleotideDistr-class), 21
getExpDescription, 14
getFCFromND, 14
getFCFromND (getFCFromND), 14
getSIFromND, 15
getSIFromND (getSIFromND), 15
getSumsExp, 16
ghistogram (plotGeneCoverage), 22
globalCountsNormalize (normalizations), 19
gRanges2CamelMeasures, 16
hump_diff1 (measures), 17
hump_diff2 (measures), 17

ks_test (measures), 17
log2ND (averageND), 4

measures, 17
min_maxNormalize (normalizations), 19

NDplots, 18
newNucleotideDistr
  - (NucleotideDistr-class), 21
newSeqReads (SeqReads), 27
newSeqReadsFromGene (SeqReads), 27
normalizations, 19
normalizeBySum, 20
NucleotideDistr-class, 21

parseGff3, 21
plotCoverageHistogram
  - (plotGeneCoverage), 22
plotExonCoverage (plotGeneCoverage), 22
plotGeneCoverage, 22
plotGeneExonCoverage
  - (plotGeneCoverage), 22
plotRegionCoverage (plotGeneCoverage), 22
plotSI (plotGeneCoverage), 22
pp_derivative_plot (measures), 17
pp_plot (measures), 17
qq_derivative_plot (measures), 17
qq_plot (measures), 17
readsInRange, 23
regionBasedCoverage, 24
regionCoverage, 25
regionmining (findRegionsAsND), 9
RleList2matrix, 26
rs.list, 26
sample_data_rnaSeqMap (rs.list), 26
SeqReads, 27
SeqReads-class (SeqReads), 27
setData, 28
setSAXPYData, 28
setSpecies, 29
simplePlot, 29
spaceInChromosome, 30
splicingind (getSIFromND), 15
standarizationNormalize
(normalizations), 19
sumND (averageND), 4