Package ‘SomaticSignatures’

March 26, 2015

Type Package

Title Somatic Signatures

Version 2.3.7

Author Julian Gehring (EMBL Heidelberg)

Maintainer Julian Gehring <julian.gehring@embl.de>

Description The SomaticSignatures package identifies mutational signatures of single nucleotide variants (SNVs). It provides a infrastructure related to the methodology described in Nik-Zainal (2012, Cell), with flexibility in the matrix decomposition algorithms.

URL http://bioconductor.org/packages/release/bioc/html/SomaticSignatures.html,
https://github.com/julian-gehring/SomaticSignatures

Imports S4Vectors, IRanges, GenomeInfoDb, Biostrings, ggplot2, ggbio, reshape2, NMF, pcaMethods, Biobase, methods, proxy

Depends R (>= 3.0.2), VariantAnnotation, GenomicRanges

Suggests testthat, knitr, parallel, BSgenome.Hsapiens.UCSC.hg19, SomaticCancerAlterations, ggdendro, fastICA

VignetteBuilder knitr

ByteCompile TRUE

License GPL-3

LazyLoad yes

biocViews Sequencing, SomaticMutation, Visualization, Clustering, GenomicVariation, StatisticalMethod

NeedsCompilation no

R topics documented:

 cluster-spectrum .. 2
decomposition-signatures .. 3
gcContent ... 4
GRanges-converters .. 4
hs-chrs ... 6
Cluster Mutational Spectrum

Description

Cluster the mutational spectrum by sample or motif.

Usage

clusterSpectrum(m, by = c("sample", "motif"), distance = "Cosine", ...)

Arguments

m
Mutational spectrum matrix
by
Dimension to cluster by.
distance
Distance function used in the clustering.
... Additional arguments passed to 'hclust'.

Details

Hierarchical clustering of the motif matrix aka mutational spectrum.

Value

An 'hclust' object.

See Also

hclust
'proxy' package
decomposition-signatures

Decomposition Functions for Somatic Signatures

Description

Estimate somatic signatures from sequence motifs with a selection of statistical methods.

Usage

```r
nmfDecomposition(x, r, ..., includeFit = FALSE)
pcaDecomposition(x, r, ..., includeFit = FALSE)
```

Arguments

- `x` GRanges object [required]
- `r` Number of signatures [integer, required]
- `...` Additional arguments passed to 'NMF::nmf' or 'pcaMethods::pca'.
- `includeFit` Include the fit object returned by the low-level decomposition function in the output.

Details

The `nmfDecomposition` and `pcaDecomposition` functions estimate a set of `r` somatic signatures using the NMF or PCA, respectively.

In previous versions of the package, these functions were known as 'nmfSignatures' and 'pcaSignatures', respectively. While they are still available, we recommend using the new naming convention.

Value

The 'signature' functions return a list with the elements:

- `wMatrix` of the form 'motif x signature'
- `hMatrix` of the form 'sample x signature'
- `vMatrix` of the form 'motif x sample', containing the reconstruction of 'm' from 'w' and 'h'.
- `mInput` matrix 'm'
- `rNumber` of signatures.
- `fitFit` object returned by the low-level decomposition function, if 'includeFit' is true.

See Also

'NMF' package, 'pcaMethods' package, 'prcomp'
gcContent

Description

Compute the GC content for regions of a reference sequence.

Usage

```
  gcContent(regions, ref)
```

Arguments

- `regions`: GRanges object with the regions for which the GC content should be computed.
- `ref`: Reference sequence object, as a `BSgenome` or `FaFile` object.

Value

A numeric vector with the GC content [0,1] for each region.

See Also

Inspired by the `getGCcontent` function of the `exomeCopy` package.

Examples

```r
library(BSgenome.Hsapiens.UCSC.hg19)

regs = GRanges(c("chr1", "chr2"), IRanges(1e7, width = 100))

gc = gcContent(regs, BSgenome.Hsapiens.UCSC.hg19)
```

GRanges-converter functions

Description

A set of utilities functions to convert and extract data in `GRanges` objects.

Usage

- `ncbi(x)`
- `ucsc(x)`
- `seqchar(x)`
GRanges-converters

Arguments

x A 'GRanges' object or one inheriting from the 'GRanges' class [required].

Details

• grangesExtracts only the 'GRanges' information by dropping the metadata columns of the object. The 'seqinfo' slot is kept.
• ncbi, ucscShorthand for converting the seqnames notation to 'UCSC' (e.g. 'chr1', 'chrM') or 'NCBI' (e.g. '1', 'MT') notation, respectively. This also sets the 'genome' slot in the 'seqinfo' field to 'NA'.
• seqcharExtracts the 'seqnames' as a character vector.

Value

For 'ncbi', 'ucsc': An object of the same class as the input.
For 'seqchar': A character vector with 'seqnames'.

See Also

'GenomicRanges' package: 'seqnames', 'mcols'
'GenomeInfoDb' package: 'seqlevelsStyle'

Examples

mutect_path = system.file("examples", "mutect.tsv", package = "SomaticSignatures")
vr1 = readMutect(mutect_path, strip = TRUE)

extract the GRanges
gr = granges(vr1)

convert back and forth
gr_ncbi = ncbi(gr)
gr_ucsc = ucsc(gr_ncbi)

identical(gr, gr_ucsc)

extract the seqnames as a character vector
seq_chars = seqchar(gr)
hs-chrs

Human Chromosome Names

Description
List human chromosome names.

Usage
- `hsToplevel()`
- `hsAutosomes()`
- `hsAllosomes()`
- `hsLinear()`

Value
Character vector with chromosome names (NCBI notation).

Examples
- `hsToplevel()`
- `hsAutosomes()`
- `hsAllosomes()`
- `hsLinear()`

kmerFrequency

Kmer Frequency

Description
Estimate the occurrence frequency of k-mers in a reference sequence.

Usage
```r
kmerFrequency(ref, n = 1e4, k = 1, ranges = as(seqinfo(ref), "GRanges"))
```

Arguments
- **ref**
 A `BSgenome` or `FaFile` object matching the respective reference sequence [required].
- **n**
 The number of samples to draw [integer, default: 1e4].
- **k**
 The 'k'-mer size of the context, including the variant position [integer, default: 3].
- **ranges**
 Ranges in respect to the reference sequence to sample from [GRanges, default: take from the 'seqinfo' slot].
Details

The k-mer frequency is estimated by random sampling of 'n' locations across the specified 'ranges' of the reference sequence.

Value

A named vector, with names corresponding the the k-mer and value to the frequency.

Examples

```r
library(BSgenome.Hsapiens.UCSC.hg19)

kmer_freq = kmerFrequency(BSgenome.Hsapiens.UCSC.hg19, 1e2, 3)
```

kmers-data Kmer datasets

Description

3mer base frequencies of human whole-genome and whole-exome sampling, based on the hg19/GRCh37 reference sequence.

For details, see the 'inst/scripts/kmers-data.R' script.

Value

Vectors with frequency of k-mers.

See Also

kmerFrequency

Examples

```r
data(kmers, package = "SomaticSignatures")
```
motif-functions

Group somatic motifs

Description
Tabulate somatic motifs by a grouping variable.

Usage
motifMatrix(vr, group = "sampleNames", normalize = TRUE)

Arguments
vr
GRanges object [required]
group
Grouping variable name [character, default: 'sampleNames']
normalize
Normalize to frequency

Details
The 'motifMatrix' function transforms the metadata columns of a 'VRanges' object, as returned by the 'mutationContext' function, to a matrix of the form 'motifs x groups'. This constitutes the bases for the estimation of the signatures. By default (with 'normalize' set to TRUE), the counts are transformed to frequencies, such that the sum of frequencies of each group equal 1. Otherwise (with 'normalize' set to FALSE), the counts for each motif in a group is returned.

Value
Occurance matrix with motifs in rows and samples in columns.

See Also
'mutationContext', 'mutationContextMutect'

Examples
Not run:
motifMatrix(sca_motifs, group = "study")

End(Not run)
Description

Summary and plotting function for characterizing the distributions of mutations along the genome.

Usage

\[\text{mutationDistance}(x) \]

\[\text{plotRainfall}(x, \text{group}, \text{size} = 2, \alpha = 0.5, \text{space.skip} = 0, \ldots) \]

Arguments

- **x**: A `GRanges` or `VRanges` object [required].
- **group**: The variable name for color groups [optional].
- **size**: Point size [default: 2]
- **alpha**: Alpha value for points [default: 0.5]
- **space.skip**: Space between chromosomes, as defined by 'plotGrandLinear' [default: 0]
- **...**: Additional arguments passed to 'plotGrandLinear'

Value

- **mutationDensity**: The position-sorted GRanges `x` with the additional column `distance`, specifying the distance from the previous mutation (or the beginning of the chromosome if it happens to be the first mutation on the chromosome.)
- **plotRainfall**: Object of class `ggbio`, as returned by 'plotGrandLinear'.

See Also

- 'ggbio::plotGrandLinear'

Examples

```r
library(GenomicRanges)
library(IRanges)

set.seed(1)
chr_len = 100
gr = GRanges(rep(1:3, each = 10),
             IRanges(start = sample.int(chr_len, 30, replace = FALSE), width = 1),
             mutation = sample(c("A", "C", "G", "T"), 30, replace = TRUE))
seqlengths(gr) = rep(chr_len, 3)

p = plotRainfall(gr)
```
mutational-normalization

Normalize Somatic Motifs

Description

Normalize somatic motifs, to correct for biases between samples.

Usage

```r
normalizeMotifs(x, norms)
```

Arguments

- `x` Matrix, as returned by `motifMatrix` [required]
- `norms` Vector with normalization factors [required]. The names must match the base sequence names in `x`.

Value

A matrix as `x` with normalized counts.

See Also

`motifMatrix`

mutational-plots

Mutational Plots

Description

Plots for variant analysis

Usage

```r
plotVariantAbundance(x, group = NULL, alpha = 0.5, size = 2)
```

Arguments

- `x` A VRanges object [required].
- `group` Grouping variable, refers to a column name in `x`. By default, no grouping is performed.
- `alpha` Alpha value for data points.
- `size` Size value for data points.
The `plotVariantAbundance` shows the variant frequency in relation to the total coverage at each variant position. This can be useful for examining the support of variant calls.

A `ggplot` object.

Description

Estimate somatic signatures from sequence motifs with a selection of statistical methods.

Usage

`identifySignatures(m, nSigs, decomposition = nmfDecomposition, ...)`

Arguments

- `m` Motif matrix, as returned by `motifMatrix` [required].
- `nSigs` Number of signatures [integer, required].
- `decomposition` Function to apply for the matrix decompositon. The methods NMF and PCA are already implemented in the functions `nmfDecomposition` and `pcaDecomposition`, respectively.
- `...` Additional arguments passed to the `decomposition` function.

Details

`identifySignatures` estimate a set of `r` somatic signatures, based on a matrix decompositon method (such as NMF, PCA).

An object of class `MutationalSignatures`.

See Also

The predefined decomposition functions: `nmfDecomposition` and `pcaDecomposition`

`mutationContext`, `mutationContextMutect`

`motifMatrix`

class `MutationalSignatures`
Examples

data("sca_mm", package = "SomaticSignatures")

sigs = identifySignatures(sca_mm, 5)

MutationalSignatures 'MutationalSignatures' class and methods

Description

Object representing of somatic signatures.

Usage

S4 method for signature 'MutationalSignatures'
signatures(object)

S4 method for signature 'MutationalSignatures'
samples(object)

S4 method for signature 'MutationalSignatures'
observed(object)

S4 method for signature 'MutationalSignatures'
fitted(object)

S4 method for signature 'MutationalSignatures'
show(object)

Arguments

object 'MutationalSignatures' object

Value

help("MutationalSignatures")

See Also

identifySignatures
mutationContext

Description

Extract the sequence context surrounding a SNV from a genomic reference.

Usage

```r
mutationContext(vr, ref, k = 3, strand = FALSE, unify = TRUE, check = TRUE)
mutationContextMutect(vr, k = 3, unify = TRUE)
mutationContextH5vc(vc, ms, unify = TRUE)
```

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>vr</td>
<td>'VRanges' object, with 'ref' and 'alt' columns filled [required]. For 'mutationContextMutect', an object as returned by the 'readMutect' function.</td>
</tr>
<tr>
<td>ref</td>
<td>A 'BSgenome' or 'FaFile' object representing the reference sequence [required]. More generally, any object with a defined 'getSeq' method can be used.</td>
</tr>
<tr>
<td>k</td>
<td>The 'k'-mer size of the context, including the variant position [integer, default: 3]. The variant will be located at the middle of the k-mer which requires 'k' to be odd.</td>
</tr>
<tr>
<td>strand</td>
<td>Should all variants be converted to the 'plus' strand? [logical, default: FALSE].</td>
</tr>
<tr>
<td>unify</td>
<td>Should the alterations be converted to have a C/T base pair as a reference alleles? [logical, default: TRUE]</td>
</tr>
<tr>
<td>check</td>
<td>Should the reference base of 'vr' be checked against 'ref' [logical, default: TRUE]? In case the two references do not match, a warning will be printed.</td>
</tr>
<tr>
<td>vc</td>
<td>A 'DataFrame' object as returned from a variant calling analysis by 'h5vc::h5dapply'. See the 'details' section for more information.</td>
</tr>
<tr>
<td>ms</td>
<td>A 'DataFrame' object as returned by 'h5vc::mutationSpectrum'. See the 'details' section for more information.</td>
</tr>
</tbody>
</table>

Details

The somatic motifs of a SNV, composed out of (a) the base change and (b) the sequence context surrounding the variant, is extracted from a reference sequence with the 'mutationContext' function.

For mutect variant calls, all relevant information is already contained in the results and somatic motifs can constructed by using the 'mutationContextMutect' function, without the need for the reference sequence.

For h5vc variant calls, the information is merged from the outputs of the 'h5dapply' and 'mutationSpectrum' functions of the 'h5vc' package. A detailed example is shown in the vignette of the package.
Value
The original 'VRanges' object 'vr', with the additional columns

alteration DNAStringSet with 'ref|alt'.
context DNAStringSet with '..N..' of length 'k', where N denotes the variant position.

See Also
'readMutect' for 'mutationContextMutect'
'mutationSpectrum' from the 'h5vc' package for 'mutationContextH5vc'

Examples

mutect_path = system.file("examples", "mutect.tsv", package = "SomaticSignatures")
vr1 = readMutect(mutect_path)
ct1 = mutationContextMutect(vr1)

Description

Import 'mutect' calls.

Usage

readMutect(file, columns, strip = FALSE)

Arguments

file Location of the mutect tsv files [character, required]
columns Names of columns to import from the file [character vector, optional, default: missing]. If missing, all columns will be imported.
strip Should additional columns be imported? [logical, default: FALSE]. If TRUE, return only the bare 'VRanges' object.

Details

The 'readMutect' functions imports the mutational calls of a '*.tsv' file returned by the 'mutect' caller to a 'VRanges' object. For a description of the information of the columns, please refer to the mutect documentation.

Value

A 'VRanges' object, with each row corresponding to one variant in the original file.
References

http://www.broadinstitute.org/cancer/cga/mutect_run

Examples

```r
mutect_path = system.file("examples", "mutect.tsv", package = "SomaticSignatures")
vr1 = readMutect(mutect_path)
vr2 = readMutect(mutect_path, strip = TRUE)
```

sca-data

SomaticCancerAlterations Results

Description

Motif matrix and 5 estimated signatures (NMF) from the 'SomaticCancerAlterations' dataset. For details, see the vignette of the 'SomaticSignatures' package.

See Also

'SomaticCancerAlterations' package

Examples

```r
data(sca_mm, package = "SomaticSignatures")
data(sca_sigs, package = "SomaticSignatures")
```

scaSNVRanges

SNV VRanges from SCA dataset

Description

Create VRanges for somatic SNV calls in the SomaticCancerAlterations dataset.

Usage

```r
scaSNVRanges(chrs = hsAutosomes())
```
Arguments

chrs Chromosomes to include in the results. Defaults to human autosomes.

Value

A ‘VRanges’ object with somatic SNV calls.

See Also

'SomaticCancerAlterations’ package

Description

Visualize estimated signatures, sample contribution, and mutational spectra.

Usage

plotObservedSpectrum(s, colorby = c("sample", "alteration"))
plotFittedSpectrum(s, colorby = c("sample", "alteration"))

plotMutationSpectrum(vr, group, colorby = c("sample", "alteration"), normalize = TRUE)

plotSignatureMap(s)
plotSignatures(s, normalize = FALSE, percent = FALSE)

plotSampleMap(s)
plotSamples(s, normalize = FALSE, percent = FALSE)

Arguments

s MutationalSignatures object [required]
vr VRanges object
colorby Which variable to use for the coloring in the spectra representation.
normalize Plot relative contributions (TRUE) instead of absolute (TRUE) ones.
percent Display the results as fraction (FALSE) or percent (TRUE).
group Grouping variable

Details

With the plotting function, the obtained signatures and their occurrence in the samples can be visualized either as a heatmap (’plotSignatureMap’, ’plotSampleMap’) or a barchart (’plotSignature’, ’plotSamples’).
Value

A ggplot object

See Also

'ggplot2' package

Examples

data("sca_sigs", package = "SomaticSignatures")
plotSamples(sigs_nmf)
plotSignatures(sigs_nmf)
Description

Identifying somatic signatures of single nucleotide variants. This package provides an infrastructure related to the methodology described in Nik-Zainal (2012, Cell), with flexibility in the matrix decomposition algorithms.

Details

The 'SomaticSignatures' package offers the framework for identifying mutational signatures of single nucleotide variants (SNVs) from high-throughput experiments. In the concept of mutational signatures, a base change resulting from an SNV is regarded in terms of motifs which embeds the variant in the context of the surrounding genomic sequence. Based on the frequency of such motifs across samples, mutational signatures and their occurrence in the samples can be estimated. An introduction into the methodology and a use case are illustrated in the vignette of this package.

Author(s)

Maintainer: Julian Gehring, EMBL Heidelberg <julian.gehring@embl.de>

References

Examples

vignette(package = "SomaticSignatures")
Description

Utility functions

Usage

```r
dfConvertColumns(x, from = "character", to = "factor")
```

Arguments

- `x`: A `data.frame` to convert [required].
- `from`: The class of the columns to be converted [default: 'character'].
- `to`: The class of the columns to be converted to [default: 'factor'].

Details

The `dfConvertColumns` converts all columns of a data frame with class 'from' to the class 'to'.

Value

A `data.frame` object.
Index

*Topic **IO**
 readMutect, 14
*Topic **datasets**
 kmers-data, 7
 sca-data, 15
 signatures21-data, 17
*Topic **manip**
 GRanges-converters, 4
 mutationContext, 13
*Topic **package**
 SomaticSignatures, 18
*Topic **utilities**
 GRanges-converters, 4

cluster-spectrum, 2
clusterSpectrum(cluster-spectrum), 2
decomposition-signatures, 3
dfConvertColumns(variants-utils), 19
findSignatures(mutational-signatures), 11
fitted(MutationalSignatures), 12
fitted,MutationalSignatures-method
(MutationalSignatures), 12
gcContent, 4
GRanges-converters, 4
hs-chrs, 6
hsAllosomes (hs-chrs), 6
hsAutosomes (hs-chrs), 6
hsLinear (hs-chrs), 6
hsToplevel (hs-chrs), 6
identifySignatures
(mutational-signatures), 11
k3we (kmers-data), 7
k3wg (kmers-data), 7
kmerFrequency, 6

kmers (kmers-data), 7
kmers-data, 7
motif-functions, 8
motifMatrix (motif-functions), 8
mutation-distribution, 9
mutational-normalization, 10
mutational-plots, 10
mutational-signatures, 11
MutationalSignatures, 12
MutationalSignatures-class
(MutationalSignatures), 12
mutationContext, 13
mutationContextH5vc (mutationContext), 13
mutationDistance
(mutation-distribution), 9
ncbi (GRanges-converters), 4
nmfDecomposition
(decomposition-signatures), 3
nmfSignatures
(decomposition-signatures), 3
normalizeMotifs
(mutational-normalization), 10
observed (MutationalSignatures), 12
observed,MutationalSignatures-method
(MutationalSignatures), 12
pcaDecomposition
(decomposition-signatures), 3
pcaSignatures
(decomposition-signatures), 3
plotFittedSpectrum(signature-plots), 16
plotMutationSpectrum(signature-plots), 16
plotObservedSpectrum(signature-plots), 16
plotRainfall (mutation-distribution), 9
plotSampleMap (signature-plots), 16
plotSamples (signature-plots), 16
plotSignatureMap (signature-plots), 16
plotSignatures (signature-plots), 16
plotVariantAbundance
 (mutational-plots), 10
readMutect, 14
samples (MutationalSignatures), 12
samples, MutationalSignatures-method
 (MutationalSignatures), 12
sca-data, 15
sca_mm (sca-data), 15
sca_sigs (sca-data), 15
scaSNVRanges, 15
seqchar (GRanges-converters), 4
show (MutationalSignatures), 12
show, MutationalSignatures-method
 (MutationalSignatures), 12
signature-plots, 16
signatures (MutationalSignatures), 12
signatures, MutationalSignatures-method
 (MutationalSignatures), 12
signatures21 (signatures21-data), 17
signatures21-data, 17
sigs_nmf (sca-data), 15
sigs_pca (sca-data), 15
SomaticSignatures, 18
SomaticSignatures-package
 (SomaticSignatures), 18
ucsc (GRanges-converters), 4
variants-utils, 19