Package ‘M3D’

March 26, 2015

Type Package

Title Identifies differentially methylated regions across testing groups.

Version 1.1.3

Date 2015-02-03

Author Tom Mayo

Maintainer Tom Mayo <t.mayo@ed.ac.uk>

Description This package identifies statistically significantly differentially methylated regions of CpGs. It uses kernel methods (the Maximum Mean Discrepancy) to measure differences in methylation profiles, and relates these to inter-replicate changes, whilst accounting for variation in coverage profiles.

License Artistic License 2.0

Imports GenomicRanges, IRanges, BiSeq, parallel

Depends R (>= 3.0.0)

VignetteBuilder knitr

Suggests BiocStyle, knitr, RUnit, BiocGenerics

biocViews DNAmethylation, DifferentialMethylation, Coverage, CpGIsland

NeedsCompilation no

R topics documented:

M3D-package ... 2
CpGsDemo .. 3
determineGroupComps .. 3
findComps ... 4
M3D_Para .. 4
M3D_Single .. 5
M3D_Wrapper .. 6
medianFreq ... 7
MMDlistDemo ... 8
This package identifies statistically significantly differentially methylated regions of CpGs. It uses kernel methods, specifically the Maximum Mean Discrepancy (Gretton et al. 2006), to measure differences in methylation profiles, and relates these to inter-replicate changes, whilst accounting for variation in coverage profiles.

Details

Package: M3D
Type: Package
Version: 0.99.0
Date: 2014-07-17
License: Artistic License 2.0

This package works on RRBS data as processed by the BiSeq package. The starting point is an rrbs object, a class defined by the BiSeq package (Hebestreit et al. 2013), and a GRanges object outlining the regions to test. The maximum mean discrepancy (MMD) (Gretton et al. 2006) is calculated over each region for each pair of samples, once with respect to methylation levels and once respecting only coverage. These two values are subtracted to form a test-statistic and between-group values are compared to inter-replicate values to provide p-values. These reflect the empirical probability of observing the between-group methylation differences among the replicates.

Function list:
determineGroupComps: returns a vector of the sample comparisons
findComps: returns the indices of the M3D test-statistic that corresponding to particular samples
M3D_Single: Computes the two components of the M3D test-statistic over 1 island for 1 sample pair.
M3D_Wrapper: Computes the two components of the M3D test-statistic over all sample pairs over all islands.
medianFreq: Returns the median of data summarised by unique values and the frequency with which they occur.
pvals: Returns empirical p-values for the regions based on the M3D test-statistic.

Author(s)

Tom Mayo

Maintainer: Tom Mayo <t.mayo@ed.ac.uk>
References

cpgsdemo
Toy data for the package - 1000 CpG regions to be tested in a GRanges object

Description
Toy data for the package - 1000 CpG regions to be tested in a GRanges object

Author(s)
Tom Mayo
determinegroupcomps
Creates strings of sample pair comparisons

Description
Takes in a vector of strings of sample names and returns strings of all the comparisons, either within a testing group or between testing groups. This is not intended to be called directly by the user.

Usage
determineGroupComps(samples1, samples2 = NULL, type)

Arguments
samples1 A vector of sample names from one group
samples2 A vector of sample names from the other group, if we want to specify between-group comparisons
type 'within’ or 'between’. ’within’ returns all the sample pairs within samples1, ’between’ returns all the sample pairs between samples1 and samples2

Value
A vector of sample pair comparisons of the form 'sample1 vs sample2’ for use with the M3D functions

Author(s)
Tom Mayo <t.mayo@ed.ac.uk>
findComps

Finds columns in the M3D test-statistic matrix

Description

Returns the columns of the test-statistic matrix that refer to specific samples. This is not intended to be called directly by the user.

Usage

findComps(MMD, samples)

Arguments

MMD: A matrix containing the M3D test-statistic, the difference the full and methylation blind metrics, for each region in the CpGs object. Each column is a comparison between two samples, which are described in the column names.

samples: A vector of sample pairs of the form 'sample1 vs sample2' as returned from determineGroupComps

Value

Returns the indices of the M3D test-statistic components that contain the sample pair comparisons in 'samples'

Author(s)

Tom Mayo <t.mayo@ed.ac.uk>

M3D_Para

Computes the components of the M3D test-statistic over all regions for all sample-pairs.

Description

Parallel implementation of M3D_Wrapper function. Returns the two components of the M3D test-statistic - the MMD (Gretton et al. 2006) for the full data and the coverge only data, respectively - for all regions and all samples pairs, as a matrix.

Usage

M3D_Para(rrbs, CpGs, overlaps, num.cores = NaN)
M3D_Single

Arguments

- **rrbs**
 An rrbs object containing methylation and coverage data as created using the BiSeq package.

- **CpGs**
 A GRanges object detailing the testing regions.

- **overlaps**
 The overlaps between the list of testing regions and the methylation data. This is obtained using the function `findOverlaps(CpGs, rrbs)` for a GRanges object CpGs detailing the testing regions.

- **num.cores**
 Integer giving the number of cores to use. Defaults to the maximum available.

Value

This returns the two components of the M3D test-statistic for each region over all sample pairs as a matrix. Subtracting them gives the M3D test-statistic. This is processed with the function `pvals`.

Author(s)

Tom Mayo <t.mayo@ed.ac.uk>

References

Examples

```r
data(rrbsDemo)
data(CpGsDemo)
M3D_list <- M3D_Para(rrbsDemo, CpGsDemo)
head(M3d_list$Full - M3D_list$Coverage)
```

M3D_Single
Computes the components of the M3D test-statistic over one region for 2 samples

Description

Returns the two components of the M3D test-statistic - the MMD (Gretton et al. 2006) for the full data and the coverage only data, respectively. This is not intended to be called directly by the user.

Usage

```r
M3D_Single(testData, method = "MinusCovMMD")
```
Arguments

testData
Contains the methylation data over two samples for a given region.

method
This specifies whether to return the full MMD and the methylation blind MMD (focusing only on the coverage) or just the former. If method = 'MinusCovMMD' it is both, all other values return just the full MMD.

Value

This returns the value of the MMD for the region between the two samples as a numeric. If method is set to 'MinusCovMMD', a list is returned of the full MMD and the coverage only MMD. Subtracting them gives the M3D test-statistic.

Author(s)

Tom Mayo <t.mayo@ed.ac.uk>

References

Description

Returns the two components of the M3D test-statistic - the MMD (Gretton et al. 2006) for the full data and the coverage only data, respectively - for all regions and all sample pairs, as a matrix.

Usage

M3D_Wrapper(rrbs, overlaps, para = FALSE)

Arguments

rrbs
An rrbs object containing methylation and coverage data as created using the BiSeq package

overlaps
The overlaps between the list of testing regions and the methylation data. This is obtained using the function findOverlaps(CpGs,rrbs) for a GRanges object CpGs detailing the testing regions.

para
Set to true if called via M3D_Para

Value

This returns the two components of the M3D test-statistic for each region over all sample pairs as a matrix. Subtracting them gives the M3D test-statistic. This is processed with the function pvals.
medianFreq

Author(s)

Tom Mayo <t.mayo@ed.ac.uk>

References

Examples

data(rrbsDemo)
data(CpGsDemo)
overlaps <- findOverlaps(CpGsDemo,rrbsDemo)
M3D_list <- M3D_Wrapper(rrbsDemo,overlaps)
head(M3D_list$Full-M3D_list$Coverage)

Description

Returns the median of a list of values with corresponding frequencies. This is not intended to be called directly by the user.

Usage

medianFreq(values, freqs)

Arguments

values A vector of the unique values that occur
freqs A vector of the number of occurrences of each value

Value

Returns the median value of the data comprising each entry in values repeated the corresponding entry in freqs number of times, as a numeric.

Author(s)

Tom Mayo <t.mayo@ed.ac.uk>
Toy data for the package - the output of the M3D_Wrapper function.

Description

Toy data for the package - the output of the M3D_Wrapper function.

Author(s)

Tom Mayo

Toy data for the package - the output of the pvals function.

Description

Toy data for the package - the output of the pvals function.

Author(s)

Tom Mayo

Plots methylation profiles over a specific region

Description

Plots a smoothed methylation profile for each of the two testing groups. Within each group, the mean of methylation level is taken, smoothed and plotted, along with the individual values.

Usage

plotMethProfile(rrbs, CpGs, group1, group2, CpGindex)

Arguments

rrbs An rrbs object containing methylation and coverage data as created using the BiSeq package
CpGs A GRanges object with each row being a testing region
group1 The name of the first testing group
group2 The name of the second testing group
CpGindex The index within the CpGs object of the region we are plotting
Value

NULL, the function plots the profiles

Author(s)

Tom Mayo <t.mayo@ed.ac.uk>

Examples

```r
# plot the 9th region in the Toy Data Set
data(rrbsDemo)
data(CpGsDemo)
plotMethProfile(rrbsDemo, CpGsDemo, 'H1-hESC', 'K562', 9)
```

pvals
Computes p-values

Description

Returns p-values for each region reflecting the probability of observing the mean test-statistic of the between group comparisons among the inter-replicate comparisons.

Usage

```r
pvals(rrbs, CpGs, MMD, group1, group2, smaller = FALSE,
      comparison = "allReps", method = "empirical", closePara = 0.005)
```

Arguments

- **rrbs**: An rrs object containing methylation and coverage data as created using the BiSeq package
- **CpGs**: A GRanges object with each row being a testing region
- **MMD**: A matrix containing the M3D test-statistic, the difference the full and methylation blind metrics, for each region in the CpGs object. Each column is a comparison between two samples, which are described in the column names.
- **group1**: The name of the first group for the comparison. This is stored in colData(rrbs)
- **group2**: The name of the second group for the comparison. This is stored in colData(rrbs)
- **smaller**: Determines whether the p-value is computed whether the test-statistic is greater or lesser than inter-replicate values. For our purposes, it should be set to FALSE.
- **comparison**: Details which groups we are using to define our empirical testing distribution. The default is to use all of them, however, should the user find one group contains unusually high variability, then that group can be selected. Values are either 'allReps', 'Group1' or 'Group2'.
- **method**: Determines which method is used to calculate p-values. 'empirical' uses the empirical distribution directly, without modelling. This is the default. 'model', fits an exponential distribution to the tail of our null distribution.
closePara

Sets a threshold for how close the exponential curve should fit the empirical distribution in the 'model' method. If the method produces errors, consider raising this parameter.

Value

Returns a list P, with 2 entries. 'FDRmean' is the Benjamini-Hochberg adjusted p-values. The unadjusted p-values are stored in 'Pmean'.

Author(s)

Tom Mayo <t.mayo@ed.ac.uk>

Examples

data(rrbsDemo)
data(CpGsDemo)
data(MMDlistDemo)
M3Dstat <- MMDlistDemo$FullMMDlistDemo$Coverage
group1 <- unique(colData(rrbsDemo)$group)[1]
group2 <- unique(colData(rrbsDemo)$group)[2]
PDemo <- pvals(rrbsDemo, CpGsDemo, M3Dstat,
 group1, group2, smaller=FALSE, comparison='allReps')
rrbsDemo

Author(s)
Tom Mayo <t.mayo@ed.ac.uk>

Examples

download the files and change the working directory
to that location
files <- c('wgEncodeHaibMethyl1RrbsH1hescHaibSitesRep1.bed.gz',
 'wgEncodeHaibMethyl1RrbsH1hescHaibSitesRep2.bed.gz',
 'wgEncodeHaibMethyl1RrbsK562HaibSitesRep1.bed.gz',
 'wgEncodeHaibMethyl1RrbsK562HaibSitesRep2.bed.gz')
group <- factor(c('H1-hESC','H1-hESC','K562','K562'))
samples <- c('H1-hESC1','H1-hESC2','K562-1','K562-2')
colData <- DataFrame(group,row.names= samples)
rrbs <- read_ENCODEdata(files,colData)

rrbsDemo
Toy data for the package - methylation data for cytosines sites within the testing regions only, in an rrbs object.

Description
Toy data for the package - methylation data for cytosines sites within the testing regions only, in an rrbs object.

Author(s)
Tom Mayo
Index

*Topic data
 CpGsDemo, 3
 MMDDlistDemo, 8
 PDemo, 8
 rrbsDemo, 11
*Topic package
 M3D-package, 2

CpGsDemo, 3

determineGroupComps, 3

findComps, 4

M3D (M3D-package), 2
M3D-package, 2
M3D_Para, 4
M3D_Single, 5
M3D_Wrapper, 6
medianFreq, 7
MMDDlistDemo, 8

PDemo, 8
plotMethProfile, 8
pvals, 9

readENCODEdata, 10
rrbsDemo, 11