Package ‘ChIPseeker’

March 25, 2015

Type Package

Title ChIPseeker for ChIP peak Annotation, Comparison, and Visualization

Version 1.3.11

Author Guangchuang Yu

Maintainer Guangchuang Yu <guangchuangyu@gmail.com>

Description This package implements functions to retrieve the nearest genes around the peak, annotate genomic region of the peak, statistical methods for estimate the significance of overlap among ChIP peak data sets, and incorporate GEO database for user to compare the own dataset with those deposited in database. The comparison can be used to infer cooperative regulation and thus can be used to generate hypotheses. Several visualization functions are implemented to summarize the coverage of the peak experiment, average profile and heatmap of peaks binding to TSS regions, genomic annotation, distance to TSS, and overlap of peaks or genes.

Depends R (>= 3.1.0)

Imports BiocGenerics, AnnotationDbi, IRanges, GenomeInfoDb, GenomicRanges, GenomicFeatures, ggplot2, gplots, grDevices, gtools, methods, plotrix, dplyr, plyr, magrittr, RColorBrewer, rtracklayer, S4Vectors, TxDb.Hsapiens.UCSC.hg19.knownGene

Suggests clusterProfiler, DOSE, ReactomePA, org.Hs.eg.db, knitr, BiocStyle

URL https://github.com/GuangchuangYu/ChIPseeker

BugReports https://github.com/GuangchuangYu/ChIPseeker/issues

VignetteBuilder knitr

License Artistic-2.0

biocViews Annotation, ChIPSeq, Software, Visualization, MultipleComparison

NeedsCompilation no
R topics documented:

ChIPseeker-package ... 3
addGeneAnno ... 3
annotatePeak ... 4
as.data.frame.csAnno ... 6
as.GRanges ... 6
covplot ... 7
csAnno-class ... 8
downloadGEObedFiles ... 8
downloadGSMbedFiles ... 9
enrichAnnoOverlap ... 9
enrichPeakOverlap ... 10
genomicAnnotation ... 10
getGEOgenomeVersion .. 11
getGEOInfo ... 12
getGEOspecies .. 12
getNearestFeatureIndicesAndDistances 13
getPromoters ... 13
getSampleFiles .. 14
getTagMatrix ... 14
info ... 15
overlap ... 15
peakHeatmap ... 15
plotAnnoBar ... 16
plotAnnoBar.data.frame .. 17
plotAnnoPie ... 18
plotAnnoPie.csAnno ... 19
plotAvgProf ... 20
plotAvgProf2 ... 20
plotChrCov ... 21
plotDistToTSS .. 22
plotDistToTSS.data.frame .. 23
readPeakFile .. 24
show ... 24
shuffle ... 25
tagHeatmap ... 25
vennpie ... 26
vennplot ... 27
vennplot.peakfile .. 27

Index 29
ChIPseeker-package

ChIP-SEQ Annotation, Visualization and Comparison

Description

This package is designed for chip-seq data analysis

Details

- **Package:** ChIPseeker
- **Type:** Package
- **Version:** 1.4.0
- **Date:** 2-01-2014
- **biocViews:** ChIPSeq, Annotation, Software
- **Depends:**
- **Imports:** methods, ggplot2
- **Suggests:** clusterProfiler, GOSemSim
- **License:** Artistic-2.0

Author(s)

Guangchuang Yu

Maintainer: Guangchuang Yu <guangchuangyu@gmail.com>

addGeneAnno

Description

add gene annotation, symbol, gene name etc.

Usage

`addGeneAnno(annoDb, geneID, type)`

Arguments

- **annoDb**
 - annotation package
- **geneID**
 - query geneID
- **type**
 - gene ID type
Value
data.frame

Author(s)
G Yu

Description
Annotate peaks

Usage
annotatePeak(peak, tssRegion = c(-3000, 3000), TxDB = NULL,
level = "transcript", assignGenomicAnnotation = TRUE,
genomicAnnotationPriority = c("Promoter", "5UTR", "3UTR", "Exon", "Intron",
"Downstream", "Intergenic"), annoDb = NULL, addFlankGeneInfo = FALSE,
flankDistance = 5000, verbose = TRUE)

Arguments
peak peak file or GRanges object
tssRegion Region Range of TSS
TxDB TxDB object
level one of transcript and gene
assignGenomicAnnotation logical, assign peak genomic annotation or not
genomicAnnotationPriority genomic annotation priority
annoDb annotation package
addFlankGeneInfo logical, add flanking gene information from the peaks
flankDistance distance of flanking sequence
verbose print message or not
Value

data.frame or GRanges object with columns of:

all columns provided by input.

annotation: genomic feature of the peak, for instance if the peak is located in 5’UTR, it will annotated by 5’UTR. Possible annotation is Promoter-TSS, Exon, 5’ UTR, 3’ UTR, Intron, and Intergenic.

geneChr: Chromosome of the nearest gene
geneStart: gene start
geneEnd: gene end
geneLength: gene length
geneStrand: gene strand
geneId: entrezgene ID
distanceToTSS: distance from peak to gene TSS

if annoDb is provided, extra column will be included:

ENSEMBL: ensembl ID of the nearest gene
SYMBOL: gene symbol
GENENAME: full gene name

Author(s)

G Yu

See Also

plotAnnoBar plotAnnoPie plotDistToTSS

Examples

Not run:
require(TxDb.Hsapiens.UCSC.hg19.knownGene)
txdb <- TxDb.Hsapiens.UCSC.hg19.knownGene
peakfile <- system.file("extdata", "sample_peaks.txt", package="ChIPseeker")
peakAnno <- annotatePeak(peakfile, tssRegion=c(-3000, 3000), TxDb=txdb)
peakAnno

End(Not run)
Description
as.data.frame.csAnno

Usage
```r
## S3 method for class 'csAnno'
as.data.frame(x, row.names = NULL, optional = FALSE, ...)
```

Arguments
- `x`: csAnno object
- `row.names`: row names
- `optional`: should be omitted.
- `...`: additional parameters

Value
data.frame

Author(s)
Guangchuang Yu http://ygc.name

Description
as.GRanges

Usage
```r
as.GRanges(x)
```

Arguments
- `x`: csAnno object

Value
GRanges object
Description
plot peak coverage

Usage
covplot(peak, weightCol = NULL, xlab = "Chromsome Size (bp)", ylab = "", title = "ChIP Peaks over Chromosomes", chrs = NULL, xlim = NULL)

Arguments
peak peak file or GRanges object
weightCol weight column of peak
xlab xlab
ylab ylab
title title
chrs selected chromosomes to plot, all chromosomes by default
xlim ranges to plot, default is whole chromosome

Value
ggplot2 object

Author(s)
G Yu
Class csAnno

Description

Class "csAnno" This class represents the output of ChIPseeker Annotation

Slots

anno annotation
tssRegion TSS region
level transcript or gene
detailGenomicAnnotation Genomic Annotation in detail
annoStat annotation statistics
peakNum number of peaks

Author(s)

Guangchuang Yu http://ygc.name

See Also

annotatePeak

downloadGEObedFiles

download all BED files of a particular genome version

Usage

downloadGEObedFiles(genome, destDir = getwd())

Arguments

genome genome version
destDir destination folder

Author(s)

G Yu
downloadGSMbedFiles

Description

Download BED supplementary files of a list of GSM accession numbers.

Usage

```r  
downloadGSMbedFiles(GSM, destDir = getwd())  
```

Arguments

- `GSM`: GSM accession numbers.
- `destDir`: Destination folder.

Author(s)

G Yu

enrichAnnoOverlap

Description

Calculate overlap significance of ChIP experiments based on their nearest gene annotation.

Usage

```r  
enrichAnnoOverlap(queryPeak, targetPeak, TxDB = NULL, pAdjustMethod = "BH", chainFile = NULL)  
```

Arguments

- `queryPeak`: Query bed file.
- `targetPeak`: Target bed file(s) or folder containing bed files.
- `TxDB`: TxDB object.
- `pAdjustMethod`: P-value adjustment method.
- `chainFile`: Chain file for liftOver.

Value

Data frame.

Author(s)

G Yu
enrichPeakOverlap

Description

calculate overlap significant of ChIP experiments based on the genome coordinations

Usage

```r
enrichPeakOverlap(queryPeak, targetPeak, TxDB = NULL, pAdjustMethod = "BH", nShuffle = 1000, chainFile = NULL)
```

Arguments

- **queryPeak**: query bed file
- **targetPeak**: target bed file(s) or folder that containing bed files
- **TxDB**: TxDb
- **pAdjustMethod**: pvalue adjustment method
- **nShuffle**: shuffle numbers
- **chainFile**: chain file for liftOver

Value

data.frame

Author(s)

G Yu

getGenomicAnnotation

Description

get Genomic Annotation of peaks

Usage

```r
getGenomicAnnotation(peaks, distance, tssRegion = c(-3000, 3000), TxDB, level, genomicAnnotationPriority)
```
getGEOgenomeVersion

Arguments
- **peaks** peaks in GRanges object
- **distance** distance of peak to TSS
- **tssRegion** tssRegion, default is -3kb to +3kb
- **TxDb** TxDb object
- **level** one of gene or transcript
- **genomicAnnotationPriority** genomic Annotation Priority

Value
- character vector

Author(s)
- G Yu

Description
- get genome version statistics collecting from GEO ChIPseq data

Usage
- `getGEOgenomeVersion()`

Value
- data.frame

Author(s)
- G Yu
getGEOInfo

Description
get subset of GEO information by genome version keyword

Usage
getGEOInfo(genome, simplify = TRUE)

Arguments
- genome: genome version
- simplify: simplify result or not

Value
data.frame

Author(s)
G Yu

getGEOspecies

Description
accessing species statistics collecting from GEO database

Usage
getGEOspecies()

Value
data.frame

Author(s)
G Yu
getNearestFeatureIndicesAndDistances

Description
get index of features that closest to peak and calculate distance

Usage
getNearestFeatureIndicesAndDistances(peaks, features)

Arguments
peaks peak in GRanges
features features in GRanges

Value
list

Author(s)
G Yu

getPromoters

Description
prepare the promoter regions

Usage
getPromoters(TxDb = NULL, upstream = 1000, downstream = 1000,
by = “gene”)

Arguments
TxDb TxDb
upstream upstream from TSS site
downstream downstream from TSS site
by one of gene or transcript

Value
GRanges object
getSampleFiles

Description
get filenames of sample files

Usage
getSampleFiles()

Value
list of file names

Author(s)
G Yu

getTagMatrix

Description
calculate the tag matrix

Usage
getTagMatrix(peak, weightCol = NULL, windows)

Arguments
- peak: peak file or GRanges object
- weightCol: column name of weight, default is NULL
- windows: a collection of region with equal size, eg. promoter region.

Value
tagMatrix
Information Datasets

Description

ucsc genome version, precalculated data and gsm information

Overlap

Description

calculate the overlap matrix, which is useful for vennplot

Usage

`overlapHsetsI

Arguments**

Sets a list of objects

Value

data.frame

Author(s)

G Yu

PeakHeatmap

Description

plot the heatmap of peaks align to flank sequences of TSS

Usage

`peakHeatmap(peak, weightCol = NULL, TxDB = NULL, upstream = 1000, downstream = 1000, xlab = "", ylab = "", title = NULL, color = NULL, verbose = TRUE)"
Arguments

peak peak file or GRanges object
weightCol column name of weight
TxDb TxDb object
upstream upstream position
downstream downstream position
xlab xlab
ylab ylab
title title
color color
verbose print message or not

Value

figure

Author(s)

G Yu

plotAnnoBar method generics

Description

plotAnnoBar method generics
plotAnnoBar method for list of csAnno instances
plotAnnoBar method for csAnno instance

Usage

plotAnnoBar(x, xlab = "", ylab = "Percentage(%)",
 title = "Feature Distribution", ...)

S4 method for signature 'list'
plotAnnoBar(x, xlab = "", ylab = "Percentage(%)",
 title = "Feature Distribution", ...)

plotAnnoBar(x, xlab="", ylab='Percentage(%)',title="Feature Distribution", ...)
Arguments

- x: csAnno instance
- xlab: xlab
- ylab: ylab
- title: title
- ...: additional parameter

Value

- plot

Author(s)

Guangchuang Yu http://ygc.name

Description

Plot feature distribution based on their chromosome region

Usage

```r
plotAnnoBar.data.frame(anno.df, xlab = "", ylab = "Percentage(%)", title = "Feature Distribution", categoryColumn)
```

Arguments

- anno.df: annotation stats
- xlab: xlab
- ylab: ylab
- title: plot title
- categoryColumn: category column

Details

Plot chromosome region features

Value

Bar plot that summarize genomic features of peaks
Author(s)

Guangchuang Yu http://ygc.name

See Also

annotatePeak plotAnnoPie

plotAnnoPie plotAnnoPie method generics

Description

plotAnnoPie method generics
plotAnnoPie method for csAnno instance

Usage

plotAnnoPie(x, ndigit = 2, cex = 0.9, col = NA,
 legend.position = "rightside", pie3D = FALSE, ...)

 plotAnnoPie(x, ndigit = 2, cex = 0.9, col = NA,
 legend.position = "rightside", pie3D = FALSE, ...)

Arguments

 x csAnno instance
 ndigit number of digit to round
 cex label cex
 col color
 legend.position topright or other.
 pie3D plot in 3D or not
 ... extra parameter

Value

 plot

Author(s)

Guangchuang Yu http://ygc.name
plotAnnoPie.csAnno

Description

Pie plot from peak genomic annotation

Usage

```r
plotAnnoPie.csAnno(x, ndigit = 2, cex = 0.9, col = NA,
                  legend.position = "rightside", pie3D = FALSE, ...)
```

Arguments

- `x`: csAnno object
- `ndigit`: number of digit to round
- `cex`: label cex
- `col`: color
- `legend.position`: top right or other.
- `pie3D`: plot in 3D or not
- `...`: extra parameter

Value

Pie plot of peak genomic feature annotation

Author(s)

G Yu

See Also

annotatePeak plotAnnoBar

Examples

```r
## Not run:
require(TxDb.Hsapiens.UCSC.hg19.knownGene)
txdb <- TxDb.Hsapiens.UCSC.hg19.knownGene
peakfile <- system.file("extdata", "sample_peaks.txt", package="chipseeker")
peakAnno <- annotatePeak(peakfile, TxDb=txdb)
plotAnnoPie(peakAnno)
```

End(Not run)
plotAvgProf

Description
plot the profile of peaks

Usage
plotAvgProf(tagMatrix, xlim, xlab = "Genomic Region (5'->3')", ylab = "Read Count Frequency")

Arguments
- tagMatrix
- xlim
- xlab
- ylab

Value
ggplot object

Author(s)
G Yu

plotAvgProf2

Description
plot the profile of peaks that align to flank sequences of TSS

Usage
plotAvgProf2(peak, weightCol = NULL, TxDB = NULL, upstream = 1000, downstream = 1000, xlab = "Genomic Region (5'->3')", ylab = "Read Count Frequency", verbose = TRUE)
plotChrCov

Arguments
- peak: peak file or GRanges object
- weightCol: column name of weight
- TxDB: TxDB object
- upstream: upstream position
- downstream: downstream position
- xlab: xlab
- ylab: ylab
- verbose: print message or not

Value
- ggplot object

Author(s)
- G Yu

Description
plot the Peak Regions over Chromosomes

Usage
plotChrCov(peak, weightCol = NULL, xlab = "Chromosome Size (bp)", ylab = "", title = "ChIP Peaks over Chromosomes")

Arguments
- peak: peak file or GRanges object
- weightCol: weight column of peak
- xlab: xlab
- ylab: ylab
- title: title

Value
- ggplot2 object

Author(s)
- G Yu
plotDistToTSS method generics

Description

plotDistToTSS method generics
plotDistToTSS method for list of csAnno instances
plotDistToTSS method for csAnno instance

Usage

```r
plotDistToTSS(x, distanceColumn = "distanceToTSS", xlab = "", ylab = "Binding sites (%) (5'->3')", title = "Distribution of transcription factor-binding loci relative to TSS", ...)
```

```r
## S4 method for signature 'list'
plotDistToTSS(x, distanceColumn = "distanceToTSS", xlab = "", ylab = "Binding sites (%) (5'->3')", title = "Distribution of transcription factor-binding loci relative to TSS", ...)
```

```r
plotDistToTSS(x, distanceColumn="distanceToTSS", xlab="", ylab="Binding sites (%) (5'->3')", title="Distribution of transcription factor-binding loci relative to TSS",...)
```

Arguments

- `x`: csAnno instance
- `distanceColumn`: distance column name
- `xlab`: xlab
- `ylab`: ylab
- `title`: title
- `...`: additional parameter

Value

plot

Author(s)

Guangchuang Yu http://ygc.name
plotDistToTSS.data.frame

Description

plot feature distribution based on the distances to the TSS

Usage

plotDistToTSS.data.frame(peakDist, distanceColumn = "distanceToTSS",
 xlab = "", ylab = "Binding sites (%) (5'->3')",
 title = "Distribution of transcription factor-binding loci relative to TSS",
 categoryColumn)

Arguments

peakDist peak annotation
distanceColumn column name of the distance from peak to nearest gene
xlab x label
ylab y label
title figure title
categoryColumn category column

Value

bar plot that summarize distance from peak to TSS of the nearest gene.

Author(s)

Guangchuang Yu http://ygc.name

See Also

annotatePeak

Examples

Not run:
require(TxDb.Hsapiens.UCSC.hg19.knownGene)
txdb <- TxDb.Hsapiens.UCSC.hg19.knownGene
peakfile <- system.file("extdata", "sample_peaks.txt", package="ChIPseeker")
peakAnno <- annotatePeak(peakfile, TxDb=txdb)
plotDistToTSS(peakAnno)

End(Not run)
Description

read peak file and store in data.frame or GRanges object

Usage

readPeakFile(peakfile, as = "GRanges")

Arguments

peakfile peak file
as output format, one of GRanges or data.frame

Value

peak information, in GRanges or data.frame object

Author(s)

G Yu

Examples

peakfile <- system.file("extdata", "sample_peaks.txt", package="ChIPseeker")
peak.gr <- readPeakFile(peakfile, as = "GRanges")
peak.gr

Description

show method for csAnno instance

Usage

show(object)

Arguments

object A csAnno instance
shuffle

Value

message

Author(s)

Guangchuang Yu http://ygc.name

shuffle

Description

shuffle the position of peak

Usage

shuffle(peak.gr, TxDb)

Arguments

<table>
<thead>
<tr>
<th>peak.gr</th>
<th>GRanges object</th>
</tr>
</thead>
<tbody>
<tr>
<td>TxDb</td>
<td>TxDb</td>
</tr>
</tbody>
</table>

Value

GRanges object

Author(s)

G Yu

tagHeatmap

Description

plot the heatmap of tagMatrix

Usage

tagHeatmap(tagMatrix, xlim = "", ylab = "", title = NULL, color = "red")
vennpie

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>tagMatrix</td>
<td>tagMatrix or a list of tagMatrix</td>
</tr>
<tr>
<td>xlim</td>
<td>xlim</td>
</tr>
<tr>
<td>xlab</td>
<td>xlab</td>
</tr>
<tr>
<td>ylab</td>
<td>ylab</td>
</tr>
<tr>
<td>title</td>
<td>title</td>
</tr>
<tr>
<td>color</td>
<td>color</td>
</tr>
</tbody>
</table>

Value

figure

Author(s)

G Yu

Description

vennpie method generics
vennpie method generics

Usage

vennpie(x, r = 0.2, ...)

vennpie(x, r=0.2, ...)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>A csAnno instance</td>
</tr>
<tr>
<td>r</td>
<td>initial radius</td>
</tr>
<tr>
<td>...</td>
<td>additional parameter</td>
</tr>
</tbody>
</table>

Value

plot

Author(s)

Guangchuang Yu http://ygc.name
vennplot

Description

plot the overlap of a list of object

Usage

```r
vennplot(Sets, by = "gplots")
```

Arguments

- `Sets`: a list of object, can be vector or GRanges object
- `by`: one of gplots or Vennerable

Value

venn plot that summarize the overlap of peaks from different experiments or gene annotation from different peak files.

Author(s)

G Yu

Examples

```r
## example not run
## require(TxDb.Hsapiens.UCSC.hg19.knownGene)
## txdb <- TxDb.Hsapiens.UCSC.hg19.knownGene
## peakfiles <- getSampleFiles()
## peakAnnoList <- lapply(peakfiles, annotatePeak)
## names(peakAnnoList) <- names(peakfiles)
## genes= lapply(peakAnnoList, function(i) as.data.frame(i)$geneId)
## vennplot(genes)
```

vennplot.peakfile

Description

vennplot for peak files

Usage

```r
vennplot.peakfile(files, labels = NULL)
```
Arguments

files peak files
labels labels for peak files

Value

figure

Author(s)

G Yu
Index

*Topic **classes**
csAnno-class, 8

*Topic **datasets**
info, 15

*Topic **package**
ChIPseeker-package, 3

addGeneAnno, 3
annotatePeak, 4, 8, 18, 19, 23
as.data.frame.csAnno, 6
as.GRanges, 6

ChIPseeker (ChIPseeker-package), 3
ChIPseeker-package, 3
covplot, 7
csAnno-class, 8

download GEO bedFiles, 8
download GSM bedFiles, 9

enrichAnnoOverlap, 9
enrichPeakOverlap, 10

getGenomicAnnotation, 10
get GEO genomeVersion, 11
get GEO Info, 12
get GEO species, 12
get Nearest Feature Indices And Distances, 13
get Promoters, 13
get Sample Files, 14
get Tag Matrix, 14
gsminfo (info), 15

info, 15

overlap, 15

peakHeatmap, 15
plot Anno Bar, 5, 16, 19
plot Anno Bar, csAnno, ANY-method
(plot Anno Bar), 16
plot Anno Bar, csAnno-method
(csAnno-class), 8
plot Anno Bar, list-method (plot Anno Bar), 16
plot Anno Bar.data.frame, 17
plot Anno Pie, 5, 18, 18
plot Anno Pie, csAnno, ANY-method
(plot Anno Pie), 18
plot Anno Pie, csAnno-method
(csAnno-class), 8
plot Anno Pie.csAnno, 19
plot AvgProf, 20
plot AvgProf2, 20
plot Chr Cov, 21
plot Dist To TSS, 5, 22
plot Dist To TSS, csAnno, ANY-method
(plot Dist To TSS), 22
plot Dist To TSS, csAnno-method
(csAnno-class), 8
plot Dist To TSS, list-method
(plot Dist To TSS), 22
plot Dist To TSS.data.frame, 23

read Peak File, 24

show, 24
show, csAnno, ANY-method (show), 24
show, csAnno-method (csAnno-class), 8
shuffle, 25

tag Heatmap, 25
tag Matrix List (info), 15

tag Pie, 26
tag Pie, csAnno-method (csAnno-class), 8
tag Plot, 27
tag Plot Peak File, 27

ucsc release (info), 15

venn pie, 26
venn pie, csAnno-method (csAnno-class), 8
venn plot, 27
venn plot peak file, 27