basecontent: Function to compute the amounts of each nucleotide in a sequence.

Usage

basecontent(seq)
basicRMA

Simplified Interface to RMA

Description
Simple interface to RMA.

Usage

basicRMA(pmMat, pnVec, normalize = TRUE, background = TRUE, bgversion = 2, destructive = FALSE, verbose = TRUE, ...)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>pmMat</td>
<td>Matrix of intensities to be processed.</td>
</tr>
<tr>
<td>pnVec</td>
<td>Probeset names.</td>
</tr>
<tr>
<td>normalize</td>
<td>Logical flag: normalize?</td>
</tr>
<tr>
<td>background</td>
<td>Logical flag: background adjustment?</td>
</tr>
<tr>
<td>bgversion</td>
<td>Version of background correction.</td>
</tr>
<tr>
<td>destructive</td>
<td>Logical flag: use destructive methods?</td>
</tr>
<tr>
<td>verbose</td>
<td>Logical flag: verbose.</td>
</tr>
<tr>
<td>...</td>
<td>Not currently used.</td>
</tr>
</tbody>
</table>

Value
Matrix.

Examples

```r
set.seed(1)
pms <- matrix(rnorm(1000), nc=20)
colnames(pms) <- paste("sample", 1:20, sep="")
pns <- rep(letters[1:10], each=5)
res <- basicRMA(pms, pns, length(unique(pns)), TRUE, TRUE)
res[, 1:3]
```
Description

Boxplot for observed (log-)intensities in a FeatureSet-like object (ExpressionFeatureSet, ExonFeatureSet, SnpFeatureSet, TilingFeatureSet).

Usage

```r
boxplot(x, ...)  
## S4 method for signature 'FeatureSet': 
boxplot(x, which=pmindex(x), transfo=log2, range=0, ...)  
## S4 method for signature 'ExpressionSet': 
boxplot(x, which=1:nrow(x), transfo=identity, range=0, ...)
```

Arguments

- `x`: a FeatureSet-like object or ExpressionSet object.
- `which`: an integer vector determining which rows of `x` should be plotted. See 'Details'.
- `transfo`: a function to transform the data before plotting. See 'Details'.
- `range`: this determines how far the plot whiskers extend out from the box. If `range` is positive, the whiskers extend to the most extreme data point which is no more than `range` times the interquartile range from the box. A value of zero causes the whiskers to extend to the data extremes.
- `...`: arguments to be passed to plot

Details

The `which` argument should be used to subset the object to be plotted. For example, if the user wants to plot the PM probes, he should use `which=pmindex(x)`, if MM probes are to be plotted `which=mmindex(x)`. If all probes are to be plotted `which=1:nrow(x)`. Note that pmindex/mmindex options will not work for summarized data.

The `transfo` argument will set the transformation to be used. For raw data, `transfo=log2` is a common practice. For summarized data (which are often in log2-scale), no transformation is needed (therefore `transfo=identity`).

See Also

`hist`, `image`
getX

Accessors for physical array coordinates.

Description

Accessors for physical array coordinates.

Usage

```r
getX(object, type)  
getY(object, type)
```

Arguments

- `object` FeatureSet object
- `type` 'character' defining the type of the probes to be queried. Valid options are 'pm', 'mm', 'bg'

Value

A vector with the requested coordinates.

Examples

```r
## Not run:  
x <- read.celfiles(list.celfiles())  
theXpm <- getX(x, "pm")  
theYpm <- getY(x, "pm")  
## End(Not run)
```

crlmm

Genotype Calls

Description

Performs genotype calls via CRLMM (Corrected Robust Linear Model with Maximum-likelihood based distances).

Usage

```r
crlmm(filenames, outdir, batch_size=40000, balance=1.5,  
     minLLRforCalls=c(5, 1, 5), recalibrate=TRUE,  
     verbose=TRUE, pkgname, reference=TRUE)  
justCRLMM(filenames, batch_size = 40000, minLLRforCalls = c(5, 1, 5),  
          recalibrate = TRUE, balance = 1.5, phenoData = NULL, verbose = TRUE,  
          pkgname = NULL, tmpdir=tempdir())
```
getContainer

Arguments

filenames character vector with the filenames.
outdir directory where the output (and some tmp files) files will be saved.
batch_size integer defining how many SNPs should be processed at a time.
recalibrate Logical - should recalibration be performed?
balance Control parameter to balance homozygotes and heterozygotes calls.
minLLRforCalls Minimum thresholds for genotype calls.
verbose Logical.
phenoData phenoData object or NULL
pkgname alt. pdInfo package to be used
reference logical, defaulting to TRUE ...
tmpdir Directory where temporary files are going to be stored at.

Value

SnpCallSetPlus object.

Description

Get container information for NimbleGen Tiling Arrays. This is useful for better identification of control probes.

Usage

getcharacter vector with container information.

getContainer(object, probeType)

Arguments

object A TilingFeatureSet or TilingFeatureSet2 object.
probeType String describing which probes to query (‘pm’, ‘bg’)

Value

‘character’ vector with container information.
getCrlmmSummaries

Function to get CRLMM summaries saved to disk

Description

This will read the summaries written to disk and return them to the user as a `SnpCallSetPlus` or `SnpCnvCallSetPlus` object.

Usage

```r
getCrlmmSummaries(tmpdir)
```

Arguments

- `tmpdir` directory where CRLMM saved the results to.

Value

If the data were from SNP 5.0 or 6.0 arrays, the function will return a `SnpCnvCallSetPlus` object. It will return a `SnpCallSetPlus` object, otherwise.

getNgsColorsInfo

Helper function to extract color information for filenames on NimbleGen arrays.

Description

This function will (try to) extract the color information for NimbleGen arrays. This is useful when using `read.xysfiles2` to parse XYS files for Tiling applications.

Usage

```r
getNgsColorsInfo(path = ".", pattern1 = "_532", pattern2 = "_635", ...)
```

Arguments

- `path` path where to look for files
- `pattern1` pattern to match files supposed to go to the first channel
- `pattern2` pattern to match files supposed to go to the second channel
- `...` extra arguments for `list.xysfiles`

Details

Many NimbleGen samples are identified following the pattern `sampleID_532.XYS / sampleID_635.XYS`. The function suggests sample names if all the filenames follow the standard above.

Value

A data.frame with, at least, two columns: `channel1` and `channel2`. A third column, `sampleNames`, is returned if the filenames follow the `sampleID_532.XYS / sampleID_635.XYS` standard.
Author(s)

Benilton Carvalho <bcarvalh@jhsph.edu>

hist

Description

Plot the density estimates for each sample

Usage

```r
hist(x, ...)
```

Arguments

- `x` FeatureSet object
- `...` arguments to be passed to `lines`

image

Description

Produces an image (graphics::image) for each sample.

Usage

```r
image(x, ...)
```

Arguments

- `x` FeatureSet object
- `...` parameters to be passed to `plot`
mm

Accessors and replacement methods for the PM/MM/BG matrices.

Description

Accessors and replacement methods for the PM/MM/BG matrices.

Usage

```r
mm(object, subset = NULL)
pm(object, subset = NULL, ...)
bg(object, subset = NULL)
```

Arguments

- **object**: FeatureSet object.
- **subset**: Not implemented yet.
- **value**: matrix object.
- **...**: Extra arguments for future implementation.

Details

For all objects but TilingFeatureSet2, these methods will return matrices. In case of TilingFeatureSet2 objects, the value is a 3-dimensional array (probes x samples x channels).

Examples

```r
if (require(maqcExpression4plex) & require(pd.hg18.60mer.expr)){
  xysPath <- system.file("extdata", package="maqcExpression4plex")
  xysFiles <- list.xysfiles(xysPath, full.name=TRUE)
  ngsExpressionFeatureSet <- read.xysfiles(xysFiles)
  pm(ngsExpressionFeatureSet)[1:10,]
}
```

justSNPRMA

Summarization of SNP data

Description

This function implements the SNPRMA method for summarization of SNP data. It works directly with the CEL files, saving memory.

Usage

```r
justSNPRMA(filenames, verbose = TRUE, phenoData = NULL, normalizeToHapmap = TRUE)
```
list.celfiles

Arguments

filenames character vector with the filenames.
verbose logical flag for verbosity.
phenoData a phenoData object or NULL
normalizeToHapmap

Value

SnpQSet or a SnpCnvQSet, depending on the array type.

Examples

```r
## snprmaResults <- justSNPRMA(list.celfiles())
```

Description

Lists the CEL/XYS files.

Usage

list.celfiles(...)

Arguments

... parameters to be passed to list.files

Value

Character vector with the filenames.

Examples

`list.xysfiles()`
`list.celfiles()`

MAplot-methods MA plots

Description

Create MA plots using a reference array (based on medians).

Methods

object = "FeatureSet" ExpressionFeatureSet
Description

The **oligo** package handles oligonucleotide arrays: expression, tiling, SNP and exon chips. The supported manufacturers are Affymetrix and NimbleGen. The package provides tools for preprocessing.

Details

The package will read the raw intensity files (CEL for Affymetrix; XYS for NimbleGen) and allow the user to perform analyses starting at the feature-level.

Reading in the intensity files require the existence of data packages that contain the chip specific information (X/Y coordinates; feature types; sequence). These data packages packages are built using the `pdInfoBuilder` package.

For Affymetrix SNP arrays, users are asked to download the already built annotation packages from BioConductor. This is because these packages contain metadata that are not (yet) automatically created. The following annotation packages are available:

- 50K Xba - pd.mapping50kxba.240
- 50K Hind - pd.mapping50khind.240
- 250K Sty - pd.mapping250k.sty
- 250K Nsp - pd.mapping250k.nsp
- GenomeWideSnp 5 (SNP 5.0) - pd.genomewidesnp.5
- GenomeWideSnp 6 (SNP 6.0) - pd.genomewidesnp.6

For users interested in genotype calls for SNP 5.0 and 6.0 arrays, we strongly recommend the use of the `crlmm` package, which implements a more efficient version of CRLMM.

Author(s)

Benilton Carvalho - (bcarvalh@jhsph.edu)

References

plotM-methods

Methods for Log-Ratio plotting

Description

The **plotM** methods are meant to plot log-ratios for different classes of data.

Methods

- `object = "SnpQSet", i = "character"` Plot log-ratio for SNP data for sample i.
- `object = "SnpQSet", i = "integer"` Plot log-ratio for SNP data for sample i.
- `object = "SnpQSet", i = "numeric"` Plot log-ratio for SNP data for sample i.
- `object = "TilingQSet", i = "missing"` Plot log-ratio for Tiling data for sample i.
Description

Reads CEL files.

Usage

```r
read.celfiles(..., filenames, pkgname, phenoData, featureData,
experimentData, notes, verbose = TRUE, sampleNames, rm.mask = FALSE,
rm.outliers = FALSE, rm.extra = FALSE, sd = FALSE, checkType = TRUE,
useAffyio = TRUE)
```

```r
read.celfiles2(channel1, channel2, pkgname, phenoData, featureData,
experimentData, notes, verbose = TRUE, sampleNames, rm.mask = FALSE,
rm.outliers = FALSE, rm.extra = FALSE, sd = FALSE, checkType = TRUE,
useAffyio = TRUE)
```

Arguments

- `...`: names of files to be read.
- `filenames`: a character vector with the CEL filenames.
- `channel1`: a character vector with the CEL filenames for the first 'channel' on a Tiling application.
- `channel2`: a character vector with the CEL filenames for the second 'channel' on a Tiling application.
- `pkgname`: alternative data package to be loaded.
- `phenoData`: phenoData
- `featureData`: featureData
- `experimentData`: experimentData
- `notes`: notes
- `verbose`: logical
- `sampleNames`: character vector with sample names (usually better descriptors than the filenames).
- `rm.mask`: logical. Read masked?
- `rm.outliers`: logical. Remove outliers?
- `rm.extra`: logical. Remove extra?
- `sd`: logical. Read SD?
- `checkType`: logical. Check type of each file? This can be time consuming.
- `useAffyio`: logical. Use 'affyio' instead of 'affxparser' to read in CEL files.

Details

When using 'affyio' to read in CEL files, the user can read compressed CEL files (CEL.gz). Additionally, 'affyio' is much faster than 'affxparser'.
readSummaries

Value

this-is-escaped-codenormal-bracket58bracket-normal
if Expressionn arrays
this-is-escaped-codenormal-bracket61bracket-normal
if Exon arrays
this-is-escaped-codenormal-bracket64bracket-normal
if SNP arrays
this-is-escaped-codenormal-bracket67bracket-normal
if Tiling arrays

See Also

list.celfiles, read.xysfiles

Examples

if(require(pd.mapping50k.xba240) & require(hapmap100kxba)){
 celPath <- system.file("celFiles", package="hapmap100kxba")
 celFiles <- list.celfiles(celPath, full.name=TRUE)
 affySnpFeatureSet <- read.celfiles(celFiles)
}

readSummaries

Read summaries generated by crlmm

Description

This function read the different summaries generated by crlmm.

Usage

readSummaries(type, tmpdir)

Arguments

tmpdir directory containing the output saved by crlmm

Details

On the 50K and 250K arrays, given a SNP, there are probes on both strands (sense and antisense). For this reason, the options ’alleleA-sense’, ’alleleA-antisense’, ’alleleB-sense’ and ’alleleB-antisense’ should be used **only** with such arrays (XBA, HIND, NSP or STY).

On the SNP 5.0 and SNP 6.0 platforms, this distinction does not exist in terms of algorithm (note that the actual strand could be queried from the annotation package). For these arrays, options ’alleleA’, ’alleleB’ are the ones to be used.

The options calls, llr and conf will return, respectively, the CRLMM calls, log-likelihood ratios (for devel purpose **only**) and CRLMM confidence calls matrices.

Value

Matrix with values of summaries.
read.xysfiles

Parser to XYS files

Description

NimbleGen provides XYS files which are read by this function.

Usage

read.xysfiles(..., filenames, pkgname, phenoData, featureData, experimentData, notes, verbose=TRUE, sampleNames, checkType=TRUE)

read.xysfiles2(channel1, channel2, pkgname, phenoData, featureData, experimentData, notes, verbose=TRUE, sampleNames, checkType=TRUE)

Arguments

... file names
filenames character vector with filenames.
channel1 a character vector with the CEL filenames for the first `channel’ on a Tiling application
channel2 a character vector with the CEL filenames for the second `channel’ on a Tiling application
pkgname character vector with alternative PD Info package name
phenoData phenoData
featureData featureData
experimentData experimentData
notes notes
verbose verbose
sampleNames character vector with sample names (usually better descriptors than the filenames)
checkType logical. Check type of each file? This can be time consuming.

Details

The function will read the XYS files provided by NimbleGen Systems and return an object of class FeatureSet.

Value

this-is-escaped-codenormal-bracket44bracket-normal if Expression arrays
this-is-escaped-codenormal-bracket47bracket-normal if Tiling arrays

See Also

list.xysfiles, read.celfiles
Examples

```r
if (require(maqcExpression4plex) & require(pd.hg18.60mer.expr)) {
  xysPath <- system.file("extdata", package="maqcExpression4plex")
  xysFiles <- list.xysfiles(xysPath, full.name=TRUE)
  ngsExpressionFeatureSet <- read.xysfiles(xysFiles)
}
```

rma

Description

Robust Multichip Average methodology. This will convert an (Expression/Exon/Gene)FeatureSet object to an ExpressionSet object by using RMA strategy.

Usage

```r
rma(object, ...)
```

Arguments

- `object` FeatureSet object
- `...` Extra arguments.

Details

This function computes the RMA (Robust Multichip Average) expression measure described in Irizarry et al Biostatistics (2003).

Note that this expression measure is given to you in log base 2 scale. This differs from most of the other expression measure methods.

For Exon ST and Gene ST arrays, the user should be aware that the summarization is performed to the *probeset* level. The ExpressionSet returned when either Exon/Gene-FeatureSet objects are passed contain extra annotation on the featureData slot that the user should take into account for exon/gene-level analyses.

Value

ExpressionSet object.

References

sequenceDesignMatrix

Create design matrix for sequences

Description

Creates design matrix for sequences.

Usage

sequenceDesignMatrix(seqs)

Arguments

seqs character vector of 25-mers.

Details

This assumes all sequences are 25bp long.

The design matrix is often used when the objective is to adjust intensities by sequence.

Value

Matrix with length(seqs) rows and 75 columns.

Examples

genSequence <- function(x)
 paste(sample(c("A", "T", "C", "G"), 25, rep=TRUE), collapse="", sep="")
seqs <- sapply(1:10, genSequence)
X <- sequenceDesignMatrix(seqs)
Y <- rnorm(10, mean=12, sd=2)
Ydemean <- Y-mean(Y)
X[1:10, 1:3]
fit <- lm(Ydemean~X)
coef(fit)
snprma

Preprocessing SNP Arrays

Description

This function preprocess SNP arrays.

Usage

```
snprma(object, verbose = TRUE, normalizeToHapmap = TRUE)
```

Arguments

- `object` : SnpFeatureSet
- `verbose` : Verbosity flag. logical
- `normalizeToHapmap` : internal

Value

A SnpQSet object.
Index

*Topic IO
 read.celfiles, 10
 read.xysfiles, 12

*Topic classif
 crlmm, 4

*Topic file
 list.celfiles, 8

*Topic hplot
 boxplot, 2
 hist, 6
 image, 7

*Topic manip
 basecontent, 1
 basicRMA, 2
 getContainer, 5
 getCrlmmSummaries, 5
 getNgsColorsInfo, 6
 getX, 3
 justSNPRMA, 8
 mm, 7
 readSummaries, 11
 rma, 13
 sequenceDesignMatrix, 14
 snprma, 15

*Topic methods
 MAplot-methods, 9
 plotM-methods, 10

*Topic package
 oligo-package, 9

 basecontent, 1
 basicRMA, 2
 bg (mm), 7
 bg, FeatureSet-method (mm), 7
 bg, TilingFeatureSet2-method (mm), 7
 bg<-(mm), 7
 bg<-, FeatureSet, matrix-method (mm), 7
 bg<-, TilingFeatureSet2, array-method (mm), 7
 boxplot, 2
 boxplot, ExpressionSet-method (boxplot), 2
 boxplot, FeatureSet-method (boxplot), 2
 cleanPlatformName (read.celfiles), 10
 crlmm, 4
 getContainer, 5
 getContainer, TilingFeatureSet-method (getContainer), 5
 getContainer-methods (getContainer), 5
 getCrlmmSummaries, 5
 getNgsColorsInfo, 6
 getX, 3
 getX, DBPDIInfo-method (getX), 3
 getX, FeatureSet-method (getX), 3
 getX-methods (getX), 3
 getY (getX), 3
 getY, DBPDIInfo-method (getX), 3
 getY, FeatureSet-method (getX), 3
 getY-methods (getX), 3
 hist, 3, 6
 hist, ExpressionSet-method (hist), 6
 hist, FeatureSet-method (hist), 6
 image, 3, 7
 image, FeatureSet-method (image), 7
 justCRLMM (crlmm), 4
 justSNPRMA, 8
 list.celfiles, 8, 11
 list.xysfiles, 13
 list.xysfiles (list.celfiles), 8
 MAplot (MAplot-methods), 9
 MAplot, FeatureSet-method (MAplot-methods), 9
 MAplot-methods, 9
 mm, 7
 mm, FeatureSet-method (mm), 7
INDEX

mm, TilingFeatureSet2-method (mm), 7
mm<- (mm), 7
mm<-, FeatureSet, matrix-method (mm), 7
mm<-, TilingFeatureSet2, array-method (mm), 7

oligo-package, 9

plotM (plotM-methods), 10
plotM, SnpQSet, character-method (plotM-methods), 10
plotM, SnpQSet, integer-method (plotM-methods), 10
plotM, SnpQSet, numeric-method (plotM-methods), 10
plotM, TilingQSet, missing-method (plotM-methods), 10
plotM-methods, 10
pm (mm), 7
pm, FeatureSet-method (mm), 7
pm, TilingFeatureSet2-method (mm), 7
pm<- (mm), 7
pm<-, FeatureSet, matrix-method (mm), 7
pm<-, TilingFeatureSet2, array-method (mm), 7

read.celfiles, 10, 13
read.celfiles2 (read.celfiles), 10
read.xysfiles, 11, 12
read.xysfiles2 (read.xysfiles), 12
readSummaries, 11
rma, 13
rma, ExonFeatureSet-method (rma), 13
rma, ExpressionFeatureSet-method (rma), 13
rma, GeneFeatureSet-method (rma), 13

sequenceDesignMatrix, 14
snprma, 14, 15