R topics documented:

<table>
<thead>
<tr>
<th>Function</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>binHist</td>
<td>1</td>
</tr>
<tr>
<td>binInsertHist</td>
<td>2</td>
</tr>
<tr>
<td>binInsert</td>
<td>3</td>
</tr>
<tr>
<td>checkFormat</td>
<td>4</td>
</tr>
<tr>
<td>delta0</td>
<td>5</td>
</tr>
<tr>
<td>eMult</td>
<td>6</td>
</tr>
<tr>
<td>etDelta</td>
<td>7</td>
</tr>
<tr>
<td>fCumul</td>
<td>8</td>
</tr>
<tr>
<td>fFit</td>
<td>9</td>
</tr>
<tr>
<td>loadAnnotation</td>
<td>10</td>
</tr>
<tr>
<td>loadInsertions</td>
<td>10</td>
</tr>
<tr>
<td>occup2Negenes</td>
<td>11</td>
</tr>
<tr>
<td>sampleAnnotation</td>
<td>12</td>
</tr>
<tr>
<td>sampleInsertions</td>
<td>13</td>
</tr>
<tr>
<td>unbiasB0</td>
<td>13</td>
</tr>
<tr>
<td>unbiasDelta0</td>
<td>14</td>
</tr>
<tr>
<td>varMult</td>
<td>15</td>
</tr>
</tbody>
</table>

Index

<table>
<thead>
<tr>
<th>Function</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>binHist</td>
<td>1</td>
</tr>
</tbody>
</table>

Description

Returns the histogram breakpoints for fast insertion.

Usage

```r
binHist(orf, overlap=NULL, bp=6264403)
```

Arguments

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>orf</td>
<td>2-column matrix of annotation</td>
</tr>
<tr>
<td>overlap</td>
<td>number position of overlap</td>
</tr>
<tr>
<td>bp</td>
<td>number of base pairs in genome</td>
</tr>
</tbody>
</table>
binInsertHist

Details
Returns a vector of breakpoints for the binInsertHist function.

Value

<table>
<thead>
<tr>
<th>end.pt</th>
<th>Position of last target</th>
</tr>
</thead>
<tbody>
<tr>
<td>orf</td>
<td>orfID</td>
</tr>
<tr>
<td>overlap</td>
<td>Number of targets in overlap</td>
</tr>
</tbody>
</table>

Author(s)
Oliver Will (owill4@yahoo.com)

References
See the book chapter O. Will (** in **.

See Also
binInsertHist

Examples

```r
# **

binInsertHist

Insert Locations Quickly
```

Description
Given a list of locations, returns the number of ORFs hit.

Usage

`binInsertHist(insert, orfHist, returnCounts=FALSE)`

Arguments

<table>
<thead>
<tr>
<th>insert</th>
<th>List of insertion locations</th>
</tr>
</thead>
<tbody>
<tr>
<td>orfHist</td>
<td>Histogram breakpoints</td>
</tr>
<tr>
<td>returnCounts</td>
<td>Return the number of insertions</td>
</tr>
</tbody>
</table>

Details
Finds the number of ORFs that have an insertion given a list of locations. If the returnCounts flag is true, the function returns the number of insertions per ORF. Uses the function hist for gains in speed.

Value
Returns a numeric or an object
Author(s)
Oliver Will (owill4@yahoo.com)

References
See the book chapter O. Will (**)

See Also
binHist

Examples
**

binInsert
Insert Locations

Description
Returns the number of ORF knockouts.

Usage

```r
binInsert(insert, orf, returnCounts=FALSE, overlap=NULL, DEBUG=FALSE)
```

Arguments

- `insert` List of insertion locations
- `orf` 2-column matrix of annotation
- `returnCounts` Return the number of insertions
- `overlap` Number of shared targets
- `DEBUG` Flag to debug the code

Details
Finds the number of ORFs that have an insertion given a list of locations. If the returnCounts flag is true, the function returns the number of insertions per ORF. Uses the function hist for gains in speed.

Value
Returns a numeric or an object

Author(s)
Oliver Will (owill4@yahoo.com)

References
See the book chapter O. Will (**)

checkFormat

Description

Checks the format of the annotation and insertions.

Usage

checkFormat(anno, clone)

Arguments

anno 2-column matrix of annotation
clone vector

Details

Checks the format of the annotation and insertions list. Annotation has to be a matrix of the first and last target in the ORF. Insertions has to be a vector. Will stop if not correct format.

Value

Returns a boolean.

Author(s)

Oliver Will (owill4@yahoo.com)

References

See the book chapter O. Will (**) in **

Examples

data(sampleAnnotation)
data(sampleInsertions)
anno <- cbind(sampleAnnotation$first, sampleAnnotation$last)
clone <- sampleInsertions$position
if (checkFormat(anno, clone)) {print("Looks good.");}
Number of New Knockouts

Description
Point estimate for the number of new ORF knockouts in the next \(d \) clones.

Usage
\[
\text{delta0}(d, \text{anno}, \text{clone})
\]

Arguments
- \(d \): Number of clones to be made
- \(\text{anno} \): 2-column matrix of annotation
- \(\text{clone} \): Vector of insertions

Details
Use the parametric form of the cumulative occupancy distribution to estimate the number of new ORF knockouts in the next \(d \) clones.

Value
A numeric

Author(s)
Oliver Will (owill4@yahoo.com)

References
See the book chapter O. Will (** in **) in **

See Also
unbiasDelta0

Examples
\[
\text{data(sampleAnnotation)}\\
\text{data(sampleInsertions)}\\
\text{anno <- cbind(sampleAnnotation$first, sampleAnnotation$last)}\\
\text{clone <- sampleInsertions$position}\\
\text{delta0(10, anno, clone)}
\]
eMult

Expected Value of the Occupancy Distribution

Description

Returns the expected value of the occupancy distribution based on a multinomial distribution.

Usage

```r
eMult(n, p, iter=NULL, seed=NULL, experimental=NULL)
```

Arguments

- `n`: number of attempts in the multinomial distribution
- `p`: probabilities for landing in a specific bin
- `iter`: number of iterations used in the Monte-Carlo approximation
- `seed`: seed for the random number generator
- `experimental`: access to other functions of multinomials

Details

This function computes the expected value of the occupancy distribution for a multinomial. In other words, the expected number of bins with at least one ball. The experimental argument "oneBall" computes expected number of bins with exactly one ball and the experimental argument "nextTo" computes the expected number of bins with one ball next to a bin with zero balls. Consider any functionality through the experimental argument untested.

Value

Returns a numeric

Author(s)

Oliver Will (owill4@yahoo.com)

References

Examples

```r
n <- 20
p <- c(seq(10,1,-1),47)/100
p <- p/sum(p)
eMult(n,p)
eMult(n,p,iter=1000,seed=4)
```
etDelta

Number of New ORF Knockouts

Description

Estimates the number of new knockouts in next d clones.

Usage

etDelta(d, anno, clone)

Arguments

d	number of new clones
anno	2-column matrix of annotation
clone	vector

Details

Estimates the number of new ORF knockouts in the next d clones using the method outlined by Efron and Thisted.

Value

expected	Expected value
variance	Variance

Author(s)

Oliver Will (owill4@yahoo.com)

References

Examples

data(sampleAnnotation)
data(sampleInsertions)
a.data <- sampleAnnotation
experiment <- sampleInsertions
orf <- cbind(a.data$first,a.data$last)
clone <- experiment$position
etDelta(10, orf, clone)
fCumul

Parametric Function for the Cumulative Occupancy Distribution

Description

Returns values for parameterized cumulative occupancy distributions.

Usage

```
fCumul(x, b0, b1, b2)
```

Arguments

- `x` Point to evaluate
- `b0` Parameter b0
- `b1` Parameter b1
- `b2` Parameter b2

Details

Function fitted to the cumulative occupancy distribution for a multinomial distribution. Exponential model := \(b_{0}\cdot b_{1}\cdot \exp(-b_{2}\cdot x)\).

Value

Returns a numeric

Author(s)

Oliver Will (owill4@yahoo.com)

References

See the book chapter O. Will (** in **) in **

Examples

```
x <- 2
b0 <- 3
b1 <- 3
b2 <- 0.01
val <- fCumul(x, b0, b1, b2)
```
fFit

Parametric Fit for the Cumulative Occupancy Distribution

Description

Parameterizes the cumulative occupancy distribution.

Usage

```r
fFit(anno, clone, TR=TRUE, b0=0, b1=0, b2=.0)
```

Arguments

- **anno** 2-column matrix of annotation
- **clone** vector
- **TR** Report a trace
- **b0** Starting value b0
- **b1** Starting value b1
- **b2** Starting value b2

Details

Fits various parametric functions to the occupancy distribution for a multinomial. Using the starting values of b0=0, b1=0, and b2=0 forces the function to find starting values for you.

Value

Returns a object.

Author(s)

Oliver Will (owill4@yahoo.com)

References

See the book chapter O. Will (**) in **

Examples

```r
data(sampleAnnotation)
data(sampleInsertions)
anno <- cbind(sampleAnnotation$first,sampleAnnotation$last)
clon <- sampleInsertions$position
TR <- TRUE
fm <- fFit(anno,clone,TR)
```
loadAnnotation Loads Annotation File

Description

Loads and checks an annotation file.

Usage

loadAnnotation(fileName)

Arguments

fileName Name of file

Details

Annotation file need four columns: idNum, first, last, and overlap.

Value

Returns a data frame

Author(s)

Oliver Will (owill4@yahoo.com)

References

See the book chapter O. Will (**) in **

Examples

No self contained example

loadInsertions Load Genome Annotation File

Description

Loads a list of insertion locations.

Usage

loadInsertions(fileName)

Arguments

fileName Name of the file
occup2Negenes

Details

Loads a list of insertion locations created in a transposon mutagenesis library.

Value

Returns a data frame

Author(s)

Oliver Will (owill4@yahoo.com)

References

See the book chapter O. Will (** in **) in **

Examples

```r
# No self contained example
```

occup2Negenes

Convert Occupancy Format to Negenes

Description

Convert the annotation and insertion formation of the occupancy package into the format for the negenes package.

Usage

`occup2Negenes(anno, clone, INTERGENIC=FALSE)`

Arguments

- `anno`: 2-column matrix of annotation
- `clone`: vector of insertion locations
- `INTERGENIC`: Process the intergenic region as last ORF.

Details

Convert the annotation and insertion formation of the occupancy package into the format for the negenes package. Of the returned data frame, column 1 is n.sites, column 2, n.sites2, column 3, counts, column 4, counts2.

Value

Returns a data frame

Author(s)

Oliver Will (owill4@yahoo.com)
References

See the book chapter O. Will (** in **

Examples

```r
data(sampleAnnotation)
data(sampleInsertions)
anno <- cbind(sampleAnnotation$first, sampleAnnotation$last)
clone <- sampleInsertions$position
occup2Negenes(anno, clone)
```

sampleAnnotation
Annotation for a Hypothetical Prokayote

Description

This dataset has the annotation for a hypothetical bacterium.

Usage

```r
data(sampleAnnotation)
```

Format

A data frame containing 4 columns with 10 rows.

Author(s)

Oliver Will (owill4@yahoo.com)

Source

Randomly generated.

References

See the book chapter O. Will (** in **
sampleInsertions

Insertions for a Hypothetical Clonal Library

Description

Insertion locations for a simple random mutagenesis library example.

Usage

```r
data(sampleInsertions)
```

Format

A data frame containing 1 column with 20 rows.

Author(s)

Oliver Will (owill4@yahoo.com)

Source

Randomly generated.

References

See the book chapter O. Will (**) in **

unbiasB0

Unbiased Estimator of the Number of Non-essential ORFs

Description

Unbiased point estimate and confidence intervals for the number of non-essential ORFs.

Usage

```r
unbiasB0(anno, clone, iter=1000, seed=NULL, alpha=0.05, TR=TRUE)
```

Arguments

- `anno` 2-column matrix of annotation
- `clone` Vector of insertions
- `iter` Number of iterations for the bootstrap
- `seed` Seed for the random number generator
- `alpha` Type I error
- `TR` Report a trace
unbiasDelta0

Details

Fits a parametric function to the cumulative occupancy distribution. Uses a parametric bootstrap to correct for bias and find confidence intervals for the number of non-essential ORFs.

Value

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>b0</td>
<td>Unbiased point estimate</td>
</tr>
<tr>
<td>CI</td>
<td>Confidence interval at the alpha specified</td>
</tr>
</tbody>
</table>

Author(s)

Oliver Will (owill4@yahoo.com)

References

See the book chapter O. Will (***) in **

See Also

fFit

Examples

data(sampleAnnotation)
data(sampleInsertions)
anno <- cbind(sampleAnnotation$first,sampleAnnotation$last)
clone <- sampleInsertions$position
TR <- TRUE
iter <- 10
seed <- 4
unbiasB0(anno,clone,iter,seed,TR=TR)

unbiasDelta0 Unbiased Number of New Knockouts

Description

Unbiased point estimate and confidence intervals for the number of new ORF knockouts in the next d clones.

Usage

unbiasDelta0(d,anno,clone,iter=1000,seed=NULL,alpha=0.05,TR=TRUE)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>d</td>
<td>Number of new clones</td>
</tr>
<tr>
<td>anno</td>
<td>2-column matrix of annotation</td>
</tr>
<tr>
<td>clone</td>
<td>Vector of insertions</td>
</tr>
<tr>
<td>iter</td>
<td>Number of iterations for the bootstrap</td>
</tr>
<tr>
<td>seed</td>
<td>Seed for the random number generator</td>
</tr>
<tr>
<td>alpha</td>
<td>Type I error</td>
</tr>
<tr>
<td>TR</td>
<td>Report a trace</td>
</tr>
</tbody>
</table>
Details

Fits a parametric function to the cumulative occupancy distribution. Uses a parametric bootstrap to correct for bias and find confidence intervals for the number of new ORF knockouts in the next d clones.

Value

delta0 Unbiased point estimate
CI Confidence interval at the alpha specified

Author(s)

Oliver Will (owill4@yahoo.com)

References

See the book chapter O. Will (** in **) in **

See Also
delta0

Examples

data(sampleAnnotation)
data(sampleInsertions)
anno <- cbind(sampleAnnotation$first,sampleAnnotation$last)
clone <- sampleInsertions$position
TR <- TRUE
iter <- 10
seed <- 4
unbiasDelta0(10,anno,clone,iter,seed,TR=TR)

varMult

Variance of the Occupancy Distribution

Description

Returns the variance of the occupancy distribution based on a multinomial distribution.

Usage

varMult(n, p, iter=NULL, seed=NULL, experimental=NULL)

Arguments

n number of attempts in the multinomial distribution
p probabilities for landing in a specific bin
iter number of iterations used in the Monte-Carlo approximation
seed seed for the random number generator
experimental access to other functions of multinomials
Details

This function computes the variance of the occupancy distribution for a multinomial. In other words, the expected number of bins with at least one ball. The experimental argument "oneBall" computes variance of bins with exactly one ball and the experimental argument "nextTo" computes the variance of bins with one ball next to a bin with zero balls. Consider any functionality through the experimental argument untested.

Value

Returns a numeric

Author(s)

Oliver Will (owill4@yahoo.com)

References

Examples

```r
n <- 20
p <- c(seq(10,1,-1),47)/100
p <- p/sum(p)
varMult(n,p)
varMult(n,p,iter=1000,seed=4)
```
Index

*Topic attribute
 checkFormat, 4

*Topic datasets
 sampleAnnotation, 12
 sampleInsertions, 13

*Topic distribution
 eMult, 6
 varMult, 15

*Topic iteration
 binHist, 1
 binInsert, 3
 binInsertHist, 2

*Topic manip
 loadAnnotation, 10
 loadInsertions, 10
 occup2Negenes, 11

*Topic models
 fCumul, 8
 fFit, 9

*Topic nonlinear
 delta0, 5
 unbiasedB0, 13
 unbiasedDelta0, 14

*Topic univar
 etDelta, 7

 binHist, 1
 binInsert, 3
 binInsertHist, 2

 checkFormat, 4

 delta0, 5

 eMult, 6
 etDelta, 7

 fCumul, 8
 fFit, 9

 loadAnnotation, 10
 loadInsertions, 10

 occup2Negenes, 11