edgeR
November 11, 2009

R topics documented:

alpha.approxeb .. 1
approx.expected.info ... 2
condLogLikDerDelta .. 3
condLogLikDerSize .. 4
deDGEList-class .. 4
deDGE ... 5
dGEList-class ... 6
EBList-class ... 6
estimatePs ... 7
exactTestNB ... 7
findMaxD2 .. 8
getData ... 9
interpolateHelper .. 10
logLikDerP .. 10
plotMA .. 11
quantileAdjust ... 12
readDGE .. 13
splitIntoGroupsPseudo ... 14
splitIntoGroups .. 14
tau2.0.objective .. 15
topTags .. 16
Tu102 .. 17

Index 18

alpha.approxeb Estimate the prior weight, alpha

Description

Estimate the prior weight, using an approximate empirical Bayes rule

Usage

alpha.approxeb(object, verbose=TRUE)
approx.expected.info

Arguments

object DGEList object containing the raw data with elements data (table of counts), group (vector indicating group) and lib.size (vector of library sizes)
verbose whether to write comments, default true

Value

EBList object with elements sigma2.0.est (numeric scale \(\sigma_0^2 \) estimate), alpha (estimate for the prior weight, alpha), scores (likelihood scores), infos (Fisher expected information), quantileAdjusted (list from output of quantileAdjust)

Author(s)

Mark Robinson, Davis McCarthy

Examples

```r
y <- matrix(rnbinom(20, size = 1, mu = 10), nrow = 5)
d <- DGEList(data = y, group = rep(1:2, each = 2), lib.size = rep(c(1000:1001), 2))
alpha <- alpha.approxeb(d)
```

approx.expected.info

Approximate of expected information (Fisher information)

Description

Using a linear fit (for simplicity), the expected information from the conditional log likelihood of the dispersion parameter of the negative binomial is calculated over all genes.

Usage

```r
approx.expected.info(object, d, qA, robust = FALSE)
```

Arguments

object DGEList object containing the raw data with elements data (table of counts), group (vector indicating group) and lib.size (vector of library sizes)
d delta parameter for negative binomial - \(\phi/(\phi+1) \)
qA list from output of quantileAdjust
robust logical on whether to use a robust fit, default false

Value

vector of Fisher information approximates (with length same as the number of rows of the original data)

Author(s)

Mark Robinson
condLogLikDerDelta

Conditional log-likelihood in terms of delta

Description

Conditional log-likelihood parameterized in terms of delta \(\frac{\phi}{\phi + 1} \)

Usage

```r
condLogLikDerDelta(y, delta, grid = TRUE, der = 1, doSum = TRUE)
```

Arguments

- **y**: matrix with count data (or pseudodata)
- **delta**: delta \(\frac{\phi}{\phi + 1} \) parameter of negative binomial
- **grid**: logical, whether to calculate a grid over the values of delta
- **der**: derivative, either 0 (the function), 1 (first derivative) or 2 (second derivative)
- **doSum**: logical, whether to sum over samples or not (default TRUE)

Value

vector or matrix of function/derivative evaluations

Author(s)

Mark Robinson, Davis McCarthy

Examples

```r
y1 <- matrix(rnbinom(10, size = 1, mu = 10), nrow = 5)
v1 <- seq(.1, .9, length = 9)
ll1 <- condLogLikDerDelta(y1, v1, grid = TRUE, der = 0, doSum = FALSE)
ll2 <- condLogLikDerDelta(y1, delta = .5, grid = FALSE, der = 0)
```
condLogLikDerSize Conditional log-likelihood in terms of size

Description
Conditional log-likelihood parameterized in terms of size (1 / \(\phi \))

Usage
condLogLikDerSize(y, r, der=1)

Arguments
- \(y \) matrix with count data (or pseudodata)
- \(r \) size parameter of negative binomial distribution
- \(\text{der} \) derivative, either 0 (the function), 1 (first derivative) or 2 (second derivative)

Value
vector or matrix of function/derivative evaluations

Author(s)
Mark Robinson, Davis McCarthy

Examples
```r
y1<-matrix(rnbinom(10,size=1,mu=10),nrow=5)
ll2<-condLogLikDerSize(y1,r=10,der=0)
```

deDGEList-class differential expression of Digital Gene Expression data - class

Description
A simple list-based class for storing results of differential expression analysis for DGE data

Slots/List Components
Objects of this class contain the following list components: ps: list containing estimates of \(p \) parameter. \(r \): numeric vector of size parameter (1/\(\phi \)) where \(\phi \) is negative binomial dispersion. pseudo: numeric matrix with the pseudo-counts. group: vector giving the experimental group/condition. \(M \): numeric scalar with the library size that pseudo counts are mapped to.

Methods
This class inherits directly from class list so any operation appropriate for lists will work on objects of this class. deDGEList objects also have a show method.

Author(s)
Mark Robinson, Davis McCarthy
deDGE

Compute moderated differential expression scores for digital gene expression (DGE) data

Description

Runs weighted likelihood calculation for moderated estimates of dispersion, and tests for differences in 'tag' abundance between groups

Usage

```r
deDGE(object, alpha=500, doPoisson=FALSE, verbose=TRUE)
```

Arguments

- `object`: DGEList containing elements `data` (matrix: rows-tags, columns-libraries), `lib.size`, `group` indicating class
- `alpha`: weight to put on the individual tag’s likelihood
- `doPoisson`: logical, whether to fit Poisson model instead of Negative Binomial, default `FALSE`
- `verbose`: logical, whether to write comments, default `TRUE`

Value

`deDGEList` with elements `ps` (list containing proportion estimates), `r` (estimates of 1/overdispersion), `pseudo` (pseudodata generated by `quantileAdjust`), `group` (indicating class of each sample), `M` (geometric mean of library sizes)

Author(s)

Mark Robinson, Davis McCarthy

References

Examples

```r
# generate raw data from NB, create list object
y<-matrix(rnbinom(20, size=1, mu=10), nrow=5)
d<-DGEList(data=y, group=rep(1:2, each=2), lib.size=rep(c(1000:1001), 2))

# find alpha and call main procedure to find differences
alpha<-alpha.approxeb(d)
ms<-deDGE(d, alpha=alpha$alpha)
```
DGEList-class
Digital Gene Expression data - class

Description
A simple list-based class for storing read counts from digital gene expression technologies.

Slots/List Components
Objects of this class contain the following list components:
- **data**: numeric matrix containing the read counts.
- **lib.size**: numeric vector containing the total number of reads for each library (column of code).
- **group**: vector giving the experimental group/condition.

Methods
This class inherits directly from class `list` so any operation appropriate for lists will work on objects of this class. `DGEList` objects also have a `show` method.

Author(s)
Mark Robinson

EBList-class
differential expression of Digital Gene Expression data - class

Description
A simple list-based class for storing results of the approximate empirical Bayes rule parameters.

Slots/List Components
Objects of this class contain the following list components:
- **sigma2.0.est**: numeric scale σ_0^2 estimate.
- **alpha**: numeric scalar alpha estimate.
- **scores**: numeric scalar (likelihood) score.
- **infos**: numeric vector containing the (likelihood) information for each tag.
- **quantileAdjusted**: list from output of `quantileAdjust`.

Methods
This class inherits directly from class `list` so any operation appropriate for lists will work on objects of this class. `EBList` objects also have a `show` method.

Author(s)
Mark Robinson, Davis McCarthy
estimatePs

Estimate expression proportions

Description
Estimate expression proportions (maximum likelihood with size fixed) based on negative binomial for each tag and sample group (only 2 groups implemented at this point)

Usage
```
estimatePs(object, r, tol = 1e-10, maxit = 30)
```

Arguments
- `object`: list containing the raw data with elements `data` (table of counts), `group` (vector indicating group) and `lib.size` (vector of library sizes)
- `r`: size parameter of negative binomial
- `tol`: tolerance between iterations
- `maxit`: maximum number of iterations

Value
list with elements `p.common` (vector giving overall proportion for each tag), `p.group` (matrix with columns giving estimates of proportions for different groups)

Author(s)
Mark Robinson, Davis McCarthy

Examples
```r
set.seed(0)
y<-matrix(rnbinom(40,size=1,mu=10),ncol=4)
d<-DGEList(data=y,group=rep(1:2,each=2),lib.size=rep(c(1000:1001),2))
ps<-estimatePs(d,r=1)
```

exactTestNB
An exact test for differences between two negative binomial groups

Description
An exact test for differences between two negative binomial groups

Usage
```
exactTestNB(pseudo, group, pair=1:2, mus, r, verbose=TRUE)
```
Arguments

- **pseudo**: data (e.g. quantile adjusted pseudodata) on which to compute Fisher exact statistics
- **group**: group indicator, must be same length as ncol(pseudo)
- **pair**: pair of groups to be compared
- **mus**: vector of means under the null hypothesis (of no difference between groups)
- **r**: preset or estimated negative binomial size parameter. If you want to run a Poisson test, set r very large (e.g. 1000)
- **verbose**: whether to write comments, default TRUE

Value

- vector of p-values

Author(s)

Mark Robinson, Davis McCarthy

Examples

```r
y<-matrix(rnbinom(20,mu=10,size=1.5),nrow=5)
group<-factor(c(1,1,2,2))
mus<-rep(10,5)
f<-exactTestNB(y,group,pair=c(1,2),mus,r=1.5)
```

Description

Maximizes the negative binomial likelihood (a weighted version using the common likelihood given weight alpha) for each tag

Usage

```r
findMaxD2(object, alpha = 0.5, grid = TRUE, tol = 1e-05, n.iter = 10, grid.length = 200)
```

Arguments

- **object**: list containing the raw data with elements `data` (table of counts), `group` (vector indicating group) and `lib.size` (vector of library sizes)
- **alpha**: weight given to common likelihood, set to 0 for individual estimates or large (e.g. 100) for common likelihood
- **grid**: logical, whether to use a grid search (default = TRUE); if FALSE use Newton-Rhapson steps
- **tol**: if grid=FALSE, tolerance for Newton-Rhapson iterations
- **n.iter**: if grid=FALSE, number of Newton-Rhapson iterations
- **grid.length**: length of the grid over which to maximize; default 200
getData

Value

vector of the values of delta that maximize the negative binomial likelihood for each tag (where delta = phi / (phi+1) and phi is the overdispersion parameter)

Author(s)

Mark Robinson, Davis McCarthy

 Examples

```r
y<-matrix(rnbinom(1000,mu=10,size=2),ncol=4)
d<-DGEList(data=y,group=c(1,1,2,2),lib.size=c(1000:1003))
cml1<-findMaxD2(d,alpha=10)
cml2<-findMaxD2(d,alpha=0)
```

ggetData

Extract data table from DGEList object

Description

Returns the data slot of a DGEList object

Usage

gData(object)

Arguments

object list containing the raw data with elements data (table of counts), group (vector indicating group) and lib.size (vector of library sizes)

Value

matrix of data (presumably integers)

Author(s)

Mark Robinson, Davis McCarthy

 Examples

```r
# generate raw data from NB, create list object
y<-matrix(rnbinom(20,size=1,mu=10),nrow=5)
d<-DGEList(data=y,group=rep(1:2,each=2),lib.size=rep(c(1000:1001),2))
# should be 5x4
print(dim(getData(d)))
```
interpolateHelper Quantile Adjustment interpolator

Description
Helper function to interpolate the quantile function

Usage
interpolateHelper(mu, p, r, count.max, verbose=TRUE)

Arguments
- mu: matrix of means
- p: matrix of percentiles
- r: scalar, vector or matrix of size parameters
- count.max: vector of maximum counts for all tags
- verbose: whether to write comments, default true

Value
matrix with quantile-adjusted pseudodata

Author(s)
Mark Robinson, Davis McCarthy

Examples
y<-matrix(rnbinom(10000,size=2,mu=10),ncol=4)
d<-DGEList(data=y,group=rep(1:2,each=2),lib.size=rep(c(1000,1010),2))
ps<-estimatePs(d,r=2)
N<-prod(d$lib.size)^(1/ncol(d$data))
perc<-pnbinom(d$data-1,size=2,mu=outer(ps$p.common,d$lib.size))+dnbinom(d$data,size=2,mu=outer(ps$p.common,d$lib.size))/2
maxcounts<-apply(d$data,1,max)
pseudo<-interpolateHelper(outer(ps$p.common,rep(N,4)),perc,r=2,maxcounts)

logLikDerP Log-likelihood for proportion

Description
Log-likelihood and derivatives for the proportion parameter of negative binomial (mean = library size * proportion)

Usage
logLikDerP(p, y, lib.size, r, der = 0)
plotMA

Arguments

- **p**: vector of proportion parameters to be evaluated
- **y**: matrix of data
- **lib.size**: vector of library sizes
- **r**: size parameter of negative binomial distribution
- **der**: derivative, either 0 (the function), 1 (first derivative) or 2 (second derivative)

Value

- vector of evaluations

Author(s)

Mark Robinson, Davis McCarthy

Examples

```r
y <- matrix(rnbinom(20, size=1.5, mu=10), nrow=5)
d <- DGEList(data=y, group=rep(1:2, each=2), lib.size=rep(c(1000:1001), 2))
this.p <- rowMeans(y / outer(rep(1, nrow(y)), d$lib.size))
d1p <- logLikDerP(this.p, y, d$lib.size, r=1.5, der=1)
```

Description

MA-like plot for deDGEList objects

Plots M (log-abundance ratio) against A (log-average abundance) for two groups. A smear of points is shown on the left side for those genes with 0 counts in 1 of the 2 classes.

Usage

```r
plotMA(object, pair=c(1,2), xlab="A", ylab="M", ylim=NULL, pch=19, eps=0, smearOffset=0)
```

Arguments

- **object**: deDGEList object, as output from deDGE
- **pair**: pair of groups to be plotted; default plots groups 1 and 2
- **xlab**: x-axis label
- **ylab**: y-axis label
- **ylim**: limits on y-axis, if left at NULL, scaled to be symmetric about 0
- **pch**: plot character
- **eps**: offset to plot in the log-ratios (i.e. log([p1+eps]/[p2+eps])
- **smearOffset**: offset (to the left of the minimum A value) to plot the smear of 0-in-1-group values
- **...**: further arguments to the plot command
quantileAdjust

Normalizes a dataset by using a quantile adjustment

Description

The function adjusts (you might say normalizes) a dataset, creating pseudodata that represents quantile-adjusted data as if all samples had the same library size, while estimating the dispersion parameter.

Usage

```
quantileAdjust(object, N = prod(object$lib.size)^{(1/ncol(object$data))}, alpha =
```

Arguments

- **object** list containing the raw data with elements `data` (table of counts), `group` (vector indicating group) and `lib.size` (vector of library sizes)
- **N** library size to normalize to; default is the geometric mean of the original library sizes
- **alpha** weight to put on the individual tag’s likelihood
- **null.hypothesis** logical, whether to calculate the means and percentile under the null hypothesis; default is FALSE
- **n.iter** number of iterations in estimating the size parameter
- **r.init** initialized value of the size parameter; if NULL, then the common value on un-adjusted data is used
- **tol** tolerance in estimating the size parameter
- **verbose** whether to write comments, default true

Examples

```r
# generate raw data from NB, create list object
y<-matrix(rnbinom(20,size=1,mu=10),nrow=5)
d<-DGEList(data=y,group=rep(1:2,each=2),lib.size=rep(c(1000:1001),2))

# find alpha and call main procedure to find differences
alpha<-alpha.approxeb(d)
ms<-deDGE(d,alpha=alpha$alpha)

# plot it
plotMA(ms)
```
Value

list containing several elements used in downstream function calls. \(r \) is the dispersion estimate, \(\text{pseudo} \) is the quantile-adjusted pseudodata, \(\text{ps} \) is a list containing the abundance estimates, \(\text{N} \) is the common library size and \(p \) and \(\mu \) are the percentiles and means, respectively that the quantile is based on.

Author(s)

Mark Robinson, Davis McCarthy

Examples

```r
set.seed(0)
y<-matrix(rnbinom(40,size=1,mu=10),ncol=4)
d<-DGEList(data=y,group=rep(1:2,each=2),lib.size=rep(c(1000:1001),2))
qA<-quantileAdjust(d,alpha=100)
```

Description

Reads a list of text files, one for each sample. Files should be tab-delimited with an identifier (could be tag sequence) as the first column and counts as the second column. The function creates one big table with 0s where necessary.

Usage

```r
readDGE(files,...)
```

Arguments

- `files` character vector of filenames
- `...` option arguments to send to `read.table`

Value

list with elements `data` (table of counts), `lib.size` (library sizes)

Author(s)

Mark Robinson

Examples

```r
# Read all .txt files from current working directory
## Not run:
files <- dir(pattern=".*\.txt\$")
RG <- readDGE(files,sep="\t",header=TRUE,comment.char="",stringsAsFactors=FALSE)
## End(Not run)
```
splitIntoGroupsPseudo

Split pseudodata according to group

Description

Given a pair of groups, split pseudodata for these groups

Usage

splitIntoGroupsPseudo(pseudo, group, pair)

Arguments

pseudo data matrix to be split (e.g. quantile adjusted pseudodata)
group group indicator, must be same length as ncol(pseudo)
pair pair of groups to be split from the data

Value

list in which each element is a matrix of count data for an individual group

Author(s)

Davis McCarthy

Examples

generate raw data from NB, create list object
y<-matrix(rnbinom(80,size=1,mu=10),nrow=20)
d<-DGEList(data=y,group=rep(1:2,each=2),lib.size=rep(c(1000:1001),2))
rownames(d$data)<-paste("tagno",1:nrow(d$data),sep=".")
z<-splitIntoGroupsPseudo(d$data,d$group,pair=c(1,2))

splitIntoGroups

Split the data from a DGEList object according to group

Description

Split the data from a DGEList object according to group

Usage

splitIntoGroups(object)

Arguments

object DGEList, list containing the raw data with elements data (table of counts),
group (vector indicating group) and lib.size (vector of library sizes)
Value

list in which each element is a matrix of count data for an individual group

Author(s)

Davis McCarthy

Examples

```r
# generate raw data from NB, create list object
y <- matrix(rnbinom(80, size=1, mu=10), nrow=20)
d <- DGEList(data=y, group=rep(1:2, each=2), lib.size=rep(c(1000:1001), 2))
rownames(d$data) <- paste("tagno", 1:nrow(d$data), sep="."

z <- splitIntoGroups(d)
```

tau2.0.objective

Objective function for tau2

Description

Objective function for tau2 which is used in the rule of how much to squeeze the dispersion parameters towards the common value

Usage

```
tau2.0.objective(tau2.0, info.g, score.g)
```

Arguments

- **tau2.0**: scalar, value for tau2
- **info.g**: observed information for each gene
- **score.g**: observed score (first derivative of log-likelihood) for each gene

Value

scalar, value of objective function at tau2.0

Author(s)

Mark Robinson

Examples

```r
y <- matrix(rnbinom(20, size=1, mu=10), nrow=5)
x <- DGEList(data=y, group=rep(1:2, each=2), lib.size=rep(1000:1001, each=2))

scores <- condLogLikDerDelta(y, delta=0.5, der = 1, doSum = TRUE)
qA <- quantileAdjust(x, alpha = 10, null.hypothesis = TRUE)
exp.inf <- approx.expected.info(x, d=0.5, qA)
sigma2.0.est <- optimize(tau2.0.objective, c(0, 500), info.g = exp.inf, score.g = scores)
```
topTags

Displays the top differentially expressed tags in a table

Description

Displays/Returns the top DE tags in a data frame

Usage

```r
topTags(object, pair, n=10, adj.method= "BH", verbose=TRUE)
```

Arguments

- `object` : deDGEList, output from `deDGE`
- `pair` : pair of groups to be compared
- `n` : number of tags to display/return
- `adj.method` : method used to adjust P-values, using `p.adjust`
- `verbose` : whether to write comments, default `TRUE`

Value

Data frame containing the relative level of expression, log fold changes, unadjusted and adjusted P-values

Author(s)

Mark Robinson, Davis McCarthy

References

Examples

```r
# generate raw data from NB, create list object
y<-matrix(rnbinom(80, size=1, mu=10), nrow=20)
d<-DGEList(data=y, group=rep(1:2, each=2), lib.size=rep(c(1000:1001), 2))
rownames(d$data)<-paste("tagno", 1:nrow(d$data), sep=".")

# find alpha and call main procedure to find differences
alpha<-alpha.approxeb(d)
ms<-deDGE(d, alpha=alpha$alpha)

# look at top 10
topTags(ms)
```
Tu102

Raw data for several SAGE libraries from the Zhang 1997 Science paper.

Description

SAGE dataset for 2 tumour samples, 2 normal samples.

Usage

```r
data(Tu102)
```

Format

Data frames with 22713, 18794, 16270 and 17703 observations (for Tu102, Tu98, NC2, NC1, respectively) on the following 2 variables.

- **Tag_Sequence**: a character vector
- **Count**: a numeric vector

Source

Index

Topic algebra
 deDGE, 4
 exactTestNB, 7
 findMaxD2, 8
 interpolateHelper, 9
 splitIntoGroups, 14
 splitIntoGroupsPseudo, 13
 tau2.0.objective, 15
 topTags, 15

Topic classes
 deDGEList-class, 4
 DGEList-class, 5
 EBList-class, 6

Topic datasets
 Tu102, 16

Topic file
 alpha.approxeb, 1
 approx.expected.info, 2
 condLogLikDerDelta, 2
 condLogLikDerSize, 3
 estimatePs, 6
 getData, 9
 logLikDerP, 10
 plotMA, 11
 quantileAdjust, 12
 readDGE, 13

alpha.approxeb, 1
approx.expected.info, 2
condLogLikDerDelta, 2
condLogLikDerSize, 3
deDGE, 4
deDGEList-class, 4
DGEList (DGEList-class), 5
DGEList-class, 5
EBList-class, 6
estimatePs, 6
exactTestNB, 7
findMaxD2, 8
getData, 9
interpolateHelper, 9
logLikDerP, 10
NC1 (Tu102), 16
NC2 (Tu102), 16
plotMA, 11
quantileAdjust, 12
readDGE, 13
show, deDGEList-method
 (deDGEList-class), 4
show, DGEList-method
 (DGEList-class), 5
show, EBList-method
 (EBList-class), 6
splitIntoGroups, 14
splitIntoGroupsPseudo, 13
tau2.0.objective, 15
topTags, 15
Tu102, 16
Tu98 (Tu102), 16