bgx
November 11, 2009

R topics documented:

- analysis.bgx
- bgx
- mcmc.bgx
- readOutput.bgx
- saveAffinityPlot.bgx
- setupVars.bgx

Index

- analysis.bgx

Analysis BGX output.

Description

Functions for plotting expression densities, differential expression densities, histogram of proportion of differentially expressed genes, etc.

Usage

- plotExpressionDensity(bgxOutput, gene=NULL, normalize=c("none","mean","loess"),
- plotDEDensity(bgxOutput, gene=NULL, conditions=c(1,2), normalize=c("none","mean","loess"),
- plotDEHistogram(bgxOutput, conditions=c(1,2), normalize=c("none","mean","loess"),
- rankByDE(bgxOutput, conditions=c(1,2), normalize=c("none","mean","loess"),
- plotDiffRank(bgxOutput, conditions=c(1,2), normalize=c("none","mean","loess"),

Arguments

- bgxOutput: A list obtained from running readOutput.bgx on a BGX output directory.
- gene: Which gene to analyse. This can either be an index or a name.
- conditions: Indices of conditions to compare.
- normalize: "none": do not normalise posterior distributions of mu. "mean": normalise by scaling posterior distributions of mu for conditions > 1 to have the same mean as the posterior distribution of mu for condition 1. "loess": same as "mean" but use loess normalisation.
- normgenes: Which genes to use for loess normalisation. By default, use all genes.
df Residual degrees of freedom. Decrease to 6 if the histogram fit goes haywire.
absolute Rank genes by absolute differential expression.
ymax Specify upper limit of y axis.
...

Details

plotExpressionDensity plots gene expression distributions under various conditions for the specified gene.
plotDEDensity plots the differential expression distribution between two conditions for a given gene.
plotDEHistogram plots a histogram of differential expression between two conditions and estimates the number of up and down regulated differentially expressed genes.
rankByDE ranks genes by differential expression and returns ordering and corresponding DE values in a matrix.
plotDiffRank plots 2.5-97.5% confidence intervals for ranked differential expression estimates.

Value

None, except plotDERank, which returns a matrix of genes ranked by differential expression.

Author(s)

Ernest Turro

See Also

bgx, standalone.bgx, readOutput.bgx, plotExpressionDensity, plotDEDensity, plotDEHistogram

bgx Fully Bayesian integrated approach to the analysis of Affymetrix GeneChip data

Description

'bgx' estimates Bayesian Gene eXpression (BGX) measures from an AffyBatch object.
'standalone.bgx' creates various files needed by the bgx standalone binary and places them in a directory. One of these files is 'infile.txt'. In order to run standalone BGX, compile it and run 'bgx <path_to_infile.txt>' from the command line.

Usage

bgx(aData, samplesets = NULL, genes = NULL, genesToWatch = NULL, burnin = 8192, iter = 16384, output = c("minimal","trace","all"), probeAff = TRUE, probecat_threshold = 100, adaptive = TRUE, rundir = ".")

standalone.bgx(aData, samplesets = NULL, genes = NULL, genesToWatch = NULL, burnin = 8192, iter = 16384, output = c("minimal", "trace", "all"), probeAff = TRUE, probecat_threshold = 100, adaptive = TRUE, batch_size = 50, optimalAR = 0.44, inputdir = "input")
Arguments

aData An AffyBatch object.
samplesets A numeric vector specifying which condition each array belongs to. E.g. if samplesets=c(2,2), then the first two replicates belong to one condition and the last two replicates belong to another condition. If NULL, each array is assumed to belong to a different condition. If the aData object contains information about the experiment design in its phenoData slot, this argument is not required.
genesis A numeric vector specifying which genes to analyse. If NULL, all genes are analysed.
genesisToWatch A numeric vector specifying which genes to monitor closely amongst those chosen to be analysed (see below for details).
burnin Number of burn-in iterations.
iter Number of post burn-in iterations.
output One of "minimal", "trace" or "all". See below for details.
probeAff Stratify the mean (lambda) of the cross-hybridisation parameter (H) by categories according to probe-level sequence information.
probecat_threshold Minimum amount of probes per probe affinity category.
adaptive Adapt the variance of the proposals for Metropolis Hastings objects (that is: S, H, Lambda, Eta, Sigma and Mu).
batch_size Size of batches for calculating acceptance ratios and updating jumps.
optimalAR Optimal acceptance ratio.
rundir The directory in which to save the output runs.
inputdir The name of the directory in which to place the input files for the standalone binary.

details

genesisToWatch Specify the subset of genes for which thinned samples from the full posterior distributions of log(S+1) (x) and log(H+1) (y) are collected.

output Output the following to disk:

"minimal" The gene expression measure (muave), thinned samples from the full posterior distributions of mu (mu.[1..c]), where ‘c’ is the number of conditions, the integrated autocorrelation time (IACT) and the Markov chain Monte Carlo Standard Error (MCSE) for each gene under each condition. Note that the IACT and MCSE are calculated from the thinned samples of mu.

"trace" The same as "minimal" plus thinned samples from the full posterior distributions of sigma2 (sigma2.[1..c]), lambda (lambda.[1..s]), eta2 (eta2), phi (phi) and tau2 (tau2), where ’s’ is the number of samples. If there are probes with unknown sequences, output a thinned trace of their categorisation.

"all" The same as "trace" plus acceptance ratios for S (sacc), H (hacc), mu (muacc), sigma (sigmaacc), eta (etaacc) and lambda (lambdasacc).

value

'bgx' returns an ExpressionSet object containing gene expression information for each gene under each condition (not each replicate).

'standalone.bgx' returns the path to the BGX input files.
Note

The bgx() method and the bgx standalone binary create a directory in the working directory called 'run.x' (x:1,2,3,...), wherein files are placed for further detailed analysis.

Author(s)

Ernest Turro

References

Examples

```r
# This example requires the 'affydata' and 'hgu95av2cdf' packages
if(require(affydata) && require(hgu95av2cdf)) {
  data(Dilution)
  eset <- bgx(Dilution, samplesets=c(2,2), probeAff=FALSE, burnin=4096, iter=8192,
              genes=c(12500:12599), output="all", rundir=file.path(tempdir()))
}
```

mcmc.bgx

Internal wrapper function for calling the bgx C++ function.

Description

This internal function calls the bgx method in a loaded bgx shared object (bgx.so/bgx.dll)

Usage

```r
mcmc.bgx(pm, mm, samplesets, probesets, numberCategories, categories, unknownProbeSeqs,
         numberOfUnknownProbeSeqs, numberGenesToWatch, whichGenesToWatch, whichProbesToWatch, iter, burnin,
         adaptive, batch_size=50, optimalAR=0.44, output, samplenames = "unknown",
         subsample = ifelse(iter > 1024, iter/1024, 1), seed = 192492, rundir)
```
Arguments

- **pm**: Perfect Match probes
- **mm**: MisMatch probes
- **samplesets**: A numeric vector specifying which condition each array belongs to. E.g. if `samplesets=c(2,2)`, then the first two replicates belong to one condition and the last two replicates belong to another condition. If `NULL`, each array is assumed to belong to a different condition.
- **probesets**: A numeric vector specifying how probes are grouped into probesets.
- **numberCategories**: Number of probe affinity categories.
- **categories**: A numeric vector specifying which category each probe belongs to.
- **unknownProbeSeqs**: A numeric vector specifying which probes lack sequence information.
- **numberOfUnknownProbeSeqs**: Number of probes lacking sequence information.
- **numberGenesToWatch**: How many genes to monitor closely.
- **whichGenesToWatch**: A numeric vector specifying which genes to monitor closely.
- **whichProbesToWatch**: The starting position for each probe in each gene to monitor closely.
- **iter**: Number of post burn-in iterations.
- **burnin**: Number of burn-in iterations.
- **adaptive**: Use adaptive MCMC for better mixing.
- **batch_size**: Batch size for adaptive MCMC.
- **optimalAR**: Optimal acceptance ratio.
- **output**: One of "minimal", "trace", "diagnostic" or "mcse".
- **samplenames**: Vector of names for each array.
- **subsample**: Subsampling interval.
- **seed**: Seed for PRNG.
- **rundir**: The directory in which to place the output run directories.

Details

See `bgx` for more details.

Value

The name of the output directory.

Note

You shouldn’t call this function directly, but if you do, make sure the appropriate shared object is loaded.

Author(s)

Ernest Turro
saveAffinityPlot.bgx

Save a plot of affinity categorisation.

Description

This internal function saves a plot showing how probes were categorised into affinity categories.

Usage

```
saveAffinityPlot.bgx(originalAffinities, categories, dir, probecat_threshold)
```

readOutput.bgx
Read in the output from a BGX run.

Description

Usage

```
readOutput.bgx(...)  
```

Arguments

```
...  
Paths of BGX output directories. If you specify more than one path, then the  
runs will be combined such that each condition from each run is treated as a  
```

different different from all the others.

Details

See **bgx** for more details.

Value

A list containing data from the BGX output.

Author(s)

Ernest Turro

See Also

bgx, standalone.bgx

See Also

bgx, standalone.bgx

Arguments

- **originalAffinities**
 The affinities of the probes.

- **categories**
 The categories of the probes.

- **dir**
 Name of a directory in which to save the plot.

- **probecat_threshold**
 The minimum number of probes per category that was used to categorise the probes.

Author(s)

Ernest Turro

References

See bgx

See Also

bgx

setupVars.bgx

Initialise variables needed to run BGX simulation.

Description

This internal function initialises several variables, which it returns in a list.

Usage

```r
setupVars.bgx(data, samplesets, genes, genesToWatch, probeAff, probecat_threshold)
```

Arguments

- **data**
 An AffyBatch object.

- **samplesets**
 A numeric vector specifying which condition each array belongs to. E.g. if samplesets=c(2,2), then the first two replicates belong to one condition and the last two replicates belong to another condition. If NULL, each array is assumed to belong to a different condition.

- **genes**
 A numeric vector specifying which genes to analyse. If NULL, all genes are analysed.

- **genesToWatch**
 A numeric vector specifying which genes to monitor closely amongst those chosen to be analysed (see below for details).

- **probeAff**
 Stratify the mean (lambda) for the cross-hybridisation parameter (H) by categories according to probe-level sequence information.

- **probecat_threshold**
 Minimum amount of probes per probe affinity category.

- **rounding_dec_places**
 The initial probe categorisation is done by rounding affinities to the nearest rounding_dec_places decimal places. 1 is a good value.
Value

A list:

- **pm**: Perfect Match probes.
- **mm**: MisMatch probes.
- **samplesets**: A numeric vector specifying which condition each array belongs to. E.g., if `samplesets=c(2,2)`, then the first two replicates belong to one condition and the last two replicates belong to another condition. If NULL, each array is assumed to belong to a different condition.
- **probesets**: A numeric vector specifying how probes are grouped into probesets.
- **numberOfCategories**: Number of probe affinity categories.
- **categories**: A numeric vector specifying which category each probe belongs to.
- **unknownProbeSeqs**: A numeric vector specifying which probes lack sequence information.
- **numberOfUnknownProbeSeqs**: Number of probes lacking sequence information.
- **genesToWatch**: A numeric vector specifying which genes to monitor closely.
- **firstProbeInEachGeneToWatch**: The starting position for each probe in each gene to monitor closely.
- **numArrays**: Number of arrays.

Note

This function shouldn’t be called directly.

Author(s)

Ernest Turro

References

See `bgx`

See Also

`bgx`
Index

*Topic IO
 analysis.bgx, 1
 readOutput.bgx, 6

*Topic internal
 mcmc.bgx, 4
 saveAffinityPlot.bgx, 6
 setupVars.bgx, 7

*Topic manip
 bgx, 2

analysis.bgx, 1
bgx, 2, 2, 5–8
mcmc.bgx, 4
plotDEDensity, 2, 6
plotDEDensity(analysis.bgx), 1
plotDEHistogram, 2, 6
plotDEHistogram(analysis.bgx), 1
plotDiffRank(analysis.bgx), 1
plotExpressionDensity, 2, 6
plotExpressionDensity
 (analysis.bgx), 1
rankByDE(analysis.bgx), 1
readOutput.bgx, 1, 2, 6
saveAffinityPlot.bgx, 6
setupVars.bgx, 7
standalone.bgx, 2, 6
standalone.bgx(bgx), 2