affycomp

November 11, 2009

R topics documented:

- affycomp.compfigs.auxiliary .. 1
- affycomp.figures.auxiliary .. 3
- affycompPlot ... 4
- affycompTable .. 6
- assessAll ... 7
- assessDilution ... 8
- assessSD ... 9
- assessSpikeIn2 .. 9
- assessSpikeIn ... 10
- dilution.phenodata ... 11
- exprset.log .. 11
- hgu133a.spikein.phenodata ... 12
- lw.sd.assessment ... 13
- mas5.assessment ... 13
- readin ... 13
- remove.hgu133a.xhyb ... 14
- rma.assessment ... 15
- rma.sd.assessment ... 15
- SD .. 15
- spikein.phenodata ... 16
- hgu133a.spikein.xhyb ... 17

Index

- affycomp.compfigs.auxiliary

 Auxiliary functions to create comparative Figures

Description

These functions are auxiliary function to `affycompPlot`. These Figures are used to compare expression measures. They take lists with components created by the `assessDilution` and `assessSpikeIn` functions.
Usage

affycomp.compfig2(l, method.names = as.character(1:length(l)),
add.legend = TRUE, main = "Figure 2")

affycomp.compfig3(l, method.names = as.character(1:length(l)),
main = "Figure 3")

affycomp.compfig4a(l, method.names = as.character(1:length(l)),
add.legend = TRUE, main = "Figure 4a")

affycomp.compfig4b(l, method.names = as.character(1:length(l)),
add.legend = TRUE, main = "Figure 4b")

affycomp.compfig4c(l, method.names = as.character(1:length(l)),
add.legend = TRUE, rotate=TRUE, main = "Figure 4c")

affycomp.compfig5a(l, method.names = as.character(1:length(l)),
add.legend = TRUE, main = "Figure 5a", maxfp=100)

affycomp.compfig5b(l, method.names = as.character(1:length(l)),
add.legend = TRUE, main = "Figure 5b", maxfp=100)

affycomp.compfig5cde(l, method.names = as.character(1:length(l)),
add.legend = TRUE, main = "Figure 5c", maxfp=100,
type=c("low","med","high"))

affycomp.compfig5c(l, method.names = as.character(1:length(l)),
add.legend = TRUE, main = "Figure 5c", maxfp=100)

affycomp.compfig5d(l, method.names = as.character(1:length(l)),
add.legend = TRUE, main = "Figure 5d", maxfp=100)

affycomp.compfig5e(l, method.names = as.character(1:length(l)),
add.legend = TRUE, main = "Figure 5e", maxfp=100)

Arguments

l a list of lists with the necessary components to create the Figure. See details.
method.names a character vector with the names of the expression measures methodologies being compared.
add.legend logical. If TRUE a legend is added.
main title of the Figure.
rotate in the case of compfig4c one can either show the actual local slopes or the bias (local slope minus 1).
maxfp range of the false positives in ROC will be from 0 to maxfp

type compfig5cdef is the engine for 5c, 5d, and 5e. type tells is which of these 4 to run.
Details

These are similar to the functions defined in `affycomp.figures.auxiliary`. Main difference is that here you send lists with the result of the assessment functions as components.

Value

Figures are produced.

Author(s)

Rafael A. Irizarry

Examples

data(rma.assessment)
data(mas5.assessment)
affycomp.compfig2(list(rma.assessment$Dilution,mas5.assessment$Dilution))
affycomp.compfig3(list(rma.assessment$Dilution,mas5.assessment$Dilution))
affycomp.compfig4a(list(rma.assessment$Signal,mas5.assessment$Signal))
affycomp.compfig4b(list(rma.assessment$Dilution,mas5.assessment$Dilution))
affycomp.compfig5a(list(rma.assessment$FC,mas5.assessment$FC))
affycomp.compfig5b(list(rma.assessment$FC2,mas5.assessment$FC2))

Affycomp.figures.auxiliary

Auxiliary functions to create Figures

Description

These functions are auxiliary function to `affycompPlot`. These Figures are used to assess an expression measure. They take components created by the `assessDilution` and `assessSpikeIn` functions.

Usage

```r
affycomp.figure1(l,main="Figure 1",xlim=NULL,ylim=NULL)
affycomp.figure1b(l,main="Figure 1b",xlim=NULL,ylim=NULL,cex=0.85,all=FALSE)
affycomp.figure2(l,main="Figure 2")
affycomp.figure2b(l,main="Figure 2b")
affycomp.figure3(l, main = "Figure 3")
affycomp.figure4a(l, main = "Figure 4a",equal.lims=FALSE)
affycomp.figure4b(l, main = "Figure 4b")
affycomp.figure4c(l, rotate=TRUE, main = "Figure 4c")
affycomp.figure5a(l, main = "Figure 5a",maxfp=100)
affycomp.figure5b(l, main = "Figure 5b",maxfp=100)
affycomp.figure5c(l, main = "Figure 5c",maxfp=100)
affycomp.figure5d(l, main = "Figure 5d",maxfp=100)
affycomp.figure5e(l, main = "Figure 5e",maxfp=100)
affycomp.figure6a(l, main = "Figure 6a",xlim = NULL, ylim = NULL)
affycomp.figure6b(l, main = "Figure 6b",xlim = NULL, ylim = NULL)
```
Arguments

l A list with the necessary components to create the Figure. See details.
main Title for the Figure.
maxfp range of the false positives in ROC will be from 0 to maxfp
xlim x-axis limits.
ylim y-axis limits.
cex size of numbers in figure 1b.
all logical. If TRUE all spikeins are shown. Otherwise, only those resulting in smaller, realistic, fold changes are shown.
equal.lims logical. If TRUE the limits of x-axis and y-axis will have same range.
rotate in the case of compfig4c one can either show the actual local slopes or the bias (local slope minus 1).

Details

Read the vignette for more details on what each Figure is. You can read assessSpikeIn and assessDilution to see which assessments are needed.

Value

Figures are produced.

Author(s)

Rafael A. Irizarry

Examples

data(rma.assessment)
affycomp.figure1(rma.assessment$MA)
affycomp.figure2(rma.assessment$Dilution)
affycomp.figure3(rma.assessment$Dilution)
affycomp.figure4a(rma.assessment$Signal)
affycomp.figure4b(rma.assessment$Dilution)
affycomp.figure5a(rma.assessment$FC)
affycomp.figure5b(rma.assessment$FC2)
affycomp.figure6a(rma.assessment$FC)
affycomp.figure6b(rma.assessment$FC)

affycompPlot Assessment Plots

Description

Function that makes assessment plot
Usage

affycompPlot(..., assessment.list=NULL, method.names=NULL,
figure1.xlim=c(-4,15), figure1 ylim=c(-10,12),
figure1b.xlim=c(-2,14), figure1b.ylim=c(-6,5),
figure6a.xlim=c(-12,12), figure6a.ylim=c(-12,12),
figure6b.xlim=c(-3,3), figure6b.ylim=c(-6,6))

affycomp.compgfigs(l, method.names=NULL, figure1.xlim=c(-4,4), figure1.ylim=c(-4,4), figure1b.xlim=c(-4,4), figure1b.ylim=c(-4,4), figure6a.xlim=c(-12,12), figure6a.ylim=c(-12,12), figure6b.xlim=c(-3,3), figure6b.ylim=c(-6,6))

affycomp.figures(l)
affycomp.figure.calls(what)
affycomp.compgfigs.calls(what)

Arguments

... lists produced by the assessment functions (one for each method) separated by commas.
assessment.list Alternatively, one can also send a list of lists produced by one of the assessment functions
method.names A character vector with the names of the expression measure methodology.
figure1.xlim x-axis lim used for the plots in Figure 1.
figure1.ylim y-axis lim used for the plots in Figure 1.
figure1b.xlim x-axis lim used for the plots in Figure 1b.
figure1b.ylim y-axis lim used for the plots in Figure 1b.
figure6a.xlim x-axis lim used for the plots in Figure 6a.
figure6a.ylim y-axis lim used for the plots in Figure 6a.
figure6b.xlim x-axis lim used for the plots in Figure 6b.
figure6b.ylim y-axis lim used for the plots in Figure 6b.
l list with assessment lists as components.
what a dummy variable to know what function call to create.

Details

Read the vignette for more details on what each Figure is. Once an assessment is used this function knows what to do. You can call any of the assessment functions described in assessSpikeIn, assessDilution and assessSD.

affycomp.figures, affycomp.figure.calls, affycomp.compgfigs.calls are auxiliary functions.
Value

Figures are produced.

Author(s)

Rafael A. Irizarry

Examples

data(rma.assessment)
data(mas5.assessment)
affycompPlot(rma.assessment,mas5.assessment)
affycompPlot(rma.assessment$FC)
affycompPlot(rma.assessment$Dilution,mas5.assessment$Dilution)
affycompPlot(rma.assessment$Dilution,mas5.assessment$Dilution)
affycompPlot(rma.assessment$Signal,mas5.assessment$Signal)
affycompPlot(rma.assessment$Dilution,mas5.assessment$Dilution)
affycompPlot(rma.assessment$FC2,mas5.assessment$FC2)

affycompTable

Expression Assessment Table

Description

These functions takes as an argument the output of the assessment functions.

Usage

affycompTable(...,Table=NULL,assessment.list=NULL,method.names=NULL)
tableAll(...,assessment.list=NULL,method.names=NULL)
tableDilution(l, method.names=NULL)
tableFC(l, method.names=NULL)
tableFC2(l, method.names=NULL)
tableSignal(l, method.names=NULL)
tableLS(l, method.names=NULL)
tableSpikeInSD(l, method.names=NULL)
tableMA2(l, method.names=NULL)
tableOverallSNR(...,assessment.list=NULL,method.names=NULL,ngenes=12626)
tableRanks(...,assessment.list=NULL,method.names=NULL,ngenes=12626,rank=TRUE)
assessAll

Arguments

... lists produced by the assessment functions
Table If TableAll was used one can send it through this argument
assessment.list
TableAll has more entries. Once an assessment is used this function
method.names A character vector with the names of the expression measure methodology.
l list of assessments.
rank if TRUE tableRanks will present ranks instead of local slopes.
ngenes when computing ranks, out of how many genes should we do it?

Details

Read the vignette for more details on what the entries of the table are. affycompTable has
affycompTable has a few entries per graph. tableAll has more entries. Once an assessment is used this function
knows what to do. You can call any of the assessment functions described in assessSpikeIn,
assessDilution, assessSD, assessLS, assessMA2, and assessSpikeInSD.
Note tableRanks and tableOverallSNR work on the results from assessSpikeIn2.

Value

A matrix. One column per each method and one row for each comparison. tableOverallSNR is an
exception. Where rows represent methods.

Author(s)

Rafael A. Irizarry

Examples

data(rma.assessment) # this was produced with affycomp.assess
data(mas5.assessment) # this one too
tmp <- affycompTable(mas5.assessment, rma.assessment)
format(tmp, digit=2)

assessAll Assessment functions

Description

Assessment functions. Takes a couple of ExpressionSet-class, one for spike in another for
the dilution and returns a list with necessary information to create assessment plots.

Usage

assessAll(d, s, method.name=NULL, verbose=TRUE)

affycomp(d, s, method.name=NULL, verbose=TRUE, return.it=TRUE)
assessDilution

Arguments

d An ExpressionSet-class containing the expression measures for the Gene Logic’s dilution experiment.
s An ExpressionSet-class containing expression measures for the Affymetrix’s spike-in experiment.
method.name Name of expression measure being assessed.
verbose verbosity flag.
return.it if TRUE returns assessment lists.

Details

assessAll performs assessments for Figures 1-6. It is a wrapper for assessDilution and assessSpikeIn.
affycomp is a wrapper that does it all... including the plotting and creation of table.

Value

Lists with the necessary information to make the Figures.

Author(s)

Rafael A. Irizarry

assessDilution Assessment functions for Dilution Data

Description

Assessment function. Takes an ExpressionSet-class and returns a list with necessary information to create assessment plots.

Usage

assessDilution(exprset,method.name=NULL)

Arguments

exprset An ExpressionSet-class containing expression measures for Affymetrix’s spike-in experiment.
method.name Name of expression measure being assessed.

Details

assessDilution performs the assessment for the plots related to Dilution (Figures 2, 3, 4b)

Value

Lists with the necessary information to make the Figures.

Author(s)

Rafael A. Irizarry
assessSD

SD Assessment functions

Description

Assessment function for standard deviation estimates. Takes a dilution data ExpressionSet-class and returns a list with necessary information to create assessment plot.

Usage

```r
assessSD(exprset, method.name=NULL, logx=FALSE)
```

Arguments

- `exprset`: An ExpressionSet-class containing expression measures for Affymetrix’s spike-in experiment.
- `method.name`: Name of expression measure being assessed.
- `logx`: Logical. If TRUE expression is logged for plot. See details.

Details

assessSD does the assessment for Figure 7. This requires the ExpressionSet to have standard error estimates for the expression measure. Some expression (such as dChip) will have SEs for the original scale. Others, like RMA will have them for the log scale. For original scales, making logx=TRUE is recommended.

Value

Lists with the necessary information to make the Figures.

Author(s)

Rafael A. Irizarry

assessSpikeIn2

New Assessment functions for Spike In Data

Description

These functions are assessment functions. Each takes an ExpressionSet-class and returns a list with necessary information to create assessment plots.

Usage

```r
assessSpikeIn2(s, method.name=NULL, verbose=TRUE)
assessSpikeInSD(exprset, method.name=NULL, span=1/3)
assessLS(exprset, method.name=NULL)
assessMA2(exprset, method.name=NULL)
```
assessSpikeIn

Arguments

s An `ExpressionSet-class` containing expression measures for Affymetrix’s spike-in experiment.
exprset An `ExpressionSet-class` containing expression measures for Affymetrix’s spike-in experiment.
method.name Name of expression measure being assessed.
verbose logical. If `TRUE` show messages.
span span used in call to `loess`.

Details

`assessMA2` performs the assessment for the second MA-plot (Figure 1b), `assessLS` performs the assessment for signal detection plot (Figure 4c), `assessMA2` also performs assessments used by fold-change related plots (Figures 5c-f). `assessSpikeInSD` is for the standard deviation assessment of Figure 2b. `assessSpikeIn2` is a wrapper for all these and returns a list of lists.

Value

Lists with the necessary information to make the Figures.

Author(s)

Rafael A. Irizarry

评估Spike In数据

这些函数是评估函数。每个函数接受一个`ExpressionSet-class`并返回一个列表，该列表包含创建评估图所需的必要信息。

使用

```r
assessSpikeIn(s, method.name=NULL, verbose=TRUE)
```

```r
assessMA(exprset, method.name=NULL)
assessSignal(exprset, method.name=NULL)
assessFC(exprset, method.name=NULL)
assessFC2(exprset, method.name=NULL)
```

Arguments

s An `ExpressionSet-class` containing expression measures for Affymetrix’s spike-in experiment.
exprset An `ExpressionSet-class` containing expression measures for Affymetrix’s spike-in experiment.
method.name Name of expression measure being assessed.
verbose logical. If `TRUE` show messages.
Details

assessMA performs the assessment for the MA-plot (Figure 1), assessSignal performs the assessment for signal detection plot (Figure 4a), assessFC performs assessments used by fold-change related plots (Figures 5a, 6a, 6b). assessFC2 is for the ROC for genes with nominal fold changes of 2 (Figure 5b). assessSpikeIn is a wrapper for all these and returns a list of lists.

Value

Lists with the necessary information to make the Figures.

Author(s)

Rafael A. Irizarry

dilution.phenodata Phenotypic Information for Dilution Study

Description

This object is of class phenoData with necessary information for the assessments.

Usage

data(dilution.phenodata)

Format

An object of class phenoData

Source

Two sources of cRNA A (human liver tissue) and B (Central Nervous System cell line) have been hybridized to human array (HGU95Av2) in a range of proportions and dilutions. This object described these.

eexprset.log Take log base 2 of Expression

Description

Take log base 2 of the expression matrix in an ExpressionSet

Usage

eexprset.log(exprset)
Arguments

`exprset` *ExpressionSet*

Details

This function takes log base 2 of the expression matrix in an *ExpressionSet*. Negatives are converted to the smallest non-negative entry.

Value

A *ExpressionSet*

Author(s)

Rafael A. Irizarry

Description

This object is of class *phenoData* with necessary information for the assessments.

Usage

`data(hgu133a.spikein.phenodata)`

Format

An object of class *phenoData*

Source

This comes from an experiments where 16 different cRNA fragments have been added to the hybridization mixture of the GeneChip arrays at different pM concentrations. For more information see Irizarry, R.A., et al. (2001) http://www.biostat.jhsph.edu/~ririzarr/papers/index.html
lw.sd.assessment
An example of the result of an SD assessment

Description

The Dilution files were processed with the dChip package (using PM-only) and then the function `assessSD` was applied.

Usage

```r
data(lw.sd.assessment)
```

Format

A list.

mas5.assessment
An example of the result of the assessments

Description

The Dilution and both (HGU95 and HGU133) Spike-in cel files were processed with MAS 5.0 software and then the functions `assessAll` and `assessSpikeIn2` were applied.

Usage

```r
data(rma.assessment)
data(rma.assessment.133)
data(rma.assessment2)
data(rma.assessment2.133)
```

Format

A list of list.

readin
Read Expression Date Sets

Description

Reads a comma-delimited file containing the expression values of the dilution and spike-in data sets and creates a `ExpressionSet`

Usage

```r
read.dilution(filename)
read.spikein(filename, cdfName=c("hgu95a","hgu133a"), remove.xhyb=TRUE)
read.newspikein(filename)
```
Arguments

filename character containing the filename to be read.
cdfName are we reading data from the hgu95a or hgu133a spike-in experiment?
remove.xhyb logical. If TRUE possible cross hybridizers are removed from the HGU133A spikein. See remove.hgu133a.xhyb.

Details

The file to be read must be comma-delimited with the first row containing the cel filenames (case sensitive). The first column must be the Affymetrix gene identifiers. read.dilution will put things in the right place.
read.newspikein is a wrapper to read results from the hgu133a spikein experiment.

Value

An ExpressionSet.

Author(s)

Rafael A. Irizarry

Description

This functions removes possible cross hybridizers from Affymetrix HGU133A spike-in experiment

Usage

remove.hgu133a.xhyb(s, bp = c("200", "150", "100"))

Arguments

s an ExpressionSet containing the HGU133A spike-in
bp number of base pair matches needed to define a possible cross hybridizer

Details

Some details are contained in the help file for hgu133a.spikein.xhyb

Value

An ExpressionSet with probeset removed

See Also

hgu133a.spikein.xhyb
rma.assessment

An example of the result of an assessment

Description

The Dilution and Spike-in cel files were processed with the `affy` version 1.0 package rma add-on function and then the functions `assessAll` and `assessSpikeIn2` were applied.

Usage

```r
data(rma.assessment)
data(rma.assessment.133)
data(rma.assessment2)
data(rma.assessment2.133)
```

Format

A list of list.

rma.sd.assessment

An example of the result of an SD assessment

Description

The Dilution files were processed with the `affy` version 1.0 package rma add-on function and then the function `assessSD` was applied.

Usage

```r
data(rma.sd.assessment)
```

Format

A list.

SD

SD Assessment Functions

Description

These functions create assessments, figures, and tables for expression standard errors

Usage

```r
affycomp.figure7(l,main="Figure 7")
affycomp.compfig7(l,method.names=as.character(1:length(l)),
  main="Figure 7")
tableSD(l,method.names=NULL)
```
spikein.phenodata

Arguments

- `l` a list of lists with the necessary components to create the Figure. See details.
- `method.names` a character vector with the names of the expression measures methodologies being compared.
- `main` title of the Figure.

Details

This uses the dilution data. The exprsets need to have standard error estimates in the `assayDataElement(exprset, "se.exprs")`.

Read the vignette for more details. The functions work similarly to those assessing expression measures.

All these files need the result of `assessSD`

Value

Depends on the call.

Author(s)

Rafael A. Irizarry

Examples

```r
data(rma.sd.assessment) # this was produced with affycomp.assess
data(lw.sd.assessment) # this one too
affycomp.commpfig7(list(rma.sd.assessment, lw.sd.assessment))
affycomp.figure7(rma.sd.assessment)
```

spikein.phenodata phenotypic information for spike in study

Description

This object is of class `phenoData` with necessary information for the assessments.

Usage

```r
data(spikein.phenodata)
```

Format

An object of class `phenoData`

Source

This comes from an experiments where 16 different cRNA fragments have been added to the hybridization mixture of the GeneChip arrays at different pM concentrations. For more information see Irizarry, R.A., et al. (2001) http://www.biostat.jhsph.edu/~ririzarr/papers/index.html
Cross hybridizers

Description
Probe Sets likely to crosshybridize to spiked-in probesets in the Affymetrix HGU133A spike in. This object is list. Each component of the list contains probeset names of possible crosshybridizers. The sequences of each spiked-in clone were collected and blasted against all HG-U133A target sequences. Target sequences are the ~600bp regions from which probes were selected. Thresholds of 100, 150 and 200bp were used and define the three components of the list.

Usage

data(hgu133a.spikein.xhyb)

Format
A list

Source
Simon Cawley <simon_cawley@affymetrix.com>
Index

*Topic datasets
 dilution.phenodata, 11
 hgu133a.spikein.phenodata, 12
 hgu133a.spikein.xhyb, 16
 lw.sd.assessment, 12
 mas5.assessment, 13
 rma.assessment, 14
 rma.sd.assessment, 15
 spikein.phenodata, 16

*Topic hplot
 affycomp.compfigs.auxiliary, 1
 affycomp.figures.auxiliary, 3
 affycompPlot, 4

*Topic manip
 affycompTable, 6
 assessAll, 7
 assessDilution, 8
 assessSD, 8
 assessSpikeIn, 10
 assessSpikeIn2, 9
 exprset.log, 11
 readin, 13
 remove.hgu133a.xhyb, 14
 SD, 15
 affycomp (assessAll), 7
 affycomp.compfig2
 (affycomp.compfigs.auxiliary), 1
 affycomp.compfig2b
 (affycomp.compfigs.auxiliary), 1
 affycomp.compfig3
 (affycomp.compfigs.auxiliary), 1
 affycomp.compfig4a
 (affycomp.compfigs.auxiliary), 1
 affycomp.compfig4b
 (affycomp.compfigs.auxiliary), 1
 affycomp.compfig4c
 (affycomp.compfigs.auxiliary), 1
 affycomp.compfig5a
 (affycomp.compfigs.auxiliary), 1
 affycomp.compfig5b
 (affycomp.compfigs.auxiliary), 1
 affycomp.compfig5c
 (affycomp.compfigs.auxiliary), 1
 affycomp.compfig5cde
 (affycomp.compfigs.auxiliary), 1
 affycomp.compfig5d
 (affycomp.compfigs.auxiliary), 1
 affycomp.compfig5e
 (affycomp.compfigs.auxiliary), 1
 affycomp.compfig7(SD), 15
 affycomp.compfigs (affycompPlot), 4
 affycomp.compfigs.auxiliary, 1
 affycomp.figure.calls
 (affycompPlot), 4
 affycomp.figure1
 (affycomp.figures.auxiliary), 3
 affycomp.figure1b
 (affycomp.figures.auxiliary), 3
 affycomp.figure2
 (affycomp.figures.auxiliary), 3
 affycomp.figure2b
 (affycomp.figures.auxiliary), 3
 affycomp.figure3
 (affycomp.figures.auxiliary), 3
 affycomp.figure4a
 (affycomp.figures.auxiliary), 3
INDEX

affycomp.figure4b
(affycomp.figures.auxiliary), 3
affycomp.figure4c
(affycomp.figures.auxiliary), 3
affycomp.figure5a
(affycomp.figures.auxiliary), 3
affycomp.figure5b
(affycomp.figures.auxiliary), 3
affycomp.figure5c
(affycomp.figures.auxiliary), 3
affycomp.figure5d
(affycomp.figures.auxiliary), 3
affycomp.figure5e
(affycomp.figures.auxiliary), 3
affycomp.figure6a
(affycomp.figures.auxiliary), 3
affycomp.figure6b
(affycomp.figures.auxiliary), 3
affycomp.figure7
(SD), 15
affycomp.figures affycompPlot, 4
affycomp.figures aux, 2, 3
affycompTable, 6
assessAll, 7, 13, 14
assessDilution, 1, 3, 5, 6, 8
assessFC (assessSpikeIn), 10
assessFC2 (assessSpikeIn), 10
assessLS, 6
assessLS (assessSpikeIn2), 9
assessMA (assessSpikeIn), 10
assessMA2, 6
assessMA2 (assessSpikeIn2), 9
assessSD, 5, 6, 8, 12, 15
assessSignal (assessSpikeIn), 10
assessSpikeIn, 1, 3, 5, 6, 10
assessSpikeIn2, 6, 9, 13, 14
assessSpikeInSD, 6
assessSpikeInSD (assessSpikeIn2), 9
dilution.phenodata, 11
exprset.log, 11
hgu133a.spikein.phenodata, 12
hgu133a.spikein.xhyb, 14, 16
lw.sd.assessment, 12
mas5.assessment, 13
mas5.assessment2 (mas5.assessment), 13
phenoData, 11, 12, 16
read.dilution (readin), 13
read.newspikein (readin), 13
read.spikein (readin), 13
readin, 13
remove.hgu133a.xhyb, 13, 14
rma.assessment, 14
rma.assessment2 (rma.assessment), 14
rma.sd.assessment, 15
SD, 15
spikein.phenodata, 16
tableAll, 6
tableAll (affycompTable), 6
tableDilution (affycompTable), 6
tableFC (affycompTable), 6
tableFC2 (affycompTable), 6
tableLS (affycompTable), 6
tableMA2 (affycompTable), 6
tableOverallSNR (affycompTable), 6
tableRanks (affycompTable), 6
tableSD (SD), 15
tableSignal (affycompTable), 6
tableSpikeInSD (affycompTable), 6
ExpressionSet, 11, 13
ExpressionSet-class, 7–10