R topics documented:

<table>
<thead>
<tr>
<th>break</th>
<th>page</th>
</tr>
</thead>
<tbody>
<tr>
<td>copynumberEmission</td>
<td>2</td>
</tr>
<tr>
<td>genotypeEmissionCrlmm</td>
<td>3</td>
</tr>
<tr>
<td>genotypeEmission</td>
<td>4</td>
</tr>
<tr>
<td>hmm</td>
<td>5</td>
</tr>
<tr>
<td>locusLevelData</td>
<td>6</td>
</tr>
<tr>
<td>transitionProbability</td>
<td>7</td>
</tr>
<tr>
<td>viterbi</td>
<td>8</td>
</tr>
<tr>
<td>breaks</td>
<td>1</td>
</tr>
</tbody>
</table>

Description

Identify breakpoints: physical position of breaks, number of SNPs in region, and the called hidden state.

Usage

```r
breaks(x, states, position, chromosome, sampleNames, chromosomeAnnotation = NULL, verbose = FALSE)
```

Arguments

- **x**: Locus X sample matrix of hidden states where the hidden states are represented as integers
- **states**: Labels for the hidden states
- **position**: Physical position of loci
- **chromosome**: integer indicating chromosome (23=X)
- **sampleNames**: sample labels
- **chromosomeAnnotation**: chromosome annotation. see details
- **verbose**: verbose output
copynumberEmission

Details

One may provide their own chromosome annotation with centromere start and stop sites. The format must be the same as the chromosomeAnnotation dataset in the R package SNPchip.

Value

data.frame

sample sample label
chr chromosome (23 = X)
start starting physical position of segment
end last physical position of segment
nbases number of bases in segment
nprobes number of probes in segment
state label for the state of the segment

Author(s)

R. Scharpf

Examples

x <- matrix(rep(c(1, 2, 3, 1, 2), each=50), ncol=1)
breaks(x, states=c("0", "1", "2"), position=1:nrow(x), chromosome=1, sampleNames="A")

copynumberEmission Emission probabilities for copy number

Description

Emission probabilities for copy number

Usage

copynumberEmission(copynumber, states, mu, sds, takeLog, verbose = TRUE, na.rm=TRUE)

Arguments

copynumber matrix
states character string
mu numeric: mean of hidden states for Gaussian
sds standard deviations of copy number estimates
takeLog logical: if TRUE, this function takes the log of the copy number AND mu arguments to this function
verbose logical
na.rm The default is to ignore missing values when calculating robust standard deviations
genotypeEmissionCrlmm

Details

By default, this func estimates the scale parameter for the Normal distribution from the supplied data using the median absolute deviation (MAD). However, different standard deviations can be supplied by the user with the argument `sds`. The supplied standard deviations must be of the same dimension as the copy number matrix.

Value

`array` Array of emission probabilities on the log scale. Dimension 1: SNPs, Dimension 2: samples, Dimension 3: states

See Also

`genotypeEmission, genotypeEmissionCrlmm`

genotypeEmissionCrlmm

Estimate the emission probabilities using confidence scores from CRLMM

Description

Estimate the emission probabilities that incorporate information on the confidence scores for the genotype calls.

Usage

```
 genotypeEmissionCrlmm(genotypes, conf, pHetCalledHom = 0.001, pHetCalledHet = 0.995, pHomInNormal = 0.99, pHomInRoh = 0.999, annotation)
```

Arguments

- `genotypes` Matrix of genotypes
- `conf` Matrix of confidence scores (see details).
- `pHetCalledHom` The probability that a truly heterozygous SNP is incorrectly called homozygous (incorrect call).
- `pHetCalledHet` The probability that a truly heterozygous SNP is called heterozygous (correct call).
- `pHomInNormal` The probability of a homozygous genotype call in the 'normal' state.
- `pHomInRoh` The probability of a homozygous genotype call in a region of homozygosity.
- `annotation` The cdf name (e.g., "genomewidesnp6")

Details

The confidence scores by crlmm are saved as an integer: $1000\cdot\log(1-p)$, where p is the probability that the genotype call is correct.

The reference distribution of confidence scores are available for the following Affymetrix platforms: affy6, nsp250, and sty250k.
Value

An $R \times C \times X$ array of emission probabilities, where

$R =$ number of loci (SNPs) $C =$ number of samples $S =$ number of states

Author(s)

R Scharpf

References

RB Scharpf et al. (2008), Annals of Applied Statistics

genotypeEmission
Emission probabilities for di-allelic genotype calls

Description

Emission probabilities for di-allelic genotype calls

Usage

```r
genotypeEmission(genotypes, conf, states, probHomCall, probMissing, verbose=TRUE)
```

Arguments

- **genotypes**: matrix of integers (1=AA, 2=AB, 3=BB, 4=other)
- **conf**: Confidence estimates of the genotype calls obtained from crlmm (optional).
- **states**: character string of hidden states
- **probHomCall**: numeric: probability of a homozygous genotype call specified in the same order as the hidden states
- **probMissing**: numeric: probability of a missing genotype call specified in the same order as the hidden states
- **verbose**: logical

Details

CRLMM provides confidences estimates of the genotype calls that can be integrated to improve the HMM. Because CRLMM will genotype all SNPs, the probMissing argument is unnecessary.

Value

- **array**: Array of emission probabilities. Dimension 1: SNPs, Dimension 2: samples, Dimension 3: states
hmm

hmm

Wrapper for fitting the HMM

Description

A wrapper for fitting the HMM.

Usage

hmm(object, states, mu = NULL, probs = NULL, takeLog = FALSE, initialP, returnSegments = TRUE, TAUP = 1e+08, verbose = FALSE, ice = FALSE, envir)

Arguments

- **object**: SnpCallSet, SnpCopyNumberSet, or oligoSnpSet object
- **states**: Labels for the hidden states. See details for order.
- **mu**: The latent copy number. See details for order.
- **probs**: See details.
- **takeLog**: Whether to take the log of the copy number before computing emission probabilities and standard deviations
- **initialP**: Initial state probabilities
- **returnSegments**: Logical: whether to return the segments or the loci x sample matrix of predicted states
- **TAUP**: Scaling parameter for transition probabilities.
- **verbose**: Logical: Verbose output?
- **ice**: Whether to use CRLMM confidence scores of the genotype calls.
- **envir**: Optional. An environment for storing intermediate files created for fitting the HMM.

Details

For oligoSnpSet objects, the hidden state labels are assumed to be 1: hemizygous deletion 2: normal 3: region of homozygosity (ROH) 4: amplification

The argument mu should have copy number values corresponding to the above states. For instance on the absolute scale, the copy number states should be 1, 2, 2, and 4.

probs: If ice is FALSE, the elements in probs should correspond to the probability of a homozygous genotype in each of the above states. If ice is TRUE, the elements in probs should correspond to 1. Pr(homozygous call | truth is heterozygous) 2. Pr(heterozygous call | truth is heterozygous) 3. Pr(homozygous call | truth is ROH) 4. Pr(homozygous call | truth is normal). ’Normal’ meaning copy number 2 and a typical frequency of heterozygosity for autosomes.

Value

If returnSegments is TRUE, a data.frame containing the coordinates of the predicted segments is returned. Otherwise, a loci X sample matrix is returned. The elements of the matrix correspond to the predict hidden state for a specific locus and sample.
Author(s)
R. Scharpf

References

locusLevelData
Basic data elements required for the HMM

Description
This object is a list containing the basic data elements required for the HMM

Usage
data(locusLevelData)

Format
A list

Details
The basic assay data elements that can be used for fitting the HMM are:
1. a mapping of platform identifiers to chromosome and physical position
2. (optional) a matrix of copy number estimates
3. (optional) a matrix of confidence scores for the copy number estimates (e.g., inverse standard deviations)
4. (optional) a matrix of genotype calls
5. (optional) CRLMM confidence scores for the genotype calls
At least (2) or (4) is required. The locusLevelData is a list that contains (1), (2), (4), and (5).

Source
A HapMap sample on the Affymetrix 50k platform. Chromosomal alterations were simulated. The last 100 SNPs on chromosome 2 are, in fact, a repeat of the first 100 SNPs on chromosome 1 – this was added for internal use.

Examples
data(locusLevelData)
str(locusLevelData)
transitionProbability

Compute the transition probability

Description

Wrapper for computing the locus-specific transition probability

Usage

transitionProbability(chromosome, position, TAUP = 1e+08, chromosomeAnnotation, verbose = FALSE)

Arguments

- chromosome: chromosome (integer representation)
- position: physical position
- TAUP: Scalar for computing transition probabilities (see Details).
- chromosomeAnnotation: Optional: chromosome annotation
- verbose: Logical: verbose output

Details

The HMM uses locus-specific transition probabilities that are calculated as a function of the physical distance between loci. Specifically, the probability that the locus at position \(t - 1 \) is not informative for the locus at position \(t \) is calculated as \(1 - \exp(-d/TAUP) \), where \(d \) is the physical distance between locus \(t \) and locus \(t-1 \). The default for TAUP is \(1 \times 10^8 \) and can be specified to achieve a desired amount of sensitivity and specificity. Larger values of TAUP decreases the probability of transitioning to other states, and therefore provides a more smooth fit.

Value

The transitionProbability function (i) transforms the physical distance between adjacent loci to an estimate of the genomic distance and (ii) adds an 'arm' variable to the annotation matrix.

- chromosome: chromosome
- position: physical position
- arm: an integer. The HMM uses the arm variable as a factor and is fit independently to each 'arm'.

Author(s)

R. Scharpf

See Also

chromosomeAnnotation
viterbi algorithm

Description
The Viterbi algorithm for computing the most likely state sequence given a model

Usage
viterbi(initialStateProbs, emission, tau, arm, tau.scale, verbose = FALSE, chromosome, position, sampleNames, locusNames, normalIndex, returnLikelihood = FALSE)

Arguments
initialStateProbs
initial state probabilities (log scale)
emission
matrix of log emission probabilities (one sample is a matrix)
tau
transition probabilities (original scale)
arm
numeric or character string indicating chromosomal arm
tau.scale
matrix to scale the probability of transitioning between states.
verbose
Logical
chromosome
chromosome
position
physical position
sampleNames
sample labels
locusNames
labels for loci
normalIndex
index corresponding to the normal state. See details
returnLikelihood
whether to return the ’loglikelihood’

Details
The Viterbi algorithm is fit independently to each chromosomal arm if arm is specified. Argument tau.scale is a matrix that scales the probability of transitioning from an altered state to a normal state to the probability of transitioning between two altered states. If missing, tau.scale is 1 (no scaling)

Value
matrix predicted states

Author(s)
R. Scharpf
Index

*Topic arith
 transitionProbability, 7
*Topic datasets
 locusLevelData, 6
*Topic htest
 genotypeEmissionCrlmm, 3
*Topic manip
 breaks, 1
*Topic methods
 copynumberEmission, 2
 genotypeEmission, 4
*Topic models
 hmm, 5
 viterbi, 8

breaks, 1

chromosomeAnnotation, 7

copynumberEmission, 2

genotypeEmission, 3, 4

genotypeEmissionCrlmm, 3, 3

hmm, 5

locusLevelData, 6

transitionProbability, 7

viterbi, 8