MiPP
November 11, 2009

R topics documented:

colon 1
cv.mipp.rule 2
get.mipp.lda 2
get.mipp.logistic 2
get.mipp.qda 2
get.mipp 2
get.mipp.svm.linear 3
get.mipp.svm.rbf 3
leuk1 3
leuk2 4
leukemia 4
linearkernel.decision.function 5
mipp.preproc 5
mipp 6
mipp.rule 8
mipp.seq 8
pre.select 10
quant.normal2 10
quant.normal 11
rbfkernel.decision.function 11

Index 12

colon 1

Gene expression data for colon cancer

Description
This data set consists of gene expression of colon cancer study.

Usage
data(colon)

Format
A matrix containing 2000 probe sets and 2 classes (T, F)
get.mipp

Source

cv.mipp.rule
Fitting cross-validation MiPP

Description
Fits cross-validation MiPP

get.mipp.lda
Fitting LDA to compute MiPP

Description
Fits LDA to compute MiPP

get.mipp.logistic
Fitting logistic model to compute MiPP

Description
Fits logistic model to compute MiPP

get.mipp.qda
Fitting QDA to compute MiPP

Description
Fits QDA to compute MiPP

get.mipp
Choosing a rule

Description
Choose a rule to compute MiPP
get.mipp.svm.linear
Fitting SVM (linear) to compute MiPP

Description
Fits SVM (linear) to compute MiPP

get.mipp.svm.rbf
Fitting SVM (RBF) to compute MiPP

Description
Fits SVM (RBF) to compute MiPP

leuk1
Gene expression data for leukemia

Description
This data set consists of gene expression of leukemia study.

Usage
`data(leukemia)`

Format
A matrix containing 6817 probe sets and 38 samples (2 classes: AML, ALL)

Source
leuk2

Gene expression data for leukemia

Description
This data set consists of gene expression of leukemia study.

Usage
data(leukemia)

Format
A matrix containing 6817 probe sets and 34 samples (2 classes: AML, ALL)

Source

leukemia

Gene expression data for leukemia

Description
This data set consists of gene expression of leukemia study.

Usage
data(leukemia)

Format
A matrix containing 6817 probe sets and 2 classes (AML, ALL)

Source
linearkernel.decision.function

SVM (linear) kernel to compute MiPP

Description

SVM (linear) kernel to compute MiPP

mipp.preproc Preprocessing

Description

Performs IQR normalization, thresholding, and log2-transformation

Usage

mipp.preproc(x, data.type = "MAS5")

Arguments

x data

data.type data type is MAS5, MAS4, or dChip

See Also

mipp

Examples

library(MiPP)

data(colon)
colon.nor <- mipp.preproc(colon)
miPP

MiPP-based Classification

Description

Finds optimal sets of genes for classification

Usage

miPP(x, y, x.test = NULL, y.test = NULL, probe.ID = NULL,
 rule = "lda", method.cut = "t.test", percent.cut = 0.01,
 model.sMiPP.margin = 0.01, min.sMiPP = 0.85, n.drops = 2,
 n.fold = 5, p.test = 1/3, n.split = 20,
 n.split.eval = 100)

Arguments

 x data matrix
 y class vector
 x.test test data matrix if available
 y.test test class vector if available
 probe.ID probe set IDs; if NULL, row numbers are assigned.
 rule classification rule: "lda", "qda", "logistic", "svmlin", "svmbf"; the default is "lda".
 method.cut method for pre-selection; t-test is available.
 percent.cut proportion of pre-selected genes; the default is 0.01.
 model.sMiPP.margin
 smallest set of genes s.t. sMiPP <= (max sMiPP-model.sMiPP.margin); the default is 0.01.
 min.sMiPP Adding genes stops if max sMiPP is at least min.sMiPP; the default is 0.85.
 n.drops Adding genes stops if sMiPP decreases (n.drops) times, in addition to min.sMiPP criterion.; the default is 2.
 n.fold number of folds; default is 5.
 p.test partition percent of train and test samples when test samples are not available;
 the default is 1/3 for test set.
 n.split number of splits; the default is 20.
 n.split.eval number of splits for evaluation; the default is 100.

Value

 model candidate genes (for each split if no indep set is available
 model.eval Optimal sets of genes for each split when no indep set is available

Author(s)

 Soukup M, Cho H, and Lee JK
mipp

References

Examples

#########
#Example 1: When an independent test set is available

data(leukemia)

#Normalize combined data
leukemia <- cbind(leuk1, leuk2)
leukemia <- mipp.preproc(leukemia, data.type="MAS4")

#Train set
x.train <- leukemia[,1:38]
y.train <- factor(c(rep("ALL",27),rep("AML",11)))

#Test set
x.test <- leukemia[,39:72]
y.test <- factor(c(rep("ALL",20),rep("AML",14)))

#Compute MiPP
out <- mipp(x=x.train, y=y.train, x.test=x.test, y.test=y.test, probe.ID = 1:nrow(x.train), n.fold=5, percent.cut=0.05, rule="lda")

#Print candidate models
out$model

#########
#Example 2: When an independent test set is not available

data(colon)

#Normalize data
x <- mipp.preproc(colon)

#Deleting contaminated chips
x <- x[-c(51,55,45,49,56)]
y <- y[-c(51,55,45,49,56)]

#Compute MiPP
out <- mipp(x=x, y=y, probe.ID = 1:nrow(x), n.fold=5, p.test=1/3, n.split=5, n.split.eval=100, percent.cut= 0.1, rule="lda")
mipp.seq

Print candidate models for each split
out$model

Print optimal models and independent evaluation for each split
out$model.eval

mipp.rule

Computing MiPP

Description
Computes MiPP

mipp.seq

MiPP-based Classification

Description
sequentially finds optimal sets of genes for classification

Usage

```r
mipp.seq(x, y, x.test = NULL, y.test = NULL, probe.ID = NULL, 
rule = "lda", method.cut = "t.test", percent.cut = 0.01, 
model.sMiPP.margin = 0.01, min.sMiPP = 0.85, n.drops = 2, 
n.fold = 5, p.test = 1/3, n.split = 20, n.split.eval = 100, 
n.seq=3, cutoff.sMiPP=0.7, remove.gene.each.model="all")
```

Arguments

- `x` data matrix
- `y` class vector
- `x.test` test data matrix if available
- `y.test` test class vector if available
- `probe.ID` probe set IDs; if NULL, row numbers are assigned.
- `rule` classification rule: "lda", "qda", "logistic", "svmmlin", "svmrbf"; the default is "lda".
- `method.cut` method for pre-selection; t-test is available.
- `percent.cut` proportion of pre-selected genes; the default is 0.01.
- `model.sMiPP.margin` smallest set of genes s.t. sMiPP <= (max sMiPP-model.sMiPP.margin); the default is 0.01.
- `min.sMiPP` Adding genes stops if max sMiPP is at least min.sMiPP; the default is 0.85.
- `n.drops` Adding genes stops if sMiPP decreases (n.drops) times, in addition to min.sMiPP criterion.; the default is 2.
- `n.fold` number of folds; default is 5.
mipp.seq

p.test partition percent of train and test samples when test samples are not available; the default is 1/3 for test set.
n.split number of splits; the default is 20.
n.split.eval number of splits for evaluation; the default is 100.
n.seq Number of sequential gene model selection; the default is 3.
cutoff.sMiPP Cutoff point of 5 percent sMiPP to select gene models
remove.gene.each.model Re-run after removing all genes in the selected models if "all" and the first gene for each of the selected models if "first"

Value
model candidate genes (for each split if no indep set is available
model.eval Optimal sets of genes for each split when no indep set is available
genes.selected a list of genes selected by sequential selection

Author(s)
Soukup M, Cho H, and Lee JK

References

Examples

#########
#Example 1: When an independent test set is available
data(leukemia)

#Normalize combined data
leukemia <- cbind(leuk1, leuk2)
leukemia <- mipp.preproc(leukemia, data.type="MAS4")

#Train set
x.train <- leukemia[,1:38]
y.train <- factor(c(rep("ALL",27),rep("AML",11)))

#Test set
x.test <- leukemia[,39:72]
y.test <- factor(c(rep("ALL",20),rep("AML",14)))

#Compute MiPP
out <- mipp.seq(x=x.train, y=y.train, x.test=x.test, y.test=y.test, n.fold=5, percent.cut=0.01, rule="lda", n.seq=3)

#Print candidate models
out$model
Print the genes selected
out$genes.selected

##########

Example 2: When an independent test set is not available

data(colon)

Normalize data
x <- mipp.preproc(colon)
)

Deleting contaminated chips
x <- x[,-c(51,55,45,49,56)]
y <- y[-c(51,55,45,49,56)]

Compute MiPP
out <- mipp.seq(x=x, y=y, n.fold=5, p.test=1/3, n.split=5, n.split.eval=100,
 percent.cut= 0.05, rule="lda", n.seq=2)

Print candidate models for each split
out$model

Print optimal models and independent evaluation for each split
out$model.eval

Print the genes selected
out$genes.selected

pre.select

<table>
<thead>
<tr>
<th>Pre-selection</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
</tr>
<tr>
<td>Pre-select genes</td>
</tr>
</tbody>
</table>

quant.normal2

<table>
<thead>
<tr>
<th>Quantile normalization</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
</tr>
<tr>
<td>Performs quantile normalization</td>
</tr>
<tr>
<td>quant.normal</td>
</tr>
<tr>
<td>-------------</td>
</tr>
</tbody>
</table>

Description

Performs quantile normalization

<table>
<thead>
<tr>
<th>rbfkernel.decision.function</th>
<th>SVM (RBF) kernel to compute MiPP</th>
</tr>
</thead>
</table>

Description

SVM (RBF) kernel to compute MiPP
Index

*Topic datasets
 colon, 1
 leuk1, 3
 leuk2, 3
 leukemia, 4

*Topic models
 cv.mipp.rule, 1
 get.mipp, 2
 get.mipp.lda, 1
 get.mipp.logistic, 2
 get.mipp.qda, 2
 get.mipp.svm.linear, 2
 get.mipp.svm.rbf, 2
 linearkernel.decision.function, 4
 mipp, 5
 mipp.preproc, 4
 mipp.rule, 7
 mipp.seq, 7
 pre.select, 9
 quant.normal, 10
 quant.normal2, 10
 rbfkernel.decision.function, 10

colon, 1
cv.mipp.rule, 1

gt.mipp, 2
get.mipp.lda, 1
get.mipp.logistic, 2
get.mipp.qda, 2
get.mipp.svm.linear, 2
get.mipp.svm.rbf, 2

leuk1, 3
leuk2, 3
leukemia, 4
leukimia (leukemia), 4
linearkernel.decision.function, 4

mipp, 5
mipp.preproc, 4