cwt

Continuous Wavelet Transform (CWT)

Description

CWT(Continuous Wavelet Transform) with Mexican Hat wavelet (by default) to match the peaks in Mass Spectrometry spectrum

Usage

cwt(ms, scales = 1, wavelet = "mexh")
Arguments

- **ms**: Mass Spectrometry spectrum (a vector of MS intensities)
- **scales**: a vector represents the scales at which to perform CWT.
- **wavelet**: The wavelet base, Mexican Hat by default. User can provide wavelet PSI(x) as a form of two row matrix. The first row is the x value, and the second row is PSI(x) corresponding to x.

Value

The return is the 2-D CWT coefficient matrix, with column names as the scale. Each column is the CWT coefficients at that scale.

Author(s)

Pan Du, Simon Lin

Examples

```r
data(exampleMS)
scales <- seq(1, 64, 3)
wCoefs <- cwt(exampleMS[5000:11000], scales=scales, wavelet='mexh')

## Plot the 2-D CWT coefficients as image (It may take a while!)
xTickInterval <- 1000
image(5000:11000, scales, wCoefs, col=terrain.colors(256), axes=FALSE, xlab='m/z index', ylab='CWT coefficient scale', main='CWT coefficients')
axis(1, at=seq(5000, 11000, by=xTickInterval))
axis(2, at=c(1, seq(10, 64, by=10)))
box()
```

Description

An example mass spectrum from CAMDA 2006. All-in-1 Protein Standard II (Ciphergen Cat. # C100-0007) were measured on Ciphergen NP20 chips. There are 7 polypeptides in the sample with m/z values of 7034, 12230, 16951, 29023, 46671, 66433, 147300.

Usage

```r
data(exampleMS)
```

Format

A numeric vector represents the mass spectrum with equal sample intervals.

Source

extendLength

Extend the length of a signal or matrix

Description

Extend the length of a signal or matrix by row

Usage

extendLength(x, addLength = NULL, method = c("reflection", "open", "circular"),
direction = c("right", "left", "both"))

Arguments

- **x**: a vector or matrix with column with each column as a signal
- **addLength**: the length to be extended
- **method**: three methods available, c("reflection", "open", "circular"). By default, it is "reflection".
- **direction**: three options available: c("right", "left", "both")

Value

return the extended vector or matrix.

Author(s)

Pan Du

See Also

extendNBase

Examples

```r
# a = matrix(rnorm(9), 3)
# extendLength(a, 3, direction='right') ## not exposed function
```

extendNBase

Extend the row number of a matrix as the exponential of base N

Description

Extend the data as the exponential of base N by increasing row number.

Usage

extendNBase(x, nLevel=1, base=2, ...)

Arguments

x data matrix
nLevel the level of DWT decomposition. Basically, it is equivalent to changing the 'base' as base\textasciicircum{nLevel}
base the base, 2 by default
... other parameters of used by extendLength

Details

The method 'open' is padding the the matrix with the last row.

Value

Return a extended matrix

Author(s)

Pan Du

See Also

extendLength

Examples

a = matrix(rnorm(9), 3)
extendNBase(a) ## not exposed function

getLocalMaximumCWT Identify the local maximum of each column in 2-D CWT coefficients matrix

Description

Identify the local maximum of each column in 2-D CWT coefficients matrix by using a slide window. The size of slide window linearly changes from the coarse scale (bigger window size) to detail scale. The scale of CWT increases with the column index.

Usage

getLocalMaximumCWT(wCoefs, minWinSize= 5, amp.Th = 0)

Arguments

wCoefs 2-D CWT coefficients, each column corresponding to CWT coefficient at one scale. The column name is the scale.
minWinSize The minimum slide window size used.
amp.Th The minimum peak amplitude.
Value

return a matrix with same dimension as CWT coefficient matrix, wCoefs. The local maxima are marked as 1, others are 0.

Author(s)

Pan Du

See Also

localMaximum

Examples

data(exampleMS)
scales <- seq(1, 64, 3)
wCoefs <- cwt(exampleMS[5000:11000], scales=scales, wavelet='mexh')

localMax <- getLocalMaximumCWT(wCoefs)
plotLocalMax(localMax)

description

Estimate the length of the ridge line, which is composed of local maxima at adjacent CWT scales. The ridge line is cut off at the end point, whose amplitude divided by the maximum ridge amplitude is larger than the cutoff amplitude ratio threshold (0.5 by default).

Usage

genericRidgeLength(ridgeList, Th = 0.5)

Arguments

ridgeList a list of identified ridges
Th the cutoff amplitude ratio (the amplitude divided by the maximum amplitude of the ridge) threshold of the ridge line end.

Value

a vector of estimated ridge length

Author(s)

Pan Du
getRidge

Identify ridges based on the local maximum matrix

Description

Identify ridges by connecting the local maximum of 2-D CWT coefficients from the coarse scale to detail scale. The local maximum matrix is returned from `getLocalMaximumCWT`.

Usage

```
getRidge(localMax, iInit = ncol(localMax), step = -1, iFinal = 1, minWinSize= 5, gapTh = 3, skip = NULL)
```

Arguments

- `localMax`: The local maximum matrix is returned from `getLocalMaximumCWT` with 1 represents maximum, others are 0.
- `iInit`: The start column to search ridge. By default, it starts from the coarsest scale level.
- `step`: Search step. -1 by default, which means searching from coarse scale to detail scale column by column.
- `iFinal`: The final column index of search ridge.
- `minWinSize`: The minimum slide window size used.
- `gapTh`: The gap allowed during searching for ridge. 3 by default.
- `skip`: The column to be skipped during search.

Value

Return a list of ridge. As some ridges may end at the scale larger than 1, in order to keep the uniqueness of the ridge names, we combined the smallest scale of the ridge and m/z index of the peak at that scale together to name the ridges. For example the ridge name "1_653" means the peak ridge ends at the CWT scale 1 with m/z index 653 at scale 1.

Author(s)

Pan Du, Simon Lin

References

See Also

`getLocalMaximumCWT`, `identifyMajorPeaks`
Examples

data(exampleMS)
scales <- seq(1, 64, 3)
wCoefs <- cwt(exampleMS[5000:11000], scales=scales, wavelet='mexh')

localMax <- getLocalMaximumCWT(wCoefs)
ridgeList <- getRidge(localMax)
plotRidgeList(ridgeList)

getRidgeValue

Get the CWT coefficient values corresponding to the peak ridge

Description

Get the CWT coefficient values corresponding to the peak ridge

Usage

genericRidgeValue(ridgeList, wCoefs, skip = 0)

Arguments

ridgeList a list of ridge lines
wCoefs 2-D CWT coefficients
skip the CWT scale level to be skipped, by default the 0 scale level (raw spectrum) is skipped.

Value

A list of ridge values corresponding to the input ridgeList.

Author(s)

Pan Du

identifyMajorPeaks

Identify peaks based on the ridges in 2-D CWT coefficient matrix

Description

Identify the peaks based on the ridge list (returned by getRidge) in 2-D CWT coefficient matrix and estimated Signal to Noise Ratio (SNR)

Usage

identifyMajorPeaks(ms, ridgeList, wCoefs, scales = as.numeric(colnames(wCoefs)),

skip = 0)
Arguments

- **ms**: the mass spectrometry spectrum
- **ridgeList**: returned by `getRidge`
- **wCoefs**: 2-D CWT coefficients
- **scales**: scales of CWT, by default it is the colnames of `wCoefs`
- **SNR.Th**: threshold of SNR
- **peakScaleRange**: the CWT scale range of the peak.
- **ridgeLength**: the maximum ridge scale of the major peaks.
- **nearbyPeak**: determine whether to include the small peaks close to large major peaks
- **nearbyWinSize**: the window size to determine the nearby peaks. Only effective when `nearbyPeak` is true.
- **winSize.noise**: the local window size to estimate the noise level.
- **SNR.method**: method to estimate noise level. Currently, only 95 percentage quantile is supported.
- **minNoiseLevel**: the minimum noise level used in calculating SNR, i.e., if the estimated noise level is less than "minNoiseLevel", it will use "minNoiseLevel" instead. If the noise level is less than 0.5, it will be treated as the ratio to the maximum amplitude of the spectrum.

Details

The determination of the peaks is based on three rules: Rule 1: The maximum ridge scale of the peak should larger than a certain threshold Rule 2: Based on the scale of the peak (corresponding to the maximum value of the peak ridge) should be within certain range Rule 3: Based on the peak SNR

Value

Return a list with following elements:

- **peakIndex**: the m/z indexes of the identified peaks
- **peakCenterIndex**: the m/z indexes of peak centers, which correspond to the maximum on the ridge. `peakCenterIndex` includes all the peaks, not just the identified major peaks.
- **peakCenterValue**: the CWT coefficients (the maximum on the ridge) corresponding to `peakCenterIndex`
- **peakSNR**: the SNR of the peak, which is the ratio of `peakCenterValue` and noise level
- **peakScale**: the estimated scale of the peak, which corresponds to `peakCenterIndex`
- **potentialPeakIndex**: the m/z indexes of all potential peaks, which satisfy all requirements of a peak without considering its SNR. Useful, if you want to change to a lower SNR threshold later.
- **allPeakIndex**: the m/z indexes of all the peaks, whose order is the same as `peakCenterIndex`, `peakCenterValue`, `peakSNR` and `peakScale`.

All of these return elements have peak names, which are the same as the corresponding peak ridges. See `getRidge` for details.
localMaximum

Author(s)
Pan Du, Simon Lin

References

See Also
peakDetectionCWT, tuneInPeakInfo

Examples

data(exampleMS)
scales <- seq(1, 64, 3)
wCoefs <- cwt(exampleMS, scales=scales, wavelet='mexh')

localMax <- getLocalMaximumCWT(wCoefs)
ridgeList <- getRidge(localMax)

SNR.Th <- 3
majorPeakInfo <- identifyMajorPeaks(exampleMS, ridgeList, wCoefs, SNR.Th=SNR.Th)
Plot the identified peaks
peakIndex <- majorPeakInfo$peakIndex
plotPeak(exampleMS, peakIndex, main=paste('Identified peaks with SNR >', SNR.Th))

localMaximum
Identify local maximum within a slide window.

Description
Find local maximum by transform the vector as matrix, then get the the maximum of each column. This operation is performed twice with vector shifted half of the winSize.

Usage
localMaximum(x, winSize = 5)

Arguments
x a vector represents a signal profile
winSize the slide window size, 5 by default.

Details
Instead of find the local maximum by a slide window, which slide all possible positions, we find local maximum by transform the vector as matrix, then get the the maximum of each column. This operation is performed twice with vector shifted half of the winSize. The main purpose of this is to increase the efficiency of the algorithm.
Value

Return a vector with the same length of the input x. The position of local maximum is set as 1, 0 else where.

Author(s)

Pan Du

See Also

gtLocalMaximumCWT

Examples

```r
x <- rnorm(200)
lmax <- localMaximum(x, 5)
maxInd <- which(lmax > 0)
plot(x, type='l')
points(maxInd, x[maxInd], col='red')
```

MassSpecWavelet-package

Peak detection of mass spectrum by Wavelet transform based methods

Description

Process Mass Spectrum (MS) by Wavelet Transforms-based algorithms

Details

<table>
<thead>
<tr>
<th>Package</th>
<th>MassSpecWavelet</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>Package</td>
</tr>
<tr>
<td>Version</td>
<td>1.0.4</td>
</tr>
<tr>
<td>Date</td>
<td>2007-04-05</td>
</tr>
<tr>
<td>License</td>
<td>GPL 2 or newer</td>
</tr>
</tbody>
</table>

MassSpecWavelet R package is aimed to process Mass Spectrometry (MS) data mainly based on Wavelet Transforms. The current version only supports the peak detection based on Continuous Wavelet Transform (CWT). Future versions will include more functions covering entire MS data processes.

Author(s)

Pan Du, Simon Lin

Maintainer: Pan Du <dupan@northwestern.edu>

References

Examples

```r
data(exampleMS)
SNR.Th <- 3
peakInfo <- peakDetectionCWT(exampleMS, SNR.Th=SNR.Th)
majorPeakInfo = peakInfo$majorPeakInfo
peakIndex <- majorPeakInfo$peakIndex
plotPeak(exampleMS, peakIndex, main=paste('Identified peaks with SNR >', SNR.Th))
```

mzInd2vRange

Match m/z index to m/z value with a certain error range

Description

Match m/z index to m/z value with a certain error range

Usage

```r
mzInd2vRange(mzInd, error = 0.003)
```

Arguments

- `mzInd`: a vector of m/z index
- `error`: error range

Value

return a vector of sorted m/z values

Author(s)

Pan Du

See Also

- `mzV2indRange`

mzV2indRange

Match m/z value to m/z index with a certain error range

Description

Match m/z value to m/z index with a certain error range

Usage

```r
mzV2indRange(mzV, error = 0.003)
```

Arguments

- `mzV`: a vector of m/z value
- `error`: error range
peakDetectionCWT

Value

return a vector of sorted m/z indexes

Author(s)

Pan Du

See Also

mzInd2vRange

Description

This function is a wrapper of cwt, getLocalMaximumCWT, getRidge, identifyMajorPeaks

Usage

peakDetectionCWT(ms, scales = c(1, seq(2, 30, 2), seq(32, 64, 4)), SNR.Th = 3, nearbyPeak = TRUE, peakScaleRange = 5, amp.Th = 0.01, minNoiseLevel = amp.Th/SNR.Th, ridgeLength = 24, peakThr=NULL, tuneIn = FALSE, ...)

Arguments

ms the mass spectrometry spectrum
scales scales of CWT
SNR.Th SNR (Signal to Noise Ratio) threshold
nearbyPeak Determine whether to include the nearby small peaks of major peaks. TRUE by default
peakScaleRange the scale range of the peak. larger than 5 by default.
amp.Th the minimum required relative amplitude of the peak (ratio to the maximum of CWT coefficients)
minNoiseLevel the minimum noise level used in computing the SNR
ridgeLength the minimum highest scale of the peak in 2-D CWT coefficient matrix
peakThr Minimal absolute intensity (above the baseline) of peaks to be picked. If this value is provided, then the smoothing function sav.gol will be called to estimate the local intensity.(added based on the suggestion and code of Steffen Neumann)
tuneIn determine whether to tune in the parameter estimation of the detected peaks
... other parameters used by identifyMajorPeaks and smoothing function sav.gol
Value

- `majorPeakInfo`: return of `identifyMajorPeaks`
- `ridgeList`: return of `getRidge`
- `localMax`: return of `getLocalMaximumCWT`
- `wCoefs`: 2-D CWT coefficient matrix, see `cwt` for details.

Author(s)

Pan Du, Simon Lin

References

See Also

cwt, `getLocalMaximumCWT`, `getRidge`, `identifyMajorPeaks`

Examples

data(exampleMS)
SNR.Th <- 3
peakInfo <- peakDetectionCWT(exampleMS, SNR.Th=SNR.Th)
majorPeakInfo = peakInfo$majorPeakInfo
peakIndex <- majorPeakInfo$peakIndex
plotPeak(exampleMS, peakIndex, main=paste('Identified peaks with SNR >', SNR.Th))

In some cases, users may want to add peak filtering based on the absolute peak amplitude
peakInfo <- peakDetectionCWT(exampleMS, SNR.Th=SNR.Th, peakThr=500)
majorPeakInfo = peakInfo$majorPeakInfo
peakIndex <- majorPeakInfo$peakIndex
plotPeak(exampleMS, peakIndex, main=paste('Identified peaks with SNR >', SNR.Th))

plotLocalMax

Plot the local maximum matrix

Description

Plot the local maximum matrix of 2-D CWT coefficients returned by `getLocalMaximumCWT`

Usage

plotLocalMax(localMax, wCoefs = NULL, range = c(1, nrow(localMax)), colorMap = "?"
plotPeak

Plot the identified peaks over the spectrum. The identified peaks are returned by `peakDetectionCWT` or `identifyMajorPeaks`.

Usage

```r
plotPeak(ms, peakIndex = NULL, mz = 1:length(ms), range = c(min(mz), max(mz)), method = c("p", "l"), main = NULL, log = "", 
```

Arguments

- `ms`: the MS spectrum
- `peakIndex`: `m/z` indexes of the identified peaks
- `mz`: `m/z` value correspond to `m/z` index
- `range`: the plot range of `m/z` value
- `method`: plot method of the identified peaks. method ’p’ plot circles on the peaks; method ’l’ add vertical lines over the peaks.
- `main`: parameter of `plot`
- `log`: parameter of `plot`
- `...`: other parameters of `points`

Description

Plot the identified peaks over the spectrum. The identified peaks are returned by `peakDetectionCWT` or `identifyMajorPeaks`.

Examples

```r
data(exampleMS)
scales <- seq(1, 64, 3)
wCoefs <- cwt(exampleMS[5000:11000], scales=scales, wavelet='mexh')

localMax <- getLocalMaximumCWT(wCoefs)
plotLocalMax(localMax)
```

Author(s)

Pan Du

See Also

- `getLocalMaximumCWT`
plotRidgeList

Author(s)
Pan Du

See Also
peakDetectionCWT, identifyMajorPeaks

Examples

data(exampleMS)
SNR.Th <- 3
peakInfo <- peakDetectionCWT(exampleMS, SNR.Th=SNR.Th)
majorPeakInfo = peakInfo$majorPeakInfo
peakIndex <- majorPeakInfo$peakIndex
plotPeak(exampleMS, peakIndex, main=paste('Identified peaks with SNR >', SNR.Th))

plotRidgeList Plot the ridge list

Description
Plot the ridge list returned by getRidge

Usage
plotRidgeList(ridgeList, wCoefs = NULL, range = NULL, colorMap = "RYB", main = NULL, pch = ".", cex = 3, ...)

Arguments
ridgeList returned by getRidge
wCoefs 2-D CWT coefficients
range plot range of m/z index
colorMap colorMap to plot the points of local maximum
main parameter of plot
pch parameter of plot
cex parameter of plot
... other parameters of points

Author(s)
Pan Du

See Also
getRidge
Examples

```r
data(exampleMS)
scales <- seq(1, 64, 3)
wCoefs <- cwt(exampleMS[5000:11000], scales=scales, wavelet='mexh')

localMax <- getLocalMaximumCWT(wCoefs)
ridgeList <- getRidge(localMax)
plotRidgeList(ridgeList)
```

sav.gol

Estimate the baseline by using Savitzky-Golay Algorithm

Description

Estimate the baseline by using Savitzky-Golay Algorithm

Usage

```r
sav.gol(T, fl, forder = 4, dorder = 0)
```

Arguments

- `T` vector of signals to be filtered
- `fl` filter length (for instance fl = 51..151)
- `forder` filter order (2 = quadratic filter, 4= quartic)
- `dorder` derivative order (0 = smoothing, 1 = first derivative, etc.)

Value

The return is a smoothed vector (baseline).

Note

This function was added by Steffen Neumann. We appreciated his help to make the package better.

Author(s)

Steffen Neumann <sneumann@ipb-halle.de>
smoothDWT

smooth (denoise) the spectrum by DWT (Discrete Wavelet Transform)

Description

Smooth (denoise) the spectrum by DWT (Discrete Wavelet Transform)

Usage

smoothDWT(ms, nLevel = 6, wf = "la8", localNoiseTh = seq(1, 0, by = -0.2), localWinSize = 500, globalNoiseTh = 0.75, smoothMethod = c("soft", "hard"), method = c('dwt', 'modwt'))

Arguments

ms a vector representing the mass spectrum
nLevel the level of DWT decomposition
wf the name of wavelet for DWT
localNoiseTh local noise level threshold
localWinSize local window size for estimate local noise threshold
globalNoiseTh global noise level threshold
smoothMethod the method used for denoising. 'hard' means keeping the dwt coefficients higher than the threshold unchanged; "soft" means the dwt coefficients higher than the threshold were subtracted by the threshold.
method 'dwt' or 'modwt' used for decomposition

Value

return the smoothed mass spectrum with the 'detail' component of DWT as an attribute 'detail'.

Author(s)

Pan Du

tuneInPeakInfo

Tune in the peak information: peak position and peak scale

Description

Based on the identified peak position, more precise estimation of the peak information, i.e., peak position and peak scale, can be got by this function. The basic idea is to cut the segment of spectrum near the identified peaks, and then do similar procedures as peakDetectionCWT, but with more detailed scales around the estimated peak scale.

Usage

tuneInPeakInfo(ms, majorPeakInfo = NULL, peakIndex = NULL, peakScale = NULL, max
Arguments

ms
the mass spectrometry spectrum

majorPeakInfo
return of identifyMajorPeaks

peakIndex
the m/z index of the identified peaks

peakScale
the scales of the identified peaks

maxScale
the maximum scale allowed for the peak

...
other parameters of used by getLocalMaximumCWT, getRidge, identifyMajorPeaks

Details

The majorPeakInfo or peakIndex and peakScale must be provided.

Value

peakCenterIndex
the updated peak center m/z index

peakScale
the updated peak scale

peakValue
the corresponding peak value

Author(s)

Pan Du

References

See Also

peakDetectionCWT

Examples

data(exampleMS)
SNR.Th <- 3
peakInfo <- peakDetectionCWT(exampleMS, SNR.Th=SNR.Th)
majorPeakInfo <- peakInfo$majorPeakInfo
betterPeakInfo <- tuneInPeakInfo(exampleMS, majorPeakInfo)
plot(500:length(exampleMS), exampleMS[500:length(exampleMS)], type='l', log='x')
abline(v=betterPeakInfo$peakCenterIndex, col='red')
Index

*Topic datasets
 exampleMS, 2

*Topic hplot
 plotLocalMax, 13
 plotPeak, 14
 plotRidgeList, 15

*Topic methods
 cwt, 1
 extendLength, 2
 extendNBase, 3
 getLocalMaximumCWT, 4
 getRidge, 5
 getRidgeLength, 5
 getRidgeValue, 6
 identifyMajorPeaks, 7
 localMaximum, 9
 mzInd2vRange, 10
 mzV2indRange, 11
 peakDetectionCWT, 8, 12, 14, 17, 18
 plot, 13–15
 plotLocalMax, 13
 plotPeak, 14
 plotRidgeList, 15
 points, 13–15
 sav.gol, 12, 16
 smoothDWT, 16
 tuneInPeakInfo, 8, 17

*Topic package
 MassSpecWavelet-package, 10

 cwt, 1, 12, 13
 exampleMS, 2
 extendLength, 2, 3
 extendNBase, 3, 3

 getLocalMaximumCWT, 4, 5, 6, 9, 12, 13, 17
 getRidge, 5, 7, 8, 12, 13, 15, 17
 getRidgeLength, 5
 getRidgeValue, 6

 identifyMajorPeaks, 6, 7, 12–14, 17
 localMaximum, 4, 9

MassSpecWavelet
 (MassSpecWavelet-package), 10
 MassSpecWavelet-package, 10