R topics documented:

ClusterGeneList ... 1
ClusterList .. 2
DistMatrices ... 3
GetClusters ... 4
GolubTrain ... 5
MantelCorrs ... 7
PermutatonTest .. 8

Index 10

ClusterGeneList Generate Genes from a Cluster List

Description

’ClusterGeneList’ produces a list of both significant and nonsignificant genes from each respective cluster type.

Usage

ClusterGeneList(clus, clustlist.sig, x.data)

Arguments

clus 'clusters’ object returned by ’GetClusters’
clustlist.sig 'SignificantClusters’ object returned by ’ClusterList’
x.data original (p x n) numeric data matrix (e.g., gene-expression data)

Value

A list with components:

SignificantClusterGenes significant cluster genes returned from ’ClusterList’
NonSignificantClusterGenes nonsignificant cluster genes returned from ’ClusterList’
Note

argument 'x.data' should have an ID gene variable, 'probes', attached as a 'dimnames' attribute

Author(s)

Brian Steinmeyer

See Also

'GetClusters' 'ClusterList'

Examples

simulate a p x n microarray expression dataset, where p = genes and n = samples
data.sep <- rbind(matrix(rnorm(1000), ncol=50), matrix(rnorm(1000, mean=5), ncol=50))
noise <- matrix(runif(40000), ncol=1000)
data <- t(cbind(data.sep, noise))
data <- data[1:200,]
data has p = 1,050 genes and n = 40 samples

clusters.result <- GetClusters(data, 100, 100)
dist.matrices <- DistMatrices(data, clusters.result$clusters)
mantel.corr <- MantelCorrs(dist.matrices$Dfull, dist.matrices$Dsubsets)
permutation.result <- PermutationTest(dist.matrices$Dfull, dist.matrices$Dsubsets, 100, 4)

generate both significant and non-significant gene clusters
cluster.list <- ClusterList(permutation.result, clusters.result$cluster.sizes, mantel.corr)

significant and non-significant cluster genes (expression values)
cluster.genes <- ClusterGeneList(clusters.result$clusters, cluster.list$SignificantClusters, data)

ClusterList

Generate a Cluster List

Description

'ClusterList' generates a list of both significant and nonsignificant clusters, with cluster number, Mantel cluster correlation and size

Usage

ClusterList(p.val, clus.size, mantel.cors)

Arguments

p.val permutation p-value returned from 'PermutationTest'
clus.size vector of k cluster sizes returned from 'GetCluster'
mantel.cors original, unpermuted k Mantel correlations returned from 'MantelCorrs'
DistMatrices

Compute Dissimilarity Matrices

Description

'DistMatrices' uses 'dist' to compute dissimilarity matrices for 'data' and each cluster k from 'GetClusters'

Usage

DistMatrices(x.data, cluster.assignment)

Arguments

x.data original 'data' matrix
cluster.assignment cluster assignment vector, "clusters", returned by 'GetClusters'

Value

A list with components:

SignificantClusters clusters with significant Mantel correlation, equal to or larger than the permutation p-value returned by 'PermutationTest'

NonSignificantClusters clusters with nonsignificant Mantel correlation, smaller than the permutation p-value returned by 'PermutationTest'

Author(s)

Brian Steinmeyer

See Also

'PermutationTest'

Examples

simulate a p x n microarray expression dataset, where p = genes and n = samples
data.sep <- rbind(matrix(rnorm(1000), ncol=50), matrix(rnorm(1000, mean=5), ncol=50))
noise <- matrix(runif(40000), ncol=1000)
data <- t(cbind(data.sep, noise))
data <- data[1:200,]
data has p = 1,050 genes and n = 40 samples

clusters.result <- GetClusters(data, 100, 100)
dist.matrices <- DistMatrices(data, clusters.result$clusters)
mantel.corrs <- MantelCorrs(dist.matrices$Dfull, dist.matrices$Dsubsets)
permutation.result <- PermutationTest(dist.matrices$Dfull, dist.matrices$Dsubsets, 100, 4)

generate both significant and non-significant gene clusters
cluster.list <- ClusterList(permutation.result, clusters.result$cluster.sizes, mantel.corrs)
Value
returns a list with two components:

Dsubsets dissimilarity matrices for each cluster k
Dfull dissimilarity matrix for the original 'data'

Note
'GetClusters' should be executed prior to 'DistMatrices'

Author(s)
Brian Steinmeyer

See Also
'GetClusters'

Examples

simulate a p x n microarray expression dataset, where p = genes and n = samples
data.sep <- rbind(matrix(rnorm(1000), ncol=50), matrix(rnorm(1000, mean=5), ncol=50))
oise <- matrix(runif(40000), ncol=1000)
data <- t(cbind(data.sep, noise))
data <- data[1:200,]
data has p = 1,050 genes and n = 40 samples

clusters.result <- GetClusters(data, 100, 100)
dissimilarity.matrices <- DistMatrices(data, clusters.result$clusters)
Value

'GetClusters' returns a list with the following components:

- clusters: cluster assignment from 'kmeans'
- cluster.sizes: size of each cluster k from 'kmeans'

Note

The input data matrix, x.data, must be numeric (e.g., gene-expression values). We recommend using 'num.k' = one-half the number of genes and 'num.iters' greater than 50.

Author(s)

Brian Steinmeyer

See Also

'kmeans'

Examples

simulate a p x n microarray expression dataset, where p = genes and n = samples
data.sep <- rbind(matrix(rnorm(1000), ncol=50), matrix(rnorm(1000, mean=5), ncol=50))
noise <- matrix(runif(40000), ncol=1000)
data <- t(cbind(data.sep, noise))
data <- data[1:200,]
data has p = 1,050 genes and n = 40 samples

clusters.result <- GetClusters(data, 100, 100)

Description

Samples were taken with Affymetrix Hgu6800 chips and expression levels measured on 7,129 genes (probes). The samples consist of 27 acute lymphoblastic leukemia (ALL) and 11 acute myeloid leukemia (AML) patients. The data values are raw (e.g., no standardization or gene filtering applied).

Usage

data(GolubTrain)
Format

A data frame of 7129 observations (genes) with the following 38 variables (samples):

X1 ALL
X2 ALL
X3 ALL
X4 ALL
X5 ALL
X6 ALL
X7 ALL
X8 ALL
X9 ALL
X10 ALL
X11 ALL
X12 ALL
X13 ALL
X14 ALL
X15 ALL
X16 ALL
X17 ALL
X18 ALL
X19 ALL
X20 ALL
X21 ALL
X22 ALL
X23 ALL
X24 ALL
X25 ALL
X26 ALL
X27 ALL
X28 AML
X29 AML
X30 AML
X31 AML
X32 AML
X33 AML
X34 AML
X35 AML
X36 AML
X37 AML
X38 AML
MantelCorrs

Source

http://www.broad.mit.edu/cgi-bin/cancer/datasets.cgi

References

Examples

data(GolubTrain)

MantelCorrs Compute Mantel Correlation(s)

Description

'MantelCorrs' computes the Mantel correlation between two dissimilarity matrices

Usage

MantelCorrs(Dfull, Dsubsets)

Arguments

Dfull distance matrix returned by 'DistMatrices' using original 'data'
Dsubsets list of distance matrices from each k cluster or partition returned by 'DistMatrices'

Value

A list with k components

where component i

Mantel correlation for cluster i, i = 1,...,k

Warning

The function is meant to be executed AFTER 'GetClusters' and 'DistMatrices' (see example)

Note

the value 'k' corresponds to the parameter 'num.k' in 'GetClusters'

Author(s)

Brian Steinmeyer

References

PermutationTest

Permutation Test for Dissimilarity Matrices

```r
# simulate a p x n microarray expression dataset, where p = genes and n = samples
data.sep <- rbind(matrix(rnorm(1000), ncol=50), matrix(rnorm(1000, mean=5), ncol=50))
noise <- matrix(runif(40000), ncol=1000)
data <- t(cbind(data.sep, noise))
data <- data[1:200, ]
# data has p = 1,050 genes and n = 40 samples

clusters.result <- GetClusters(data, 100, 100)
dist.matrices <- DistMatrices(data, clusters.result$clusters)
mantel.corrs <- MantelCorrs(dist.matrices$Dfull, dist.matrices$Dsubsets)
```

Description

'PermutationTest' computes and returns an empirical p-value from a null distribution generated by permuting 'Dfull' a total of 'num.per' times.

Usage

```r
PermutationTest(Dfull, Dsubsets, num.per, num.chips, alpha)
```

Arguments

- **Dfull**: dissimilarity matrix from the original (p x n) microarray expression data
- **Dsubsets**: dissimilarity matrices from each k disjoint clusters returned by 'GetClusters'
- **num.per**: number of permutations
- **num.chips**: number of samples, 'n' from the original (p x n) data matrix
- **alpha**: desired level of significance

Details

For each permutation, k Mantel correlations are computed by correlating the permuted 'Dfull' with each dissimilarity matrix 'Dsubsets' from the 'k' clusters returned by 'GetClusters'. The absolute value of the maximum Mantel cluster correlation is retained at each permutation. These 'num.per' maximum correlations are then used to generate a null distribution for distance metric independence, with the p-value taken from the (1 - 'alpha') percentile of this permutation distribution.

Value

returns the permuted p-value for the 'alpha' selected level of significance

Warning

(p x n) data matrix should be numeric (e.g. gene-expression levels)
Note

The function is meant to be executed AFTER `GetClusters`, `DistMatrices` and `MantelCorr` (see example)

Author(s)

Brian Steinmeyer

See Also

`GetClusters` `DistMatrices` `MantelCorrs`

Examples

```r
# simulate a p x n microarray expression dataset, where p = genes and n = samples
data.sep <- rbind(matrix(rnorm(1000), ncol=50), matrix(rnorm(1000, mean=5), ncol=50))
noise <- matrix(runif(40000), ncol=1000)
data <- t(cbind(data.sep, noise))
data <- data[1:200, ]
# data has p = 1,050 genes and n = 40 samples

clusters.result <- GetClusters(data, 100, 100)
dist.matrices <- DistMatrices(data, clusters.result$clusters)
mantel.corr <- MantelCorrs(dist.matrices$Dfull, dist.matrices$Dsubsets)
permutation.result <- PermutationTest(dist.matrices$Dfull, dist.matrices$Dsubsets, 100, 4)
```
Index

*Topic cluster
 ClusterGeneList, 1
 ClusterList, 2
 DistMatrices, 3
 GetClusters, 4
 MantelCorrs, 7
 PermutationTest, 8
*Topic datasets
 GolubTrain, 5

ClusterGeneList, 1
ClusterList, 2
DistMatrices, 3
GetClusters, 4
GolubTrain, 5
MantelCorrs, 7
PermutationTest (PermutationTest), 8
PermutationTest, 8