R topics documented:

genediff ... 1
GetLMObj ... 3
glog .. 3
jggrad2 .. 4
jglog .. 5
LMGene .. 6
lnormeS .. 8
lnorm ... 9
mlm2lm ... 10
msa ... 11
msecalcmult ... 12
msecalc ... 13
neweS ... 14
norm ... 15
psmeans .. 16
pvdjust ... 17
rowaov .. 18
rowlist ... 19
sample.eS ... 20
sample.ind .. 21
sample.mat ... 21
tranest2 .. 22
tranestmult ... 23
tranest .. 25
transeS .. 26
vlist ... 27

Index 28

genediff Raw p-value calculation function
Description

Computes two vectors of p-values per gene or probe using gene-by-gene ANOVA with individual
gene MSE using both the gene-specific MSE and the posterior mean MSE for each term in the
ANOVA.
Assumes a fixed effects model and the correct denominator for all comparisons is the MSE.

Usage

genediff(eS, model=NULL)

Arguments

eS Array data. must be an ExpressionSet object and the log-transformation
and the normalization of exprs(eS) are recommended.
model Model used for comparison; see details and LMGene.

Details

The argument eS must be an ExpressionSet object from the Biobase package. If you have a
data in a matrix and information about the considered factors, then you can use neweS to convert
the data into an ExpressionSet object. Please see neweS in more detail.

The model argument is an optional character string, constructed like the right-hand side of a for-
mula for lm. It specifies which of the variables in the ExpressionSet will be used in the model
and whether interaction terms will be included. If model=NULL, it uses all variables from the
ExpressionSet without interactions. Be careful of using interaction terms with factors; this
often leads to overfitting, which will yield an error.

Value

pvlist a list containing two sets of p-values obtained by gene specific MSE and the
posterior MSE methods.

Author(s)

David Rocke and Geun-Cheol Lee

References

David M. Rocke (2004), Design and analysis of experiments with high throughput biological assay
data, Seminars in Cell & Developmental Biology, 15, 703-713.
http://www.idav.ucdavis.edu/~dmrocke/

See Also

LMGene, rowaov

Examples

#library
library(Biobase)
library(LMGene)

#data
GetLMObj

Function to get a simple lm object for a regression on the relevant model.

Description

Internal to routines. Primarily used to get the X matrix corresponding to the model given (or the default model for the eS). Typically this is used to find residuals efficiently.

Usage

GetLMObj(eS, model=NULL)

Arguments

eS
 An unprocessed ExpressionSet object.

model
 Model used in the regression. Uses only variables from pData(eS).

Value

Returns an lm object than corresponds to regressing one probe from the eS on the model specified (or the default model). See lm.

Author(s)

John Tillinghast

Examples

data(sample.eS)
lmod <- GetLMObj (sample.eS)
X <- lmod$x
glog

Generalized log transformation function

Description
This function transforms the input values with the generalized log function.

Usage
glog(y, lambda)

Arguments
y A matrix data
lambda Parameter that should be determined

Details
Usually, matrix y is a modified matrix from an original matrix, after deducting parameter alpha. Lambda is one of the parameters that should be determined when using the glog function, and these parameters are decided by using the function tranest.

Value
yt A matrix containing a transformed values by glog

Author(s)
David Rocke and Geun-Cheol Lee

References
http://www.idav.ucdavis.edu/~dmrocke/

See Also
tranest

Examples
#library
library(Biobase)
library(LMGene)

#data
data(sample.mat)
sample.mat[1:5,1:4]

GloggedSmpd<-glog(sample.mat-50,500)
GloggedSmpd[1:5,1:4]
jggrad2

Generating Jacobian-corrected data

Description

This function returns a Jacobian-corrected data with the given parameters lambda and alpha.

Usage

```r
jggrad2(y, lambda, alpha)
```

Arguments

- `y`: A matrix data containing array information
- `lambda`: A parameter for glog transformation
- `alpha`: A parameter for glog transformation

Details

The input arguments here would be rarely dealt by users directly.

Value

- `data_matrix`: A matrix containing Jacobian-corrected data, gradient data by lambda and gradient data by alpha

Author(s)

David Rocke and Geun-Cheol Lee

References

See Also

`msecalc`

Examples

```r
#library
library(Biobase)
library(LMGene)

#data
data(sample.mat)
dim(sample.mat)

JCSmpd<-jggrad2(sample.mat, 500, 50)
dim(JCSmpd)
```
jglog

Description
 Another Glog function

Usage
 jglog(y, lambda)

Arguments
 y A matrix data
 lambda Parameter that should be determined

Details
 Usually, matrix y is a modified matrix from an original matrix, after deducting parameter alpha. Lambda is one of the parameters that should be determined when using the glog function, and these parameters are decided by using the function tranest.

Value
 yl A matrix containing a transformed values by glog

Author(s)
 David Rocke and Geun-Cheol Lee

References
 http://www.idav.ucdavis.edu/~dmrocke/

See Also
 tranest

Examples
 #library
 library(Biobase)
 library(LMGene)

 #data
 data(sample.mat)
 sample.mat[1:5,1:4]

 GloggedSmpd<-glog(sample.mat-50,500)
 GloggedSmpd[1:5,1:4]
LMGene

LMGene main function

Description

LMGene calls function `genediff` to calculate the raw p-values of all genes and then calls function `pvadjust` to calculate the adjusted p-values of all genes. Finally, calls function `rowlist` to list the names of genes that are selected as significant under the specified significance level.

Usage

```r
LMGene(eS, model=NULL, level = 0.05)
```

Arguments

eS: Array data. must be an `ExpressionSet` object and the log-transformation and the normalization of `exprs(eS)` are recommended.

model: Specifies model to be used. Default is to use all variables from eS without interactions. See details.

level: Significance level

Details

The argument `eS` must be an `ExpressionSet` object from the Biobase package. If you have a data in a `matrix` and information about the considered factors, then you can use `neweS` to convert the data into an `ExpressionSet` object. Please see `neweS` in more detail.

The `level` argument indicates False Discovery Rate, e.g. level=0.05 means 5

The `model` argument is an optional character string, constructed like the right-hand side of a formula for lm. It specifies which of the variables in the ExpressionSet will be used in the model and whether interaction terms will be included. If `model=NULL`, it uses all variables from the ExpressionSet without interactions. Be careful of using interaction terms with factors; this often leads to overfitting, which will yield an error.

Value

`lmres` A list which contains significant gene names for each considered factor.

Author(s)

David Rocke and Geun-Cheol Lee

References

David M. Rocke (2004), Design and analysis of experiments with high throughput biological assay data, Seminars in Cell & Developmental Biology, 15, 703-713.

http://www.idav.ucdavis.edu/~dmrocke/

See Also

genediff, pvadjust, rowlist
lnormeS

Function to apply lowessnorm to a transformed expression set. Returns the normalized expression set.

Description

Basically the same as \texttt{lnorm}, but it applies to, and returns, expression sets instead of matrices.

Usage

\begin{verbatim}
lnormeS(eS, span=0.1)
\end{verbatim}

Arguments

- \texttt{eS} \hspace{1cm} A transformed expression set.
- \texttt{span} \hspace{1cm} A parameter for lowess.

Value

Returns an expression set with the same vlist as \texttt{eS}, but the matrix has been normalized by \texttt{lnorm}.

Author(s)

John Tillinghast

References

http://www.idav.ucdavis.edu/~dmrocke/

See Also

\texttt{lnorm}, \texttt{norm}

Examples

\begin{verbatim}
data(sample.eS)
transeS (sample.eS, 667, 65) -> trsample.eS
lnormeS (trsample.eS) -> normtrsample.eS
\end{verbatim}
Description
Lowess normalization function

Usage
lnorm(mat1, span = 0.1)

Arguments
mat1 A matrix data to be normalized
span A parameter for lowess

Details
mat1 must be a n by p matrix, where n is the number of genes and p is the number of expression levels for each gene.

Value
matnorm1 Normalized matrix

Author(s)
David Rocke and Geun-Cheol Lee

References
http://www.idav.ucdavis.edu/~dmrocke/

See Also
norm

Examples
#library
library(Biobase)
library(LMGene)

#data
data(sample.mat)
LoggedSmpd<-lnorm(log(sample.mat))
mlm2lm

Linear Model converting function

Description

This function rule out the specified `lm` class data out of the given `c("mlm", "lm")` class data.

Usage

```
mlm2lm(lmobj, i)
```

Arguments

- `lmobj`: An object of class `c("mlm", "lm")`.
- `i`: A specific number that indicates a `lm` in `lmobj`.

Details

In case of multiple response from `lm` function, this function can used.

Value

- `lmobj2`: Selected `lm` class data.

Author(s)

David Rocke and Geun-Cheol Lee

References

http://www.idav.ucdavis.edu/~dmrocke/

Examples

```r
#library
library(Biobase)
library(LMGene)

#data
data(sample.eS)
Smpd0 <- sample.eS
# model information
for(i in 1:length(varLabels(Smpd0))) {
  assign(paste('x', i, sep=''), as.factor(pData(Smpd0)[,i]))
}
fchar <- ''
for(i in 1:length(varLabels(Smpd0))) {
  fchar <- paste(fchar, paste('x', i, sep=''), ifelse(i<length(varLabels(Smpd0)), '+', ''), sep='')
}fchar2 <- paste("y ~",fchar)

# run regression and ANOVAs
```
y <- t(as.matrix(exprs(Smpd0)))
formobj <- as.formula(fchar2)
tmp <- lm(formobj)
class(tmp)

tmp2 <- mlm2lm(tmp, i)
class(tmp2)

msa

Relative mean square calculation function

Description
Calculate the relative mean square values.

Usage
msa(v)

Arguments
v
A vector containing mean square values of all the factors.

Value
rv
relative mean square values for all factors.

Author(s)
David Rocke and Geun-Cheol Lee

References
http://www.idav.ucdavis.edu/~dmrocke/

Examples
#library
library(Biobase)
library(LMGene)

#data
data(sample.eS)
Smpd0 <- sample.eS
model information
for(i in 1:length(varLabels(Smpd0))){
 assign(paste('x', i, sep=''), as.factor(pData(Smpd0)[,i]))
}

fchar <- ''
for(i in 1:length(varLabels(Smpd0))){
 fchar <- paste(fchar, paste('x', i, sep=''), ifelse(i<length(varLabels(Smpd0)), '+', ''), sep='')
}
fchar2 <- paste("y \sim ", fchar)

run regression and ANOVAs
y <- t(as.matrix(exprs(Smpd0)))
formobj <- as.formula(fchar2)
tmp <- lm(formobj)
tmp2 <- mlm2lm(tmp, i)
tmp3 <- anova(tmp2)$Mean
tmp4 <- msa(tmp3)
rbind(tmp3, tmp4)

msecalmult

MSE calculation function

Description
Computes the mean square error and gradient for the global ANOVA.

Usage
msecalmult(eS, lam, alpha, lowessnorm=FALSE, R, grads=TRUE)

Arguments
- `eS` Array data. must be an ExpressionSet object.
- `lam` A parameter for glog transformation.
- `alpha` A parameter for glog transformation.
- `lowessnorm` TRUE, if lowess method is going to be used.
- `R` The residual matrix, i.e., identity minus the hat matrix.
- `grads` If TRUE, return gradient as well as error. Not used with some kinds of optimization.

Details
The argument `eS` must be an ExpressionSet object from the Biobase package. If you have a data in a matrix and information about the considered factors, then you can use `neweS` to convert the data into an ExpressionSet object. Please see `neweS` in more detail.

Value
`msev` A vector which contains MSE and gradient of two parameters.

Author(s)
David Rocke and Geun-Cheol Lee

References

msecalc

See Also

jggrad2, tranest2

Examples

```r
#library
library(Biobase)
library(LMGene)

#data
data(sample.eS)

lmod <- GetLMObj(sample.eS)
X <- lmod$x
U <- svd(X)$u
H <- crossprod(t(U), t(U))
n <- dim(H)[1]
R <- diag(rep(1,n)) - H

msecalc(sample.eS, 500, 50, FALSE, R)
```

msecalc

MSE calculation function

Description

Computes the mean square error and gradient for the global ANOVA.

Usage

```
msecalc(eS, lam, alpha, lowessnorm, R)
```

Arguments

eS Array data. must be an ExpressionSet object.
lam A parameter for glog transformation.
alpha A parameter for glog transformation.
lowessnorm TRUE, if lowess method is going to be used.
R The residual matrix, i.e., identity minus the hat matrix.

Details

The argument eS must be an ExpressionSet object from the Biobase package. If you have a data in a matrix and information about the considered factors, then you can use neweS to convert the data into an ExpressionSet object. Please see neweS in more detail.

Value

```
msev  A vector which contains MSE and gradient of two parameters.
```
Author(s)

David Rocke and Geun-Cheol Lee

References

http://www.idav.ucdavis.edu/~dmrocke/

See Also

jggrad2, tranest2

Examples

```r
#library
library(Biobase)
library(LMGene)

#data
data(sample.eS)

lmod <- GetLMObj(sample.eS)
X <- lmod$x
U <- svd(X)$u
H <- crossprod(t(U), t(U))
n <- dim(H)[1]
R <- diag(rep(1,n)) - H
msecalc(sample.eS,500,50, FALSE, R)
```

neweS

Coercing to an ExpressionSet code

Description

This function converts a matrix data and its experimental data into an object of 'ExpressionSet' class.

Usage

```r
neweS(mat, vlist, vlabel = as.list(names(vlist)))
```

Arguments

- **mat**: A matrix data to be converted.
- **vlist**: A list which contains several factors representing the experiment description.
- **vlabel**: A list of labels for the variables represented by the columns of `pData` of the 'ExpressionSet' object to be made.
Description

This function normalizes the matrix in additive way.

Usage

```r
norm(mat1)
```

Arguments

- `mat1` A matrix data to be normalized
psmeans

Value
matnorm Normalized matrix

Author(s)
David Rocke and Geun-Cheol Lee

References
http://www.idav.ucdavis.edu/~dmrocke/

See Also
lnorm

Examples
#library
library(Biobase)
library(LMGene)

#data
data(sample.mat)
LoggedSmpd<-norm(log(sample.mat))

psmeans Function to take means of probesets.

Description
This is used to estimate expression levels of genes based on the measurements for the relevant probes.

Usage
psmeans(eS, ind)

Arguments
eS A transformed, normalized expression set.
ind A vector used to indicate which probes go into which probesets.

Details
The vector ind has form like c(1,1,1,2,2,2,3,3,4,4,4,...) Each entry corresponds to one probe and tells the number of the probeset it belongs to.

Value
Returns an expression set with the same vlist as eS, but the matrix rows now correspond to probesets instead of individual probes.
pvadjust

Author(s)
John Tillinghast

Examples

data(sample.eS)
data(sample.ind)
transeS (sample.eS, 667, 65) -> trs.eS
lnormeS(trs.eS) -> ntrs.eS
psmeans (ntrs.eS, sample.ind) -> genesample.eS

pvadjust

P-value adjusting function

Description
This function converts the given raw p-values into the FDR adjusted p-values using R package ‘multtest’.

Usage
pvadjust(pvlist)

Arguments
pvlist
A list containing raw p-values

Details
pvlist is the output from genediff containing p-values from gene-specific MSE’s and posterior MSE’s.

Value
pvlist2
A list with the raw p-values and the newly computed FDR adjusted p-values

Author(s)
David Rocke and Geun-Cheol Lee

References
David M. Rocke (2004), Design and analysis of experiments with high throughput biological assay data, Seminars in Cell & Developmental Biology, 15, 703-713.
http://www.idav.ucdavis.edu/~dmrocke/

See Also
genediff
Examples

```r
#library
library(Biobase)
library(LMGene)

#data
data(sample.mat)
data(vlist)
LoggedSmpd0<-neweS(lnorm(log(sample.mat)),vlist)

evlist<-genediff(LoggedSmpd0)
evlist$Posterior[1:5,]

apvlist<-pvadjust(evlist)
names(apvlist)
apvlist$Posterior.FDR[1:5,]
```

rowaov

Gene by gene ANOVA function

Description

Computes the mean squares and degrees of freedom for gene-by-gene ANOVAs.

Usage

```r
rowaov(eS, model=NULL)
```

Arguments

- `eS` AArray data. must be an ExpressionSet object and the log-transformation and the normalization of `exprs(eS)` are recommended.
- `model` Model used for comparison. See details and LMGene.

Details

The argument `eS` must be an ExpressionSet object from the Biobase package. If you have a data in a matrix and information about the considered factors, then you can use `neweS` to convert the data into an ExpressionSet object. Please see `neweS` in more detail.

The `model` argument is an optional character string, constructed like the right-hand side of a formula for lm. It specifies which of the variables in the ExpressionSet will be used in the model and whether interaction terms will be included. If `model=NULL`, it uses all variables from the ExpressionSet without interactions. Be careful of using interaction terms with factors; this often leads to overfitting, which will yield an error.

Value

- `resmat` A matrix of MSE and DF of all factors for all genes.

Author(s)

David Rocke and Geun-Cheol Lee
References

David M. Rocke (2004), Design and analysis of experiments with high throughput biological assay data, Seminars in Cell & Developmental Biology, 15, 703-713.
http://www.idav.ucdavis.edu/~dmrocke/

See Also

genediff, mlm2lm

Examples

```r
#library
library(Biobase)
library(LMGene)

#data
data(sample.mat)
data(vlist)
LoggedSmpd0 <- neweS(lnorm(log(sample.mat)),vlist)
resmat <- rowaov(LoggedSmpd0)
resmat[,1:3]
```

cellrowlist

Gene name listing function

Description

This function makes significant gene list for a specified factor, where genes are selected as significant by the given p-values and significance level.

Usage

```r
rowlist(genemat, effnum, apvlist, level, posterior = TRUE)
```

Arguments

- **genemat**: A matrix data of array.
- **effnum**: Factor number.
- **apvlist**: A vector with FDR adjusted p-value.
- **level**: Significance level.
- **posterior**: TRUE, if adjusted p-values are to be computed with Posterior method.

Details

genemat is an n-by-p matrix of expression values. effnum is the column number for the effect of interest. apvlist is a matrix of p-values from pvadjust or genediff the routine returns a list of genes whose FDR p-value is less than level using either individual gene or posterior MSE’s. This function returns gene names if rownames(genemat) is not NULL, or gene numbers otherwise. level indicates False Discovery Rate. e.g.) level 0.05 means 5
Value

\texttt{genelist} \hspace{1em} A vector containing gene names if \texttt{rownames\(\text{genemat}\)} is not NULL, or gene numbers otherwise.

Author(s)

David Rocke and Geun-Cheol Lee

References

David M. Rocke (2004), Design and analysis of experiments with high throughput biological assay data, Seminars in Cell & Developmental Biology, 15, 703-713.

\url{http://www.idav.ucdavis.edu/~dmrocke/}

See Also

\texttt{LMGene, rowaov}

Examples

```r
#library
library(Biobase)
library(LMGene)

#data
data(sample.mat)
data(vlist)
LoggedSmpd0<-neweS(lnorm(log(sample.mat)), vlist)
pvlist <- genediff(LoggedSmpd0)
apvlist <- pvadjust(pvlist)

# data from the genelist
# (a list)
# with gene names and p-values.
genelist <- rowlist(exprs(LoggedSmpd0), 2, apvlist, 0.01)
genelist
```

Description

Sample 'ExpressionSet' class data.

Usage

\texttt{data(sample.eS)}

Format

Formal class 'ExpressionSet' \cite{Biobase}.

Details

identical with 'neweS\(\text{sample.mat, vlist}\)'
```r
#library
library(Biobase)
library(LMGene)

#data
data(sample.mat)
data(vlist)

Smpdt <- neweS(sample.mat,vlist)

data(sample.eS)
identical(sample.eS, Smpdt)
```

sample.ind
Sample probeset index vector

Description
Vector indicating which probeset each probe belongs to

Usage
```r
data(sample.ind)
```

Format
A vector of integers, e.g., c(1,1,1,2,2,3,3,3,4,4,...). Length is of course equal to the number of probes (rows) in sample.mat.

Examples
```r
data(sample.eS)
data(sample.ind)
transeS (sample.eS, 667, 65) -> trs.eS
lnormeS(trs.eS) -> ntrs.eS
psmeans (ntrs.eS, sample.ind) -> genesample.eS
```

sample.mat
Sample array data for LMGene package

Description
A matrix of array data

Usage
```r
data(sample.mat)
```
Format

A data frame measuring 613 probes on the 32 samples.

Examples

```r
#library
library(Biobase)
library(LMGene)

#data
data(sample.mat)
data(vlist)

Smpdt<-neweS(sample.mat,vlist)
data(sample.eS)
identical(sample.eS, Smpdt)
```

tranest2

Glog transformation parameter estimation function 2

Description

A sub-function of tranest which search the best parameters for glog transformation.

Usage

```
tranest2(eS, starting = FALSE, lambda = 1000, alpha = 0, gradtol = 0.001, lowessnorm, method=1, model=NULL)
```

Arguments

- `eS` Array data. must be an `ExpressionSet` object.
- `starting` TRUE, if the given initial parameter values are used.
- `lambda` Initial parameter value for lambda.
- `alpha` Initial parameter value for alpha.
- `gradtol` a positive scalar giving the tolerance at which the scaled gradient is considered close enough to zero to terminate the algorithm.
- `lowessnorm` TRUE, if lowess method is going to be used.
- `method` Set optimization method; default is modified Gauss-Newton (nlm). See `tranest`.
- `model` Model in terms of vlist which is compared to transformed expression data. See `tranest`.

Details

The argument `eS` must be an `ExpressionSet` object from the Biobase package. If you have a data in a `matrix` and information about the considered factors, then you can use `neweS` to convert the data into an `ExpressionSet` object. Please see `neweS` in more detail.

The `model` argument is an optional character string, constructed like the right-hand side of a formula for `lm`. It specifies which of the variables in the `ExpressionSet` will be used in the model and whether interaction terms will be included. If `model=NULL`, it uses all variables from the `ExpressionSet` without interactions. Be careful of using interaction terms with factors; this often leads to overfitting, which will yield an error.
tranestmult

Value

tranpar A numeric vector containing the best parameter for ‘lambda’ and ‘alpha’.

Author(s)

David Rocke and Geun-Cheol Lee

References

http://www.idav.ucdavis.edu/~dmrocke/

See Also

jggrad2, tranest2

Examples

#library
library(Biobase)
library(LMGene)

#data
data(sample.eS)
tranpar <- tranest2(sample.eS, lambda= 500, alpha=50)
tranpar

tranestmult Glog transformation parameter estimation function for multiple parameters

Description

A sub-function of tranest which searches the best parameters for glog transformation.

Usage

tranestmult (eS, starting = FALSE, lambda = 1000, alpha = 0, gradtol = 0.001, lowessnorm=FALSE, method=1, max_iter=200, model=NULL)

Arguments

eS Array data. must be an ExpressionSet object.
starting TRUE, if the given initial parameter values are used.
lambda Initial parameter value for lambda.
alpha Initial parameter value for alpha.
gradtol a positive scalar giving the tolerance at which the scaled gradient is considered close enough to zero to terminate the algorithm.
lowessnorm TRUE, if lowess method is going to be used.
method Set optimization method; default is modified Gauss-Newton (nlm). See `tranest`.
max_iter Max. number of iterations of nlm to use in optimization.
model Model in terms of vlist which is compared to transformed expression data. See `tranest`.

Details

This is primarily an internal function. The normal way of calling it would be to call `tranest` with the option `mult=TRUE`.

The argument `eS` must be an `ExpressionSet` object from the Biobase package. If you have a data in a matrix and information about the considered factors, then you can use `neweS` to convert the data into an `ExpressionSet` object. Please see `neweS` in more detail.

The `model` argument is an optional character string, constructed like the right-hand side of a formula for `lm`. It specifies which of the variables in the `ExpressionSet` will be used in the model and whether interaction terms will be included. If `model=NULL`, it uses all variables from the `ExpressionSet` without interactions. Be careful of using interaction terms with factors; this often leads to overfitting, which will yield an error.

Value

`tranpar` A list (not a vector) containing the best parameter for 'lambda' and the best vector for 'alpha'.

Author(s)

David Rocke and Geun-Cheol Lee

References

http://www.idav.ucdavis.edu/~dmrocke/

See Also

`tranest`, `tranest2`

Examples

```r
#library
library(Biobase)
library(LMGene)

#data
data(sample.eS)

tranpar <- tranestmult(sample.eS, lambda= 500, alpha=50)
tranpar
```
Description

Finds the best parameters for glog transformation.

Usage

```
tranest(eS, ngenes = -1, starting = FALSE, lambda = 1000, alpha = 0, gradtol = 0.001, lowessnorm = FALSE, method = 1, mult = FALSE, model = NULL)
```

Arguments

- **eS**: Array data. must be an `ExpressionSet` object.
- **ngenes**: Number of genes that is going to be used for the parameter estimation.
- **starting**: TRUE, if the given initial parameter values are used.
- **lambda**: Initial parameter value for lambda.
- **alpha**: Initial parameter value for alpha.
- **gradtol**: a positive scalar giving the tolerance at which the scaled gradient is considered close enough to zero to terminate the algorithm.
- **lowessnorm**: TRUE, if lowess method is going to be used.
- **method**: Determines optimization method. Default is 1, which corresponds to a Newton-type method (see `nlm`). Method 2 is based on the Nelder-Mead method (see `optim`).
- **mult**: If true, tranest will use a vector alpha with one entry per sample. Default is false (same alpha for every sample).
- **model**: Specifies model to be used. Default is to use all variables from eS without interactions. See details.

Details

The argument `eS` must be an `ExpressionSet` object from the Biobase package. If you have a data in a `matrix` and information about the considered factors, then you can use `neweS` to convert the data into an `ExpressionSet` object. Please see `neweS` in more detail.

The `model` argument is an optional character string, constructed like the right-hand side of a formula for `lm`. It specifies which of the variables in the `ExpressionSet` will be used in the model and whether interaction terms will be included. If `model=NULL`, it uses all variables from the `ExpressionSet` without interactions. Be careful of using interaction terms with factors; this often leads to overfitting, which will yield an error.

Value

- **tranpar**: A list containing the best parameter for 'lambda' and 'alpha'.

Author(s)

David Rocke, Geun-Cheol Lee and John Tillinghast
References

http://www.idav.ucdavis.edu/~dmrocke/

Examples

```r
#library
library(Biobase)
library(LMGene)

#data
data(sample.eS)

tranpar <- tranest(sample.eS, 100)
tranpar
tranpar <- tranest(sample.eS, mult=TRUE)
tranpar
```

transeS

Function to apply the glog transform to an expression set. Returns the transformed expression set (not normalized).

Description

For each element in the array of expression data, this applies the glog transform \(y \rightarrow \text{glog} (y - \alpha, \lambda) \). If alpha is a vector, it must have one entry per sample, and transeS will use the appropriate entry from the vector.

Usage

```r
transeS(eS, lambda, alpha)
```

Arguments

- **eS**: An unprocessed expression set.
- **lambda**: The parameter lambda to be used in the glog transform (Durbin and Rocke 2003).
- **alpha**: The alpha parameter(s) for the glog transform. May be a single number used for all samples, or a vector with one entry per sample.

Value

Returns an expression set with the same vlist as eS, but the matrix is now glog-transformed. That matrix can be normalized with `norm` or `lnorm`.

Author(s)

John Tillinghast
Examples

data(sample.es)
transeS (sample.es, 667, 65) -> trsample.es

vlist

Sample experimental data for LMGene package

Description
A list data representing experiment description information for the sample matrix array data, 'sample.mat'.

Usage

data(vlist)

Examples

#library
library(Biobase)
library(LMGene)

#data
data(vlist)

vlist
Index

* Topic datasets
 sample.eS, 19
 sample.ind, 20
 sample.mat, 21
 vlist, 26

* Topic manip
 neweS, 13
 rowlist, 18

* Topic math
 GetLMObj, 2
 glog, 3
 jggrad2, 4
 jglog, 5
 lnorm, 8
 lnormeS, 7
 msa, 10
 msecalc, 12
 msecalcmult, 11
 norm, 14
 psmeans, 15
 tranest, 24
 tranest2, 21
 tranestmult, 23
 tranestmult, 25
 tranesS, 25

* Topic models
 genediff, 1
 LGene, 6
 mlm2lm, 9
 msa, 10
 msecalc, 4
 msealcmult, 11
 neweS, 1, 6, 11, 13, 17, 22, 23, 25
 nlm, 23, 24
 norm, 8, 14, 26
 optim, 24
 psmeans, 15
 pvadjust, 6, 7, 16
 rowaov, 2, 17, 19
 rowlist, 6, 7, 18
 sample.eS, 19
 sample.ind, 20
 sample.mat, 21
 tranest, 3, 5, 22, 23, 24, 24
 tranest2, 12, 13, 21, 22, 24
 tranestmult, 23
 tranesS, 25
 vlist, 26

as, 14

genediff, 1, 6, 7, 17, 18
GetLMObj, 2

jggrad2, 4, 12, 13, 22
jglog, 5

lm, 2
LGene, 1, 2, 6, 17, 19
lnorm, 7, 8, 8, 15, 26
lnormeS, 7