R topics documented:

expandKEGGNode ... 2
expandKEGGPathway .. 2
getDisplayName-methods 3
getEntryID-methods 4
getKEGGgeneLink-methods 5
getKEGGID-methods 5
getKEGGnodeData .. 6
getKGMLurl .. 7
getNamedElement ... 8
getName-methods .. 9
getPathwayInfo-methods 10
getReactions-methods 10
getRgraphvizEdgeNames 11
getSubtype-methods 12
getTitle-methods 12
getType-methods 13
getValue-methods 14
graphDensity .. 14
isHomoList .. 15
KEGGEdge-class ... 15
KEGGEdgeSubType-class 17
KEGGEdgeSubtype 18
KEGGGraphics-class 18
KEGGGroup-class ... 19
KEGGNode-class ... 20
KEGGpathway2Graph 21
KEGGpathway2reactionGraph 22
KEGGPathway-class 23
KEGGPathwayInfo-class 25
KEGGReaction-class 26
kgmlFileName2PathwayName 27
mergeGraphs ... 27
mergeKEGGgraphs 28
neighborhood ... 29
parseEntry ... 30
parseGraphics .. 31
parseKGML2Graph 32
expandKEGGNode

Expand KEGG node of paralogues

Description

The function expands KEGG node of paralogues, and is mainly used internally. The end-users are not expected to call it unless they know exactly what they are doing.

Usage

```r
expandKEGGNode(node)
```

Arguments

- `node`: An object of `KEGGNode-class`

Author(s)

Jitao David Zhang mailto:j.zhang@dkfz.de
expandKEGGPathway

Description

The function expands paralogue nodes in KEGG pathway and returns expanded KEGG pathway. KEGG node and edge data is maintained.

Usage

expandKEGGPathway(pathway)

Arguments

pathway An object of KEGGPathway-class

Details

The function expands nodes with paralogues in KEGG pathway and copy neccessary edges.

Value

An object of KEGGPathway-class

Author(s)

Jitao David Zhang mailto:j.zhang@dkfz.de

See Also

expandKEGGNode

Examples

sfile <- system.file("extdata/hsa04010.xml",package="KEGGgraph")
kegg.pathway <- parseKGML(sfile)
kegg.expandpathway <- expandKEGGPathway(kegg.pathway)

getDisplayName-methods

Get a character string as label for display

Description

In KGML files, 'graph' element has a 'name' attribute to store the displaying name of a node, which is straightforward for end users. For example, biologists have no idea about a node 'hsa:1432' but its display name 'MAPK14' helps them to link this node to their knowledge. This method extract DisplayName from graph objects for KEGGNode and graph, where the method for graph returns the display names of its nodes.
Methods

object = "KEGGNode" An object of KEGGNode-class
object = "graph" A KEGG graph object

Author(s)
Jitao David Zhang mailto: j.zhang@dkfz.de

References

Examples

sfile <- system.file("extdata/hsa04010.xml", package = "KEGGgraph")
pathway <- parseKGML(sfile)

nodes <- nodes(pathway)
subnodes <- nodes[10:15]
sapply(subnodes, getDisplayName)
compare them with getName, one 'displayName' may correspond to many paralogues
sapply(subnodes, getName)

getEntryID-methods Get entry ID for single or list of KEGGNode or KEGGEdge object(s)

Description
The method extracts EntryIDs from KEGGNode-class or KEGGEdge-class object(s).
In case of KEGGEdge-class objects, the entryID of the nodes involved in the binary are returned
as a vector in the order specified by the direction of the relation, that is, if the edge is defined as
A->B, then the entryID returned from the edge equals to c(getEntryID(A), getEntryID(B)).

Methods

obj = "KEGGEdge" Object of KEGGEdge-class
obj = "list" A wrapper for list of KEGGNode-class or KEGGEdge-class objects

Author(s)
Jitao David Zhang mailto: j.zhang@dkfz.de

References
getKEGGgeneLink-methods

Examples

```r
sfile <- system.file("extdata/hsa04010.xml",package="KEGGgraph")
pathway <- parseKGML(sfile)

nodes <- nodes(pathway)
node <- nodes[[7]]
getEntryID(node)

edges <- edges(pathway)
edge <- edges[[7]]
getEntryID(edge)

getEntryID(nodes[1:4])
getEntryID(edges[1:4])
```

getKEGGgeneLink-methods

Get KEGG gene link

Description

Translate a object into a link point to the gene on KEGG website.
This method complies with the Gene link rule of the KEGG website.

Methods

- `object = "character"` A KEGGID, for example 'hsa:1423'

Examples

```r
getKEGGgeneLink("hsa:1423")
```

getKEGGID-methods

Get KEGG ID

Description

Get KEGGID from a KEGGNode-class object.
The KEGGNode-class can be either another pathway (KEGGID in the form like 'hsa\d*'),
KEGG Gene ('hsa:\d*') or compound ('cpd:\d*'). In case of the KEGG Gene ID, the organism
prefix is removed when the value is returned.

Methods

- `object = "KEGGNode"` An object of KEGGNode-class

Examples

```r
wntfile <- system.file("extdata/hsa04310.xml",package="KEGGgraph")
wnt <- parseKGML(wntfile)
nodes <- nodes(wnt)
getKEGGID(nodes[[1]])
getKEGGID(nodes[[26]])
```
getKEGGnodeData

Get or set list of KEGG node or edge data

Description

The `get` methods extracts KEGG node (edge) attributes from a graph produced by calling `parseKGML2Graph` or `KEGGpathway2Graph`. The `set` methods writes a list into the edge or node data.

Usage

```r
getKEGGnodeData(graph, n)
getKEGGedgeData(graph, n)
```

Arguments

- **graph**: a graph object by parsing KGML file, where KEGG node and edge attributes are maintained.
- **n**: optional character string, name of the desired node or edge. If is missing all node Data is returned.

Details

Node and edge data is stored as list within environments in graphs to save memory and speed up graph manipulations. When using `getKEGGnodeData` or `getKEGGedgeData` is called, the list is extracted out of the environment and returned.

Value

Either a list or single item of `KEGGNode-class` or `KEGGEdge-class` object(s).

Note

These functions will be unified into `KEGGnodeData` and `KEGGnodeData<-` forms.

Author(s)

Jitao David Zhang
mailto:j.zhang@dkfz.de

Examples

```r
sfile <- system.file("extdata/hsa04010.xml", package="KEGGgraph")
gR <- parseKGML2Graph(sfile, expandGenes=TRUE)
getKEGGnodeData(gR, "hsa:4214")
getKEGGedgeData(gR, "hsa:4214~hsa:5605")
```
getKGMLurl

Get KGML file (url) with KEGG PATHWAY ID and (optional) organism

Description

The function simply returns the KGML file url given KEGG PATHWAY ID. If the KEGG PATHWAY ID contains no organism prefix, user can specify the ‘organism’ parameter. Otherwise the ‘organism’ option is ignored.

retrieveKGML is a simple wrapper to getKGMLurl, which downloads the KGML file with `download.file` in utils package.

Usage

```r
getKGMLurl(pathwayid, organism = "hsa")
retrieveKGML(pathwayid, organism, destfile, method="wget", ...)
```

Arguments

- **pathwayid**: KEGG PATHWAY ID, e.g. 'hsa00020'
- **organism**: three-alphabet organism code, if pathwayid contains the code this option is ignored
- **destfile**: Destination file, to which the remote KGML file should be saved
- **method**: Method to be used for downloading files, passed to `download.file` function. Currently supports "internal", "wget" and "lynx"
- **...**: Parameters passed to `download.file`

Details

The function `getKGMLurl` takes the pathway identifier (can be in the form of 'hsa00020' or with 'pathway' prefix, for example 'path:hsa00020'), and returns the url to download KGML file.

The mapping between pathway identifier and pathway name can be found by `KEGGPATHNAME2ID` (or reversed mappings) in KEGG.db package. See vignette for example.

`retrieveKGML` calls `download.file` to download the KGML file from KEGG FTP remotely.

Value

KGML File URL of the given pathway.

Note

So far the function does not check the correctness of the ‘organism’ prefix, it is the responsibility of the user to guarantee the right spelling.

Author(s)

Jitao David Zhang mailto:j.zhang@dkfz.de
Examples

getKGMLurl("hsa00020")
getKGMLurl("path:hsa00020")
getKGMLurl("00020", organism="hsa")

NOT RUN
tmp <- tempfile()
retrieveKGML(pathwayid='00010', organism='cel', destfile=tmp, method="wget")

getNamedElement Extract the value in a vector by name

Description

The function extracts the value(s) in a named vector by given name(s), in case no element is found
with the given name, NA will be returned

Usage

getNamedElement(vector, name)

Arguments

vector A named vector of any data type
name Wanted name

Value

The elements with the given name, 'NA' in case no one was found

Author(s)

Jitao David Zhang mailto:j.zhang@dkfz.de

Examples

vec <- c(first="Hamburg", second="Hoffenheim", third="Bremen")
getNamedElement(vec, "third")
getNamedElement(vec, "last")
getName-methods

Get 'name' attribute

Description

Get ‘name’ attribute for given object, this method can be used for almost all objects implemented in KEGGgraph package to extract their name slot. See manual pages of individual objects for examples.

Methods

object = "KEGGEdgeSubType" An object of KEGGEdgeSubType-class
object = "KEGGNode" An object of KEGGNode-class
object = "KEGGPathway" An object of KEGGPathway-class
object = "KEGGPathwayInfo" An object of KEGGPathwayInfo-class
object = "KEGGReaction" An object of KEGGReaction-class

Author(s)

Jitao David Zhang mailto:j.zhang@dkfz.de

References

Examples

sfile <- system.file("extdata/hsa04010.xml",package="KEGGgraph")
pathway <- parseKGML(sfile)

get pathway name
getName(pathway)

get node name
nodes <- nodes(pathway)
getName(nodes[[2]])

get edge name: it is not informative since the nodes are identified
with file-dependent indices
edges <- edges(pathway)
getName(edges[[7]])

get subtype name
subtype <- getSubtype(edges[[2]])[[1]]
getName(subtype)
getPathwayInfo-methods

Get KEGG pathway info

Description

KEGG stores additional information of the pathways in their KGML files, which can be extracted by this function.

The method returns the attributes of the pathway including its full title, short name, organism, image file link (which can be downloaded from KEGG website) and web link.

Methods

- `object = "KEGGPathway"` An object of `KEGGPathway-class`

Examples

```r
sfile <- system.file("extdata/hsa04010.xml", package="KEGGgraph")
pathway <- parseKGML(sfile)
getPathwayInfo(pathway)
```

getReactions-methods

Get KEGG reactions

Description

In KGML, the pathway element specifies one graph object with the *entry* elements as its nodes and the *relation* and *reaction* elements as its edges. The *relation* elements are saved as *edges* in objects of `KEGGPathway-class`, and the *reactions* elements are saved as a slot of the object, which can be retrieved with the function `getReactions`.

Regulatory pathways are always viewed as protein networks, so there is no 'reaction' information saved in their KGML files. Metabolic pathways are viewed both as both protein networks and chemical networks, hence the `KEGGPathway-class` object may have reactions information.

Methods

- `object = "KEGGPathway"` An object of `KEGGPathway-class`

Author(s)

- Jitao David Zhang mailto:j.zhang@dkfz.de

References

See Also

- `KEGGPathway-class`
Examples

```r
mapfile <- system.file("extdata/map00260.xml", package="KEGGgraph")
maptest <- parseKGML(mapfile)
maptest

mapReactions <- getReactions(maptest)
mapReactions[1:3]
```

getRgraphvizEdgeNames

Get Rgraphviz compatible edge names

Description

Get Rgraphviz compatible edge names, where the out- and in-nodes sharing a edge are concatenated by "~".

Usage

```r
getRgraphvizEdgeNames(graph)
```

Arguments

- `graph`: A graph object

Value

A list of names, the order is determined by the edge order.

Author(s)

Jitao David Zhang mailto:j.zhang@dkfz.de

References

- Rgraphviz package

Examples

```r
tnodes <- c("Hamburg","Dortmund","Bremen", "Paris")
tedges <- list("Hamburg"=c("Dortmund", "Bremen"), "Dortmund"=c("Hamburg"), "Bremen"=c("Hamburg"), "Paris"=c())
tgraph <- new("graphNEL", nodes = tnodes, edgeL = tedges)
getRgraphvizEdgeNames(tgraph)
```
Description

KEGG stores sub-type of interactions between entities in the KGML files, which can be extracted with this method. The descriptions for the subtypes can be explored at the KGML document manual in the references.

See KEGGEdge-class for examples. The method for graphs is a wrapper to extract all subtype information from one graph.

Methods

object = "graph" ~~describe this method here
object = "KEGGEdge" ~~describe this method here

Author(s)

Jitao David Zhang mailto:j.zhang@dkfz.de

References

Examples

sfile <- system.file("extdata/hsa04010.xml",package="KEGGgraph")
pathway <- parseKGML(sfile)

edges <- edges(pathway)
subtype <- getSubtype(edges[[1]])
subtype

 Description

The methods get title attribute for given KGML element, for example for objects of KEGGPathway-class or KEGGPathwayInfo-class

Methods

object = "KEGGPathway" An object of KEGGPathway-class
object = "KEGGPathwayInfo" An object of KEGGPathwayInfo-class

Author(s)

Jitao David Zhang mailto:j.zhang@dkfz.de
getype-methods

References

Examples

```r
sfile <- system.file("extdata/hsa04010.xml", package="KEGGgraph")
pathway <- parseKGML(sfile)
getTitle(pathway)

pi <- getPathwayInfo(pathway)
getTitle(pi)
```

Description

This method can be used to extract generic type attribute from several objects implemented in KEGGgraph package.

The meanings and descriptions of the types can be found at KGML manual listed in the reference.

Methods

- **object = "KEGGEdge"** An object of KEGGEdge-class
- **object = "KEGGNode"** An object of KEGGNode-class
- **object = "KEGGReaction"** An object of KEGGReaction-class

Author(s)

Jitao David Zhang mailto:j.zhang@dkfz.de

References

Examples

```r
mapfile <- system.file("extdata/map00260.xml", package="KEGGgraph")
maptest <- parseKGML(mapfile)

## node type
node <- nodes(maptest)[[3]]
getType(node)

## edge type
edge <- edges(maptest)[[5]]
getType(edge)

## reaction type
reaction <- getReactions(maptest)[[5]]
getType(reaction)
```
getValue-methods Get 'value' attribute

Description
Get 'value' attribute, mainly used internally and is not expected to be called by users.

Methods

```r
object = "KEGGEdgeSubType"  An object of KEGGEdgeSubType-class
```

graphDensity Graph density

Description
The graph density is defined as \(d = \frac{E}{V(V-1)/2} \) where \(E \) is the number of edges and \(V \) of nodes.

Usage

```r
graphDensity(graph)
```

Arguments

```r
graph  A graph object
```

Details
The density of a graph lies between \([0,1]\)

Value
A value between \([0,1]\)

Author(s)
Jitao David Zhang j.zhang@dkfz.de

References
Aittokallio and Schwikowski (2006), Graph-based methods for analysing networks in cell biology, Briefings in Bioinformatics, 7, 243-255.

Examples

```r
tnodes <- c("Hamburg","Dortmund","Bremen", "Paris")
tedges <- list("Hamburg"=c("Dortmund", "Bremen"), "Dortmund"=c("Hamburg"), "Bremen"=c("Hamburg"), "Paris"=c())
tgraph <- new("graphNEL", nodes = tnodes, edgeL = tedges)
graphDensity(tgraph)
```
isHomoList

Determines whether a list is homogenous

Description

If a list contains objects of the same class with the given class name, we call it a homogenous list and the function returns `TRUE`, otherwise it returns `FALSE`.

Usage

```r
isHomoList(list, class)
```

Arguments

- `list`: A list
- `class`: The class name to be validated

Value

logical

Author(s)

Jitao David Zhang
mailto:j.zhang@dkfz.de

Examples

```r
testlist <- list("home1"="Hamburg","home2"="Heidelberg",  
"home3"="Tianjin")
isHomoList(testlist,"character")
testlist$lucky <- 16
isHomoList(testlist,"character")
```

KEGGEEdge-class

Class ‘KEGGEEdge’

Description

A class to represent ‘relation’ elements in KGML files and edge objects in a KEGG graph

Objects from the Class

Objects are normally created by `parseRelation` function, which is not intended to be called by user directly
Slots

- **entry1ID**: The entryID of the first KEGGNode
- **entry2ID**: The entryID of the second KEGGNode
- **type**: The type of the relation, see `getType-methods`
- **subtypeName**: Subtype name
- **subtypeValue**: Subtype value

Methods

- **getEntryID** signature(`obj = "KEGGEdge"`): Get entryIDs of the edge in the order specified by the direction of the edge
- **getType** signature(`object = "KEGGEdge"`): Get the relation type
- **getName** signature(`object = "KEGGEdge"`): Get the names of edges in the convention of Rgraphviz, `node1~node2`
- **show** signature(`object = "KEGGEdge"`): Show method

Author(s)

- Jitao David Zhang mailto:j.zhang@dkfz.de

References

See Also

- KEGGNode-class

Examples

```r
mapfile <- system.file("extdata/map00260.xml", package="KEGGgraph")
maptest <- parseKGML(mapfile)

x <- edges(maptest)[[1]]
class(x)

## examples to extract information from KEGGEdge
getName(x)
getEntryID(x)

getType(x)
getSubtype(x)

subtype <- getSubtype(x)[[1]]
getName(subtype)
```
Description

A class to represent subtype in KEGG

Objects from the Class

Objects can be created by calls of the form `new("KEGGEdgeSubType", ...).`

Slots

- **name**: Object of class "character", name of the subtype
- **value**: Object of class "character", value of the subtype

Methods

- **getName** signature(object = "KEGGEdgeSubType"): getting subtype name
- **getValue** signature(object = "KEGGEdgeSubType"): getting subtype value
- **show** signature(object = "KEGGEdgeSubType"): show method

Note

Please note that 'KEGGEdgeSubtype' is a data frame storing subtype predefinitions, the 'type' with lowercases. 'KEGGEdgeSubType' is however a class representing these subtypes.

Author(s)

Jitao David Zhang mailto:j.zhang@dkfz.de

See Also

KEGGEdge-class

Examples

showClass("KEGGEdgeSubType")

use example(KEGGEdge-class) for more examples
KEGGGraphics-class

Predefinitions of node or edge types

Description
The KGML files define node and edge type and subtypes, which are summarized in these data frames.

Usage

```r
data(KEGGEedgeSubtype)
data(KEGGNodeType)
data(KEGGEedgeType)
```

Format
They are stored as data frames

Details
They are used by graph render functions to identify different types of objects, user could use them to classify edges or nodes.

References

Examples

```r
data(KEGGEedgeSubtype)
data(KEGGEedgeType)
data(KEGGNodeType)
```

KEGGGraphics-class

Description
A class to represent `graphics` element in KGML files

Objects from the Class
This method is mainly used to extract visualization information from KGML files.
Objects can be created by calling `parseGraphics`
Slots

- **name**: Object of class "character" graphics name
- **x**: Object of class "integer" x coordinate in KEGG figure
- **y**: Object of class "integer" y coordinate in KEGG figure
- **type**: Object of class "character" graphics type (shape)
- **width**: Object of class "integer" width of the symbol
- **height**: Object of class "integer" height of the symbol
- **fgcolor**: Object of class "character" foreground color
- **bgcolor**: Object of class "character" background color

Author(s)

Jitao David Zhang mailto:j.zhang@dkfz.de

References

See Also

parseGraphics

Examples

```r
showClass("KEGGGraphics")
```

KEGGGroup-class
Class “KEGGGroup”

Description

Class to represent ’group’ nodes in KEGG pathways

Objects from the Class

The objects are usually created by parseEntry function and is not intended to be called directly by users.

Slots

- **component**: Component of the group
- **entryID**: see the slot of KEGGNode-class
- **graphics**: see the slot of KEGGNode-class
- **link**: see the slot of KEGGNode-class
- **map**: see the slot of KEGGNode-class
- **name**: see the slot of KEGGNode-class
- **reaction**: see the slot of KEGGNode-class
- **type**: see the slot of KEGGNode-class
KEGGNode-class

Extends

Class "KEGGNode", directly.

Methods

getComponent signature(object = "KEGGNode"): returns components of the group, in
a vector of strings

Author(s)

Jitao David Zhang mailto:j.zhang@dkfz.de

See Also

KEGGNode-class

Examples

showClass("KEGGGroup")

Description

The class to present 'entry' element in KGML files and nodes in KEGG graphs

Objects from the Class

Objects can be created by calls of the function parseEntry and is not intended to be directly
created by users.

Slots

entryID: entryID, the 'id' attribute of 'entry' elements in KGML files. In each KGML file the en-
tryID is specified by auto-increment integers, therefore entryIDs from two individual KGML
files are not unique. However, if 'expandGenes' option is specified in KEGGpathway2Graph
function, the unique KEGGID will replace the default integer as the new entryID, which is
unique in biological context

name: Name of the node

type: Type of the node, use data(KEGNNodeType) to see available values

link: URL link of the node

reaction: Reaction of the node

map: Map of the node

displayName: Its display name, for example 'hsa:1432' is displayed as 'p38'
Methods

getDisplayName signature(object = "KEGGNode"): get display name
getEntryID signature(obj = "KEGGNode"): get entryID, in case of gene-expanded graphs this is the same as getKEGGID
getKEGGID signature(object = "KEGGNode"): get KEGGID
goType signature(object = "KEGGNode"): get the type of the node
<name signature(object = "KEGGNode"): replace name
getComponent signature(obj = "KEGGNode"): returns entryID (the same as getEntryID), for compatibility with KEGGGroup-class
show signature(object = "KEGGNode"): show method

Author(s)

Jitao David Zhang mailto:j.zhang@dkfz.de

References

See Also

KEGGEdge-class, parseEntry

Examples

We show how to extract information from KEGGNode object
sfile <- system.file("extdata/hsa04010.xml", package="KEGGgraph")
pathway <- parseKGML(sfile)
ns <- nodes(pathway)
node <- ns[[1]]

show(node)
getName(node)
getDisplayName(node)
getEntryID(node)
getKEGGID(node)

Description

The function parses an object of KEGGPathway-class into graph.

Usage

KEGGpathway2Graph(pathway, genesOnly = TRUE, expandGenes = TRUE)
Arguments

- **pathway**: An instance of `KEGGPathway-class`
- **genesOnly**: logical, should only the genes be maintained and other types of nodes (compounds, etc) neglected? TRUE by default
- **expandGenes**: logical, should homologue proteins expanded? TRUE by default

Details

When `expandGenes=TRUE`, the nodes have unique names of KEGGID (in the form of `org:xxxx`, for example `hsa:1432`), otherwise an auto-increment index given by KEGG is used as node names. In the latter case, the node names are duplicated and graphs cannot be simply merged before the nodes are unique.

KEGG node and edge data is stored in `nodeData` and `edgeData` slots respectively, which can be extracted by `getKEGGnodeData` and `getKEGGedgeData`.

Value

A directed graph.

Author(s)

Jitao David Zhang mailto:j.zhang@dkfz.de

See Also

- `parseKGML2Graph`

Examples

```r
sfile <- system.file("extdata/hsa04010.xml", package="KEGGgraph")
kegg.pathway <- parseKGML(sfile)
gR.compact <- KEGGpathway2Graph(kegg.pathway, expandGenes=FALSE)
```

KEGGpathway2reactionGraph

Convert chemical reaction network of KEGG pathway into graph

Description

Regulatory pathways are always viewed as protein networks, so there is no 'reaction' information saved in their KGML files. Metabolic pathways are viewed both as both protein networks and chemical networks, hence the `KEGGPathway-class` object may have reactions information among chemical compounds.

This functions extracts reaction information from KEGG pathway, and convert the chemical compound reaction network into directed graph.

Usage

```r
KEGGpathway2reactionGraph(pathway, uniqueReaction = TRUE)
```
Arguments

- **pathway**: A *KEGGPathway-class* object, usually as the result of the function `parseKGML`.
- **uniqueReaction**: logical, to indicate whether several chemical reactions (identified by different KEGG reaction ID) should be treated as one (TRUE) or many (FALSE).

Details

The direction of the graph is specified by the role of the compound in the reaction, the edges go always out of 'substrate' and points to 'product'.

For now there is no wrapper to parse the KGML file directly into a reaction graph. In future there maybe one, but we don’t want to confuse users with two similar functions to parse the file into a graph (since we assume that most users will need the protein graph, which can be conveniently parsed by `parseKGML2Graph`).

Value

A directed graph with compounds as nodes and reactions as edges.

Author(s)

Jitao David Zhang mailto:j.zhang@dkfz.de

References

See Also

KEGGPathway-class

Examples

```r
mapfile <- system.file("extdata/map00260.xml", package="KEGGgraph")
map <- parseKGML(mapfile)
cg <- KEGGpathway2reactionGraph(map, uniqueReaction=FALSE)
cg
nodes(cg)[1:3]
edges(cg)[1:3]
```

KEGGPathway-class
Class "KEGGPathway"

Description

A class to represent KEGG pathway.

Objects from the Class

Objects can be created by calls of the form `new("KEGGPathway", ...)` . Normally they are created by `parseKGML`.
Slots

pathwayInfo: An object of KEGGPathwayInfo-class
nodes: List of objects of KEGGNode-class
edges: List of objects of KEGGEdge-class
reactions: List of objects of KEGGReaction-class

Methods

edges signature(object = "KEGGPathway", which = "ANY"): KEGGEdges of the pathway
edges<- signature(object = "KEGGPathway"): setting edges
ggetName signature(object = "KEGGPathway"): getting pathway name
ggetTitle signature(object = "KEGGPathway"): getting pathway title
nodes<- signature(object = "KEGGPathway", value = "ANY"): setting nodes
nodes signature(object = "KEGGPathway"): KEGGNodes of the pathway
ggetPathwayInfo signature(object = "KEGGPathway"): getting KEGGPathwayInfo
ggetTitle signature(object = "KEGGPathway"): getting title of the pathway
show signature(object = "KEGGPathway"): display method

Author(s)

Jitao David Zhangmailto:j.zhang@dkfz.de

References

See Also

parseKGML, KEGGEdge-class, KEGGNode-class, KEGGReaction-class

Examples

We show how to extract information from KEGGPathway objects
Parse KGML file into a 'KEGGPathway' object
mapfile <- system.file("extdata/map00260.xml", package="KEGGgraph")
maptest <- parseKGML(mapfile)

short summary of the pathway
maptest

get information of the pathway
getPathwayInfo(maptest)

nodes of the pathway
nodes <- nodes(maptest)
nodes <- nodes[[3]]
getName(n)
ggetType(n)
gDisplayName(n)
edges of the pathway
edges <- edges(maptest)
edge <- edges[[3]]
getEntryID(edge)
getSubtype(edge)

Description

A class to represent information of a KEGG pathway

Objects from the Class

Objects can be created by calls of the function `parsePathwayInfo`.

Slots

- `name`: Object of class "character" Pathway name
- `org`: Object of class "character" Organism
- `number`: Object of class "character" Number
- `title`: Object of class "character" Title of the pathway
- `image`: Object of class "character" Image URL
- `link`: Object of class "character" URL Link

Methods

- `getTitle` signature(object = "KEGGPathwayInfo"): get title of the pathway
- `show` signature(object = "KEGGPathwayInfo"): show method

Author(s)

Jitao David Zhang mailto:j.zhang@dkfz.de

References

Examples

```r
sfile <- system.file("extdata/hsa04010.xml",package="KEGGgraph")
pathway <- parseKGML(sfile)
pi <- getPathwayInfo(pathway)

class(pi)

getTitle(pi)
```
KEGGReaction-class

Class "KEGGReaction"

Description
A class to present 'reaction' elements in KGML files

Objects from the Class
Objects can be created by calls of the function `parseReaction`.

Slots
- **name**: Object of class "character" the KEGGID of this reaction, e.g. "rn:R02749"
- **type**: Object of class "character" the type of this reaction, either 'reversible' or 'irreversible'
- **substrateName**: Object of class "character", KEGG identifier of the COMPOUND database or the GLYCAN database e.g. "cpd:C05378"
- **substrateAltName**: Object of class "character" alternative name of its parent substrate element
- **productName**: Object of class "character" specifies the KEGGID of the product
- **productAltName**: Object of class "character" alternative name of its parent product element

Methods
- **show** signature(object = "KEGGReaction"): show method
- **getName** signature(object = "KEGGReaction"): get the KEGGID of the reaction
- **getType** signature(object = "KEGGReaction"): get the type of the reaction
- **getSubstrate** signature(object = "KEGGReaction"): get the name of substrate
- **getProduct** signature(object = "KEGGReaction"): get the name of product

Author(s)
Jitao David Zhang
mailto:j.zhang@dkfz.de

References
KGML Document Manual
http://www.genome.jp/kegg/docs/xml/

Examples
```r
## We show how to extract reactions from a 'KEGPathway' object
mapfile <- system.file("extdata/map00260.xml", package="KEGGgraph")

maptest <- parseKGML(mapfile)
mapReactions <- getReactions(maptest)

## More details about reaction
reaction <- mapReactions[[1]]
getName(reaction)
```
kgmlFileName2PathwayName

Convert KGML file name to pathway name

Description
The function uses KEGG package and converts KGML file name into human readable pathway name.

Usage
kgmlFileName2PathwayName(filename)

Arguments
filename A KGML file name

Details
So far it only supports KGML files organized by species.
NOTE: there is issue of package loading sequence to use this function: the 'KEGG.db' must be loaded before 'KEGGgraph' to use it properly. Otherwise the mget returns error of 'KEGG-PATHID2NAME' is not a environment. So far I don’t where does this bug come from, so I commented out the examples.

Value
A character string of pathway name

Author(s)
Jitao David Zhang mailto:j.zhang@dkfz.de

mergeGraphs
A function to merge KEGG graphs

Description
The function merges a list of KEGG graphs into one graph object. The merged graph have unique nodes, and edges are merged into non-duplicate sets.
For the reason of speed, mergeGraphs discards KEGG node and edge informations. To maintain them while merging graphs, please use mergeKEGGgraphs.

Usage
mergeGraphs(list, edgemode = "directed")
mergeKEGGgraphs

Arguments

- **list**: A list of graph objects, which can be created by `parseKGML2Graph`.
- **edgemode**: Edge mode of the graph product, by default ‘directed’.

Details

The function takes a list of graphs and merges them into a new graph. The nodes of individual graphs must be unique. The function takes care of the removal of duplicated edges.

Value

A directed graph

Note

It is known that graphs from *C.elegance* pathways have problem when merging, because the nodes name are not consistent between edge records and entry IDs.

Author(s)

Jitao David Zhang <j.zhang@dkfz.de>

See Also

- `parseKGML2Graph`

mergeKEGGgraphs
Merge KEGG graphs, also merging KEGGNode and KEGGEdge attributes

Description

`mergeKEGGgraphs` extends function `mergeGraphs` and merges a list of KEGG graphs. Both `mergeGraphs` and `mergeKEGGgraphs` can be used to merge graphs, while the latter form is able to merge the nodes and edges attributes from KEGG, so that the nodes and edges have a one-to-one mapping to the results from `getKEGGnodeData` and `getKEGGEdgeData`.

See details below.

Usage

`mergeKEGGgraphs(list, edgemode = "directed")`

Arguments

- **list**: A list of named KEGG graphs.
- **edgemode**: character, ‘directed’ by default.
neighborhood

Details

mergeGraphs discards the node or edge attributes, hence `getKEGGnodeData` or `getKEGGedgeData` will return NULL on the resulting graph.

mergeKEGGgraphs calls `mergeGraphs` first to merge the graphs, then it also merges the KEGGnodeData and KEGGedgeData so that they are one-to-one mapped to the nodes and edges in the merged graph.

Value

A graph with nodeData and edgeData

Author(s)

Jitao David Zhang mailto:j.zhang@dkfz.de

See Also

mergeGraphs

Examples

```r
sfile <- system.file("extdata/hsa04010.xml",package="KEGGgraph")
gR <- parseKGML2Graph(sfile,expandGenes=TRUE)

wntfile <- system.file("extdata/hsa04310.xml",package="KEGGgraph")
wntR <- parseKGML2Graph(wntfile, expandGenes=TRUE)

graphlist <- list(mapkG=gR, wntG=wntR)
mergedKEGG <- mergeKEGGgraphs(graphlist)

mergedKEGG
```

neighborhood

Return the neighborhood set of given vertices

Description

The function returns the neighborhood set of given vertices in the form of list. Optionally user can choose to include the given vertices in the list, too.

Usage

```r
neighborhood(graph, index, return.self = FALSE)
```

Arguments

- **graph**: An object of graphNEL
- **index**: Names of nodes, whose neighborhood set should be returned
- **return.self**: logical, should the vertex itself also be returned?
Details
Let v be a vertex in a (di)graph, the out-neighborhood or successor set ($N^+(v)$, x belongs to $V(G)$ and $v \rightarrow x$) and the in-neighborhood or predecessor set ($N^-(v)$, x belongs to $V(G)$ and $x \rightarrow v$) are jointly returned.

The returned list is indexed by the given node indices, NULL is returned in case of non-existing node.

The nodes are unique, that is, duplicated nodes are removed in results.

Value
A list indexed by the given node indices, each entry containing the neighborhood set of that node (or furthermore including that node).

Author(s)
Jitao David Zhang <j.zhang@dkfz.de>

References

Examples
```r
V <- c("Hamburg","Stuttgart","Berlin","Paris","Bremen")
E <- list("Hamburg"=c("Berlin","Bremen"),
          "Stuttgart"=c("Berlin","Paris"),
          "Berlin"=c("Stuttgart","Bremen"),
          "Paris"=c("Stuttgart"),
          "Bremen"=c("Hamburg","Berlin"))
g <- new("graphNEL", nodes=V, edgeL=E, edgemode="directed")
if(require(Rgraphviz) & interactive()) {
  plot(g, "neato")
}
```

simple uses
neighborhood(g, "Hamburg")
neighborhood(g, c("Hamburg", "Berlin","Paris"))

in case of non-existing nodes
neighborhood(g, c("Stuttgart","Ulm"))

also applicable to non-directed graphs
neighborhood(ugraph(g), c("Stuttgart","Berlin"))
```
parseGraphics

Usage

parseEntry(entry)

Arguments

entry XML node of KGML file

Details

See [http://www.genome.jp/kegg/docs/xml/](http://www.genome.jp/kegg/docs/xml/) for more details about 'entry' as well as other elements in KGML files.

Value

An object of link{KEGGNode} or (in case of a group node) link{KEGGGroup}

Author(s)

Jitao David Zhang <j.zhang@dkfz.de>

References


See Also

parseGraphics, parseKGML, KEGGNode-class, KEGGGroup-class

---

parseGraphics Parse 'graphics' elements in KGML files

Description

The function parses 'graphics' elements in KGML files, and it is mainly used internally.

Usage

parseGraphics(graphics)

Arguments

graphics XML node

Details

The function is called by other parsing functions and not intended to be called directly by user.

Value

An object of KEGGGraphics-class.
parseKGML2Graph

Author(s)
Jitao David Zhang mailto:j.zhang@dkfz.de

References

See Also
KEGGGraphics-class

Description
This function is a wrapper for parseKGML and KEGGpathway2Graph. It takes two actions: first it reads in the KGML file and parses it into an object of KEGGPathway-class, the second step it calls KEGGpathway2Graph function to return the graph model.

Usage
parseKGML2Graph(file, ...)

Arguments
file Name of KGML file
...
other parameters passed to KEGGpathway2Graph, see KEGGpathway2Graph

Value
A graph object.

Author(s)
Jitao David Zhang mailto:j.zhang@dkfz.de

Examples
sfile <- system.file("extdata/hsa04010.xml",package="KEGGgraph")
gR <- parseKGML2Graph(sfile,expandGenes=TRUE)
gR
**Description**

The function does several tasks implemented in the KEGGgraph package in sequence to make expanding maps easier.

**Usage**

`parseKGMLexpandMaps(file, downloadmethod = "wget", genesOnly = TRUE, localdir, ...)`

**Arguments**

- `file` A KGML file
- `downloadmethod` passed to `download.file` function as 'method', see its documentation for more details
- `genesOnly` logical, should only the genes nodes remain in the returned graph object?
- `localdir` character string, if specified, the function tries to read files with the same base name from a local directory, useful when there are file copies on the client.
- `...` Other parameters passed to `download.file`

**Details**

In KEGG pathways there’re usually pathways contained (‘cross-linked’) in other pathways, for example see [http://www.genome.jp/kegg/pathway/hsa/hsa04115.html](http://www.genome.jp/kegg/pathway/hsa/hsa04115.html), where p53 signalling pathway contains other two pathways 'apoptosis' and 'cell cycle'. This function parses these pathways (referred as ‘maps’ in KGML manual), download their KGML files from KEGG FTP website, parse them individually, and merge all the children pathway graphs with the parental pathway into one graph object. The graph is returned as the function value.

Since different graphs does not have unique node identifiers unless the genes are expanded, so by using this function user has to expand the genes. Another disadvantage is that so far due to the implementation, the KEGGnodeData and KEGGedgeData is lost during the merging. This however will probably be changed in the future version.

**Value**

A directed graph object

**Author(s)**

Jitao David Zhang j.zhang@dkfz.de

**References**

See Also

for most users it is enough to use `parseKGML2Graph`

---

**parseKGML**  
*KGML file parser*

**Description**

The function parses KGML files according to the KGML XML documentation.

**Usage**

```r
parseKGML(file)
```

**Arguments**

- `file`  
  Name of KGML file

**Details**

The function parses KGML file (depending on XML package).

**Value**

An object of `KEGGPathway-class`.

**Author(s)**

Jitao David Zhang  
mailto:j.zhang@dkfz.de

**References**


**See Also**

`parseEntry`, `parseRelation`, `parseReaction`, `KEGGPathway-class`

**Examples**

```r
sfile <- system.file("extdata/hsa04010.xml",package="KEGGgraph")
kegg.pathway <- parseKGML(sfile)
kegg.pathway
```
**parsePathwayInfo**  
*Parse information of the pathway from KGML files*

**Description**

The function parses the information of the given pathway from KGML files into an object of `KEGGPathwayInfo-class`. It is used internally and is not expected to be called by users directly.

**Usage**

```r
parsePathwayInfo(root)
```

**Arguments**

- `root` Root element of the KGML file

**Value**

An object of `KEGGPathwayInfo-class`

**Author(s)**

Jitao David Zhang  
mailto:j.zhang@dkfz.de

**References**


---

**parseReaction**  
*Parse reaction from KGML files*

**Description**

The function parses `reaction` element in KGML files. It is used internally and not expected to be called by users.

**Usage**

```r
parseReaction(reaction)
```

**Arguments**

- `reaction` A node of the type `reaction` in KGML files

**Details**

See the reference manual for more information about `reaction` type
Value

An object of `KEGGReaction-class`.

Author(s)

Jitao David Zhang <mail:j.zhang@dkfz.de>

References


---

**parseRelation**

Parse RELATION elements from KGML files

**Description**

RELATION elements in KGML files record the binary relationships between ENTRY elements, corresponding to (directed) edges in a graph. `parseRelation` function parses RELATION elements into `KEGGEdge-class` objects from KGML files. It is not expected to be called directly by the user.

**Usage**

```r
parseRelation(relation)
```

**Arguments**

- `relation` XML node of KGML file

**Details**


**Value**

An object of `link{KEGGEdge}`.

**Author(s)**

Jitao David Zhang <j.zhang@dkfz.de>

**References**


**See Also**

`KEGGEdge-class`, `parseEntry`
**parseSubType**

*Parse KGML relation subtype*

**Description**

The function parses KGML relation subtype, called internally and not intended to be used by end users.

**Usage**

```r
parseSubType(subtype)
```

**Arguments**

- `subtype` KGML subtype node

**Value**

An object of `KEGGEdgeSubType-class`

**Author(s)**

Jitao David Zhang [mailto:j.zhang@dkfz.de](mailto:j.zhang@dkfz.de)

---

**plotKEGGgraph**

*Plot KEGG graph with Rgraphviz*

**Description**

The function provides a simple interface to Rgraphviz to render KEGG graph with custom styles. `KEGGgraphLegend` gives the legend of KEGG graphs.

**Usage**

```r
plotKEGGgraph(graph, y = "neato", shortLabel = TRUE, useDisplayName=TRUE, nodeRenderInfo, ...)
KEGGgraphLegend()
```

**Arguments**

- `graph` A KEGG graph, by calling `parseKGML2Graph`
- `y` the layout method, `neato` by default
- `shortLabel` logical, should be short label used instead of full node name?
- `useDisplayName` logical, should the labels of nodes rendered as the 'display name' specified in the KGML file or render them simply with the node names?
- `nodeRenderInfo` List of node rendering info
- `...` Other functions passed to `renderGraph`, not implemented for now
**Details**

Users are not restricted to this function, alternatively you can choose other rendering functions.

**Value**

The graph after layout and rendering is returned.

**Author(s)**

Jitao David Zhang  
mailto:j.zhang@dkfz.de

**Examples**

```r
opar <- par(ask=TRUE)
sfile <- system.file("extdata/hsa04010.xml",package="KEGGgraph")
gR <- parseKGML2Graph(sfile,expandGenes=TRUE)
gR.sub <- subGraph(subs, gR)
if(require(Rgraphviz))
 plotKEGGgraph(gR.sub)
KEGGgraphLegend()
par(opar)
```

---

**pvalue2asterisk**

`pvalue2asterisk(pvalues, sig.1 = FALSE)`

**Description**

A p-value of 0.05, 0.01, 0.001 correspond to one, two or three asterisks. If `sig.1` is set to `TRUE`, then the p-value of 0.1 returns `.`.

**Usage**

`pvalue2asterisk(pvalues, sig.1 = FALSE)`

**Arguments**

- `pvalues` A numeric value
- `sig.1` logical, whether the significance sign of 0.1 should be returned

**Value**

A character string containing the signs

**Author(s)**

Jitao David Zhang  
mailto:j.zhang@dkfz.de
queryKEGGsubgraph

Examples

\texttt{pvalue2asterisk(0.03)}
\texttt{pvalue2asterisk(0.007)}
\texttt{pvalue2asterisk(3e-5)}
\texttt{pvalue2asterisk(0.55)}

\begin{description}
\item[queryKEGGsubgraph] \textit{Query the subgraph of a given KEGG graph with Entrez GeneID(s)}
\end{description}

Description

Given a list of genes (identified by Entrez GeneID), the function subsets the given KEGG graph of the genes as nodes (and maintaining all the edges between).

Usage

\texttt{queryKEGGsubgraph(geneids, graph, organism = "hsa", addmissing = FALSE)}

Arguments

\begin{itemize}
\item \texttt{geneids} \hspace{1cm} A vector of Entrez GeneIDs
\item \texttt{graph} \hspace{1cm} A KEGG graph
\item \texttt{organism} \hspace{1cm} a three-alphabet code of organism
\item \texttt{addmissing} \hspace{1cm} logical, in case the given gene is not found in the graph, should it be added as single node to the subgraph?
\end{itemize}

Details

This function solves the questions like 'How is the list of gene interact with each other in the context of pathways?'

Limited by the \texttt{translateKEGGID2GeneID}, this function supports only human for now. We are working to include other organisms.

If 'addmissing' is set to \texttt{TRUE}, the missing gene in the given list will be added to the returned subgraph as single nodes.

Value

A subgraph with nodes representing genes and edges representing interactions.

Author(s)

Jitao David Zhang <j.zhang@dkfz.de>

See Also

\texttt{translateGeneID2KEGGID}
randomSubGraph

Randomly subset the given graph

Description
The function is intended to be a test tool. It subset the given graph repeatedly.

Usage
randomSubGraph(graph, per = 0.25, N = 10)

Arguments

  graph       A graph object
  per         numeric, the percentage of the nodes to be sampled, value between (0,1)
  N           Repeat times

Value
The function is called for its side effect, NULL is returned

Author(s)
Jitao David Zhang mailto:j.zhang@dkfz.de

Examples

```r
tnodes <- c("Hamburg","Dortmund","Bremen", "Paris")
tedges <- list("Hamburg"=c("Dortmund", "Bremen"),
 "Dortmund"=c("Hamburg"), "Bremen"=c("Hamburg"), "Paris"=c())
tgraph <- new("graphNEL", nodes = tnodes, edgeL = tedges)
randomSubGraph(tgraph, 0.5, 10)
```

Description

The function split 'group' entries in KGML files. Most of the cases they are complexes. During the splitting the function copies the edges between groups and nodes (or between groups and groups) correspondingly, so that the existing edges also exist after the groups are split.

Usage

```r
splitKEGGgroup(pathway)
```

Arguments

- `pathway`: An object of `KEGGPathway-class`

Details

By default the groups (complexes) in KEGG pathways are split.

Value

An object of `KEGGPathway-class`

Author(s)

Jitao David Zhang [mailto:j.zhang@dkfz.de](mailto:j.zhang@dkfz.de)

References


See Also

- `KEGGpathway2Graph`

Examples

```r
sfile <- system.file("extdata/hsa04010.xml", package="KEGGgraph")
kegg.pathway <- parseKGML(sfile)
kegg.pathway.split <- splitKEGGgroup(kegg.pathway)

compare the different number of edges
length(edges(kegg.pathway))
length(edges(kegg.pathway.split))
```
subGraphByNodeType  *Subset KEGG graph by node types*

**Description**

The function subsets KEGG graph by node types, mostly used in extracting gene networks.

**Usage**

```
subGraphByNodeType(graph, type = "gene", kegg=TRUE)
```

**Arguments**

- `graph`: A KEGG graph object produced by calling `parseKGML2Graph`
- `type`: node type, see `KEGGNodeType` for details
- `kegg`: logical, should the KEGG Node and Edge attributes be maintained during the subsetting? By default set to 'TRUE'

**Value**

A subgraph of the original graph

**Author(s)**

Jitao David Zhang  
mailto:j.zhang@dkfz.de

**Examples**

```
sfile <- system.file("extdata/hsa04010.xml",package="KEGGgraph")
sGraph <- parseKGML2Graph(sfile,expandGenes=TRUE, genesOnly=FALSE)
sGraphGene <- subGraphByNodeType(sGraph, type="gene")
```

---

subKEGGgraph  *Subset KEGG graph, including subsetting node and edge attributes*

**Description**

`subKEGGgraph` extends generic method `subGraph` and subsets the KEGG graph. Both `subKEGGgraph` and `subGraph` can be used to subset the graph, the difference lies in whether the node and edge attributes from KEGG are also subset (`subKEGGgraph`) or not (`subGraph`). See details below.

**Usage**

```
subKEGGgraph(nodes, graph)
```
**subtypeDisplay-methods**

Get display information for relation subtypes

**Description**
To render KEGG pathway graphs, we have created a custom style of edges to represent their subtypes. `subtypeDisplay` extracts this information.

**Methods**

- `object = "graph"` An KEGG graph
- `object = "KEGGEdge"` An object of `KEGGEdge-class`
- `object = "KEGGEdgeSubType"` An object of `KEGGEdgeSubType-class`

**Arguments**

- `nodes` Node names to subset
- `graph` A graph parsed from KGML files, produced by `parseKGML2Graph`, `KEGGpathway2Graph` or `parseKGMLexpandMaps`

**Details**

`subGraph` does not subset the node or edge attributes, hence the results of `getKEGGnodeData` and `getKEGGedgeData` does not map to the nodes and edges in the subgraph in a one-to-one manner, with attributes of removed nodes and edges still remaining in the subGraph.

`subKEGGgraph` calls `subGraph` first to subset the graph, and then it also subsets the `KEGGnodeData` and `KEGGedgeData` so that they are one-to-one mapped to the nodes and edges in the subgraph.

**Value**
A graph with nodeData and edgeData.

**Author(s)**
Jitao David Zhang mailto:j.zhang@dkfz.de

**Examples**

```r
sfile <- system.file("extdata/hsa04010.xml",package="KEGGgraph")
gR <- parseKGML2Graph(sfile,expandGenes=TRUE)
subs <- c("hsa:1432",edges(gR)$`hsa:1432`","hsa:5778","hsa:5801",
"hsa:5807","hsa:11072","hsa:5606","hsa:5608","hsa:5494","hsa:5609")
gR.keggsub <- subKEGGgraph(subs, gR)
gR
gR.keggsub
```

Colorectal cancer dataset

Description

Colorectal cancer dataset provided by SPIA package. It is just a copy during the development of SPIA package in case the package is not available. It will be removed when the SPIA package is stable.

see the description of SPIA package.

Usage

data(colorectalcancerSPIA)

Format

see the format of SPIA package.

Source


translateKEGGgraph

Translate the KEGG graph from being indexed by KEGGID to another identifier

Description

The function translates the KEGG graph into a graph of equivalent topology while indexed with unique identifiers given by user. The new identifiers could be, for example, GeneSymbol or other identifiers mapped to KEGGID.

Usage

translateKEGGgraph(graph, newNodes)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>graph</td>
<td>A KEGG graph</td>
</tr>
<tr>
<td>newNodes</td>
<td>A character vector giving the new nodes, must be of the same length and same order of the nodes of the given graph</td>
</tr>
</tbody>
</table>

Details

The function is still experimental and users are welcomed to report any difficulties.
translateKEGGID2GeneID

Translate between KEGGID and Entrez Gene ID

Description

translateKEGGID2GeneID translates KEGGID to NCBI Entrez Gene ID, and translateGeneID2KEGGID translates Entrez Gene ID back to KEGGID.

Usage

translateKEGGID2GeneID(x, organism="hsa")
translateGeneID2KEGGID(x, organism="hsa")

Arguments

x KEGGID, e.g. 'hsa:1432', or Entrez Gene ID, e.g. '1432'
organism Three alphabet code for organisms. The mapping between the orgniasms and codes can be found at http://www.genome.jp/kegg/kegg3.html

Details

The KEGGID are unique identifiers used by KEGG PATHWAY to identify gene products. After parsing the KEGG pathway into graph, the graph use KEGGID as its nodes’ names.

translateKEGGID2GeneID converts KEGGIDs into entrez GeneID, which can be translated to other types of identifiers, for example with biomaRt package or organism-specific annotation packages. See vignette for examples.

translateKEGG2GeneID is maintained for back-compatibility and wrapps translateKEGGID2GeneID.
Value

Entrez GeneID of the given KEGG ID(s)

Note

This function works so far only with human KEGGIDs, since for them the Entrez GeneID can be derived easily with removing the organism prefix.

The complete functional function will be implemented in the later release of the package.

Author(s)

Jitao David Zhang

Examples

egNodes <- c("hsa:1432", "hsa:11072")
translateKEGGID2GeneID(egNodes)
translateGeneID2KEGGID("1432")
**Index**

*Topic IO*
- getKGMLurl, 6
- parseEntry, 29
- parsePathwayInfo, 34
- parseReaction, 34
- parseRelation, 35

*Topic classes*
- KEGGEdge-class, 14
- KEGGEdgeSubType-class, 16
- KEGGGraphics-class, 17
- KEGGGroup-class, 18
- KEGGNode-class, 19
- KEGGPathway-class, 22
- KEGGPathwayInfo-class, 24
- KEGGReaction-class, 25

*Topic datasets*
- KEGGEdgeSubtype, 17
top, 43

*Topic methods*
- getDisplayName-methods, 2
- getEntryID-methods, 3
- getKEGGgeneLink-methods, 4
- getKEGGID-methods, 4
- getName-methods, 8
- getPathwayInfo-methods, 9
- getReactions-methods, 9
- getSubtype-methods, 11
- getTitle-methods, 11
- getType-methods, 12
- getValue-methods, 13
- subtypeDisplay-methods, 42

download.file, 32

edges, KEGGPathway, ANY-method (KEGGPathway-class), 22
edges, KEGGPathway-method (KEGGPathway-class), 22
edges<-(KEGGPathway-class), 22
edges<-, KEGGPathway-method (KEGGPathway-class), 22
entryID<-(KEGGNode-class), 19
entryID<-, KEGGEdge-method (KEGGEdge-class), 14
entryID<-, KEGGNode-method (KEGGNode-class), 19
expandKEGNode, 1, 2
expandKEGGPathway, 1

gGetComponent (KEGGGroup-class), 18
gGetComponent, KEGGGroup-method (KEGGGroup-class), 18
gGetComponent, KEGGNode-method (KEGGNode-class), 19
gDisplayName
 (getDisplayNames-methods), 2
gDisplayName, graph-method (getDisplayNames-methods), 2
gDisplayName, KEGGNode-method (getDisplayNames-methods), 2
gDisplayName-methods, 2
gEntryID (getEntryID-methods), 3
gEntryID, KEGGEdge-method (getEntryID-methods), 3
gEntryID, KEGGNode-method (getEntryID-methods), 3
gEntryID, list-method (getEntryID-methods), 3
gEntryID-methods, 3
gKEGGedgeData, 21, 28, 42
gKEGGedgeData (getKEGGnodeData), 5
gKEGGgeneLink
 (getKEGGgeneLink-methods), 4
gKEGGgeneLink, character-method (getKEGGgeneLink-methods), 4
gKEGGgeneLink-methods, 4
gKEGGID (getKEGGID-methods), 4
gKEGGID, KEGGNode-method (getKEGGID-methods), 4
gKEGGID-methods, 4
gKEGGnodeData, 5, 21, 28, 42
gKGMLurl, 6
getName (getName-methods), 8
getName, KEGGEdge-method (KEGGEdge-class), 14
getIndex,KEGGEdgeSubType-method (KEGGEdgeSubType-class), 16
getIndex,KEGGEdgeSubtype-method (getIndex-methods), 8
getIndex,KEGGNode-method (getIndex-methods), 8
getIndex,KEGGPathway-method (KEGGPathway-class), 22
getIndex,KEGGPathwayInfo-method (getIndex-methods), 8
getIndex,KEGGReaction-method (KEGGReaction-class), 25
gIndex-methods, 8
getNamedElement, 7
getPathwayInfo (getPathwayInfo-methods), 9
getPathwayInfo,KEGGPathway-method (getPathwayInfo-methods), 9
getPathwayInfo-methods, 9
getProduct,KEGGReaction-method (KEGGReaction-class), 25
getProduct-methods, 12
getValue (getValue-methods), 13
getValue,KEGGEdgeSubType-method (KEGGEdgeSubType-class), 16
getValue,KEGGEdgeSubtype-method (getValue-methods), 13
gValue-methods, 13
graphDensity, 13

isHomoList, 14

KEGGEdge-class, 3, 5, 11, 16, 20, 23, 35
KEGGEdge-class, 3, 12, 14, 23, 42
KEGGEdgeSubtype, 17
KEGGEdgeSubtype-class, 36
KEGGEdgeSubtype-class, 8, 13, 16, 42
KEGGEdgeType (KEGGedgeSubtype), 17
KEGGGraphics-class, 30, 31
KEGGGraphics-class, 17
KEGgraphLegend (plotKEGGgraph), 36
KEGGGroup-class, 29, 30
KEGGGroup-class, 18, 20
KEGGNode, 19
KEGGNode-class, 1, 3–5, 15, 19, 23, 30
KEGGNode-class, 2–4, 8, 12, 18, 19, 23
KEGGNodeType, 41
KEGGNodeType (KEGGEdgeSubtype), 17
KEGGPathway-class, 1, 2, 9, 11, 20–22, 31, 33, 40
KEGGPathway-class, 8, 9, 11, 22
KEGGpathway2Graph, 5, 19, 20, 31, 40, 42
KEGGpathway2reactionGraph, 21
KEGGPathwayInfo-class, 11, 34
KEGGPathwayInfo-class, 8, 11, 23, 24
KEGGReaction-class, 23, 35
KEGGReaction-class, 8, 12, 23, 25
kgmlFileName2PathwayName, 26
mergeGraphs, 26, 28
mergeKEGGgraphs, 26, 27

name<- (KEGGNode-class), 19
name<-,KEGGNode-method (KEGGNode-class), 19
neighborhood, 28
nodes,KEGGPathway-method (KEGGPathway-class), 22
nodes<-,KEGGPathway,ANY-method (KEGGPathway-class), 22

parseEntry, 18–20, 29, 33, 35
INDEX

parseGraphics, 17, 18, 30, 30
parseKGML, 22, 23, 30, 33
parseKGML2Graph, 5, 21, 22, 27, 31, 33, 36, 41, 42
parseKGMLExpandMaps, 32, 42
parsePathwayInfo, 24, 34
parseReaction, 25, 33, 34
parseRelation, 14, 33, 35
parseSubType, 36
plotKEGGgraph, 36
pvalue2asterisk, 37

queryKEGGsubgraph, 38
randomSubGraph, 39
retrieveKGML (getKGMLurl), 6

setKEGGedgeData
  (getKEGGnodeData), 5
setKEGGnodeData
  (getKEGGnodeData), 5
show, KEGGEdge-method
  (KEGGEdge-class), 14
show, KEGGEdgeSubType-method
  (KEGGEdgeSubType-class), 16
show, KEGGNode-method
  (KEGNNode-class), 19
show, KEGGPathway-method
  (KEGGPathway-class), 22
show, KEGGPathwayInfo-method
  (KEGGPathwayInfo-class), 24
show, KEGGReaction-method
  (KEGGReaction-class), 25
splitKEGGgroup, 40
subGraphByNodeType, 41
subKEGGgraph, 41
subtypeDisplay
  (subtypeDisplay-methods), 42
subtypeDisplay, graph-method
  (subtypeDisplay-methods), 42
subtypeDisplay, KEGGEdge-method
  (subtypeDisplay-methods), 42
subtypeDisplay, KEGGEdgeSubType-method
  (subtypeDisplay-methods), 42
subtypeDisplay-methods, 42
top, 43
translateGeneID2KEGGID, 38

translateGeneID2KEGGID
  (translateKEGGID2GeneID), 44
translateKEGG2GeneID
  (translateKEGGID2GeneID), 44
translateKEGGgraph, 43
translateKEGGID2GeneID, 38, 44

translateGeneID2KEGGID
  (translateKEGGID2GeneID), 44